![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > esumex | Structured version Visualization version GIF version |
Description: An extended sum is a set by definition. (Contributed by Thierry Arnoux, 5-Sep-2017.) |
Ref | Expression |
---|---|
esumex | ⊢ Σ*𝑘 ∈ 𝐴𝐵 ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-esum 34009 | . 2 ⊢ Σ*𝑘 ∈ 𝐴𝐵 = ∪ ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐴 ↦ 𝐵)) | |
2 | ovex 7464 | . . 3 ⊢ ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐴 ↦ 𝐵)) ∈ V | |
3 | 2 | uniex 7760 | . 2 ⊢ ∪ ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐴 ↦ 𝐵)) ∈ V |
4 | 1, 3 | eqeltri 2835 | 1 ⊢ Σ*𝑘 ∈ 𝐴𝐵 ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 Vcvv 3478 ∪ cuni 4912 ↦ cmpt 5231 (class class class)co 7431 0cc0 11153 +∞cpnf 11290 [,]cicc 13387 ↾s cress 17274 ℝ*𝑠cxrs 17547 tsums ctsu 24150 Σ*cesum 34008 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ne 2939 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-sn 4632 df-pr 4634 df-uni 4913 df-iota 6516 df-fv 6571 df-ov 7434 df-esum 34009 |
This theorem is referenced by: esumcvg 34067 esumgect 34071 omssubaddlem 34281 omssubadd 34282 |
Copyright terms: Public domain | W3C validator |