| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > esumex | Structured version Visualization version GIF version | ||
| Description: An extended sum is a set by definition. (Contributed by Thierry Arnoux, 5-Sep-2017.) |
| Ref | Expression |
|---|---|
| esumex | ⊢ Σ*𝑘 ∈ 𝐴𝐵 ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-esum 34001 | . 2 ⊢ Σ*𝑘 ∈ 𝐴𝐵 = ∪ ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐴 ↦ 𝐵)) | |
| 2 | ovex 7382 | . . 3 ⊢ ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐴 ↦ 𝐵)) ∈ V | |
| 3 | 2 | uniex 7677 | . 2 ⊢ ∪ ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐴 ↦ 𝐵)) ∈ V |
| 4 | 1, 3 | eqeltri 2824 | 1 ⊢ Σ*𝑘 ∈ 𝐴𝐵 ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Vcvv 3436 ∪ cuni 4858 ↦ cmpt 5173 (class class class)co 7349 0cc0 11009 +∞cpnf 11146 [,]cicc 13251 ↾s cress 17141 ℝ*𝑠cxrs 17404 tsums ctsu 24011 Σ*cesum 34000 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-v 3438 df-dif 3906 df-un 3908 df-ss 3920 df-nul 4285 df-sn 4578 df-pr 4580 df-uni 4859 df-iota 6438 df-fv 6490 df-ov 7352 df-esum 34001 |
| This theorem is referenced by: esumcvg 34059 esumgect 34063 omssubaddlem 34273 omssubadd 34274 |
| Copyright terms: Public domain | W3C validator |