Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > esumex | Structured version Visualization version GIF version |
Description: An extended sum is a set by definition. (Contributed by Thierry Arnoux, 5-Sep-2017.) |
Ref | Expression |
---|---|
esumex | ⊢ Σ*𝑘 ∈ 𝐴𝐵 ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-esum 31996 | . 2 ⊢ Σ*𝑘 ∈ 𝐴𝐵 = ∪ ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐴 ↦ 𝐵)) | |
2 | ovex 7308 | . . 3 ⊢ ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐴 ↦ 𝐵)) ∈ V | |
3 | 2 | uniex 7594 | . 2 ⊢ ∪ ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐴 ↦ 𝐵)) ∈ V |
4 | 1, 3 | eqeltri 2835 | 1 ⊢ Σ*𝑘 ∈ 𝐴𝐵 ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 Vcvv 3432 ∪ cuni 4839 ↦ cmpt 5157 (class class class)co 7275 0cc0 10871 +∞cpnf 11006 [,]cicc 13082 ↾s cress 16941 ℝ*𝑠cxrs 17211 tsums ctsu 23277 Σ*cesum 31995 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-sn 4562 df-pr 4564 df-uni 4840 df-iota 6391 df-fv 6441 df-ov 7278 df-esum 31996 |
This theorem is referenced by: esumcvg 32054 esumgect 32058 omssubaddlem 32266 omssubadd 32267 |
Copyright terms: Public domain | W3C validator |