Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  esumex Structured version   Visualization version   GIF version

Theorem esumex 34002
Description: An extended sum is a set by definition. (Contributed by Thierry Arnoux, 5-Sep-2017.)
Assertion
Ref Expression
esumex Σ*𝑘𝐴𝐵 ∈ V

Proof of Theorem esumex
StepHypRef Expression
1 df-esum 34001 . 2 Σ*𝑘𝐴𝐵 = ((ℝ*𝑠s (0[,]+∞)) tsums (𝑘𝐴𝐵))
2 ovex 7382 . . 3 ((ℝ*𝑠s (0[,]+∞)) tsums (𝑘𝐴𝐵)) ∈ V
32uniex 7677 . 2 ((ℝ*𝑠s (0[,]+∞)) tsums (𝑘𝐴𝐵)) ∈ V
41, 3eqeltri 2824 1 Σ*𝑘𝐴𝐵 ∈ V
Colors of variables: wff setvar class
Syntax hints:  wcel 2109  Vcvv 3436   cuni 4858  cmpt 5173  (class class class)co 7349  0cc0 11009  +∞cpnf 11146  [,]cicc 13251  s cress 17141  *𝑠cxrs 17404   tsums ctsu 24011  Σ*cesum 34000
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-v 3438  df-dif 3906  df-un 3908  df-ss 3920  df-nul 4285  df-sn 4578  df-pr 4580  df-uni 4859  df-iota 6438  df-fv 6490  df-ov 7352  df-esum 34001
This theorem is referenced by:  esumcvg  34059  esumgect  34063  omssubaddlem  34273  omssubadd  34274
  Copyright terms: Public domain W3C validator