![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > esumex | Structured version Visualization version GIF version |
Description: An extended sum is a set by definition. (Contributed by Thierry Arnoux, 5-Sep-2017.) |
Ref | Expression |
---|---|
esumex | ⊢ Σ*𝑘 ∈ 𝐴𝐵 ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-esum 33992 | . 2 ⊢ Σ*𝑘 ∈ 𝐴𝐵 = ∪ ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐴 ↦ 𝐵)) | |
2 | ovex 7481 | . . 3 ⊢ ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐴 ↦ 𝐵)) ∈ V | |
3 | 2 | uniex 7776 | . 2 ⊢ ∪ ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐴 ↦ 𝐵)) ∈ V |
4 | 1, 3 | eqeltri 2840 | 1 ⊢ Σ*𝑘 ∈ 𝐴𝐵 ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 Vcvv 3488 ∪ cuni 4931 ↦ cmpt 5249 (class class class)co 7448 0cc0 11184 +∞cpnf 11321 [,]cicc 13410 ↾s cress 17287 ℝ*𝑠cxrs 17560 tsums ctsu 24155 Σ*cesum 33991 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-sn 4649 df-pr 4651 df-uni 4932 df-iota 6525 df-fv 6581 df-ov 7451 df-esum 33992 |
This theorem is referenced by: esumcvg 34050 esumgect 34054 omssubaddlem 34264 omssubadd 34265 |
Copyright terms: Public domain | W3C validator |