| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > esumex | Structured version Visualization version GIF version | ||
| Description: An extended sum is a set by definition. (Contributed by Thierry Arnoux, 5-Sep-2017.) |
| Ref | Expression |
|---|---|
| esumex | ⊢ Σ*𝑘 ∈ 𝐴𝐵 ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-esum 34064 | . 2 ⊢ Σ*𝑘 ∈ 𝐴𝐵 = ∪ ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐴 ↦ 𝐵)) | |
| 2 | ovex 7443 | . . 3 ⊢ ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐴 ↦ 𝐵)) ∈ V | |
| 3 | 2 | uniex 7740 | . 2 ⊢ ∪ ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐴 ↦ 𝐵)) ∈ V |
| 4 | 1, 3 | eqeltri 2831 | 1 ⊢ Σ*𝑘 ∈ 𝐴𝐵 ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Vcvv 3464 ∪ cuni 4888 ↦ cmpt 5206 (class class class)co 7410 0cc0 11134 +∞cpnf 11271 [,]cicc 13370 ↾s cress 17256 ℝ*𝑠cxrs 17519 tsums ctsu 24069 Σ*cesum 34063 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ne 2934 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-sn 4607 df-pr 4609 df-uni 4889 df-iota 6489 df-fv 6544 df-ov 7413 df-esum 34064 |
| This theorem is referenced by: esumcvg 34122 esumgect 34126 omssubaddlem 34336 omssubadd 34337 |
| Copyright terms: Public domain | W3C validator |