| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > esumex | Structured version Visualization version GIF version | ||
| Description: An extended sum is a set by definition. (Contributed by Thierry Arnoux, 5-Sep-2017.) |
| Ref | Expression |
|---|---|
| esumex | ⊢ Σ*𝑘 ∈ 𝐴𝐵 ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-esum 34041 | . 2 ⊢ Σ*𝑘 ∈ 𝐴𝐵 = ∪ ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐴 ↦ 𝐵)) | |
| 2 | ovex 7379 | . . 3 ⊢ ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐴 ↦ 𝐵)) ∈ V | |
| 3 | 2 | uniex 7674 | . 2 ⊢ ∪ ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐴 ↦ 𝐵)) ∈ V |
| 4 | 1, 3 | eqeltri 2827 | 1 ⊢ Σ*𝑘 ∈ 𝐴𝐵 ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2111 Vcvv 3436 ∪ cuni 4856 ↦ cmpt 5170 (class class class)co 7346 0cc0 11006 +∞cpnf 11143 [,]cicc 13248 ↾s cress 17141 ℝ*𝑠cxrs 17404 tsums ctsu 24041 Σ*cesum 34040 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-sn 4574 df-pr 4576 df-uni 4857 df-iota 6437 df-fv 6489 df-ov 7349 df-esum 34041 |
| This theorem is referenced by: esumcvg 34099 esumgect 34103 omssubaddlem 34312 omssubadd 34313 |
| Copyright terms: Public domain | W3C validator |