![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > esumcl | Structured version Visualization version GIF version |
Description: Closure for extended sum in the extended positive reals. (Contributed by Thierry Arnoux, 2-Jan-2017.) |
Ref | Expression |
---|---|
esumcl.1 | ⊢ Ⅎ𝑘𝐴 |
Ref | Expression |
---|---|
esumcl | ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ (0[,]+∞)) → Σ*𝑘 ∈ 𝐴𝐵 ∈ (0[,]+∞)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xrge0base 32451 | . . 3 ⊢ (0[,]+∞) = (Base‘(ℝ*𝑠 ↾s (0[,]+∞))) | |
2 | xrge0cmn 21189 | . . . 4 ⊢ (ℝ*𝑠 ↾s (0[,]+∞)) ∈ CMnd | |
3 | 2 | a1i 11 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ (0[,]+∞)) → (ℝ*𝑠 ↾s (0[,]+∞)) ∈ CMnd) |
4 | xrge0tps 33218 | . . . 4 ⊢ (ℝ*𝑠 ↾s (0[,]+∞)) ∈ TopSp | |
5 | 4 | a1i 11 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ (0[,]+∞)) → (ℝ*𝑠 ↾s (0[,]+∞)) ∈ TopSp) |
6 | simpl 481 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ (0[,]+∞)) → 𝐴 ∈ 𝑉) | |
7 | esumcl.1 | . . . . . 6 ⊢ Ⅎ𝑘𝐴 | |
8 | 7 | nfel1 2917 | . . . . 5 ⊢ Ⅎ𝑘 𝐴 ∈ 𝑉 |
9 | nfra1 3279 | . . . . 5 ⊢ Ⅎ𝑘∀𝑘 ∈ 𝐴 𝐵 ∈ (0[,]+∞) | |
10 | 8, 9 | nfan 1900 | . . . 4 ⊢ Ⅎ𝑘(𝐴 ∈ 𝑉 ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ (0[,]+∞)) |
11 | nfcv 2901 | . . . 4 ⊢ Ⅎ𝑘(0[,]+∞) | |
12 | simpr 483 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ (0[,]+∞)) → ∀𝑘 ∈ 𝐴 𝐵 ∈ (0[,]+∞)) | |
13 | 12 | r19.21bi 3246 | . . . 4 ⊢ (((𝐴 ∈ 𝑉 ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ (0[,]+∞)) ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) |
14 | eqid 2730 | . . . 4 ⊢ (𝑘 ∈ 𝐴 ↦ 𝐵) = (𝑘 ∈ 𝐴 ↦ 𝐵) | |
15 | 10, 7, 11, 13, 14 | fmptdF 32146 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ (0[,]+∞)) → (𝑘 ∈ 𝐴 ↦ 𝐵):𝐴⟶(0[,]+∞)) |
16 | 1, 3, 5, 6, 15 | tsmscl 23861 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ (0[,]+∞)) → ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐴 ↦ 𝐵)) ⊆ (0[,]+∞)) |
17 | df-esum 33322 | . . 3 ⊢ Σ*𝑘 ∈ 𝐴𝐵 = ∪ ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐴 ↦ 𝐵)) | |
18 | eqid 2730 | . . . 4 ⊢ (ℝ*𝑠 ↾s (0[,]+∞)) = (ℝ*𝑠 ↾s (0[,]+∞)) | |
19 | 18, 6, 15 | xrge0tsmsbi 32478 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ (0[,]+∞)) → (Σ*𝑘 ∈ 𝐴𝐵 ∈ ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐴 ↦ 𝐵)) ↔ Σ*𝑘 ∈ 𝐴𝐵 = ∪ ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐴 ↦ 𝐵)))) |
20 | 17, 19 | mpbiri 257 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ (0[,]+∞)) → Σ*𝑘 ∈ 𝐴𝐵 ∈ ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐴 ↦ 𝐵))) |
21 | 16, 20 | sseldd 3984 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ (0[,]+∞)) → Σ*𝑘 ∈ 𝐴𝐵 ∈ (0[,]+∞)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1539 ∈ wcel 2104 Ⅎwnfc 2881 ∀wral 3059 ∪ cuni 4909 ↦ cmpt 5232 (class class class)co 7413 0cc0 11114 +∞cpnf 11251 [,]cicc 13333 ↾s cress 17179 ℝ*𝑠cxrs 17452 CMndccmn 19691 TopSpctps 22656 tsums ctsu 23852 Σ*cesum 33321 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7729 ax-cnex 11170 ax-resscn 11171 ax-1cn 11172 ax-icn 11173 ax-addcl 11174 ax-addrcl 11175 ax-mulcl 11176 ax-mulrcl 11177 ax-mulcom 11178 ax-addass 11179 ax-mulass 11180 ax-distr 11181 ax-i2m1 11182 ax-1ne0 11183 ax-1rid 11184 ax-rnegex 11185 ax-rrecex 11186 ax-cnre 11187 ax-pre-lttri 11188 ax-pre-lttrn 11189 ax-pre-ltadd 11190 ax-pre-mulgt0 11191 ax-pre-sup 11192 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-uni 4910 df-int 4952 df-iun 5000 df-iin 5001 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-se 5633 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-isom 6553 df-riota 7369 df-ov 7416 df-oprab 7417 df-mpo 7418 df-of 7674 df-om 7860 df-1st 7979 df-2nd 7980 df-supp 8151 df-frecs 8270 df-wrecs 8301 df-recs 8375 df-rdg 8414 df-1o 8470 df-er 8707 df-map 8826 df-en 8944 df-dom 8945 df-sdom 8946 df-fin 8947 df-fsupp 9366 df-fi 9410 df-sup 9441 df-inf 9442 df-oi 9509 df-card 9938 df-pnf 11256 df-mnf 11257 df-xr 11258 df-ltxr 11259 df-le 11260 df-sub 11452 df-neg 11453 df-div 11878 df-nn 12219 df-2 12281 df-3 12282 df-4 12283 df-5 12284 df-6 12285 df-7 12286 df-8 12287 df-9 12288 df-n0 12479 df-z 12565 df-dec 12684 df-uz 12829 df-q 12939 df-xadd 13099 df-ioo 13334 df-ioc 13335 df-ico 13336 df-icc 13337 df-fz 13491 df-fzo 13634 df-seq 13973 df-hash 14297 df-struct 17086 df-sets 17103 df-slot 17121 df-ndx 17133 df-base 17151 df-ress 17180 df-plusg 17216 df-mulr 17217 df-tset 17222 df-ple 17223 df-ds 17225 df-rest 17374 df-topn 17375 df-0g 17393 df-gsum 17394 df-topgen 17395 df-ordt 17453 df-xrs 17454 df-mre 17536 df-mrc 17537 df-acs 17539 df-ps 18525 df-tsr 18526 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-submnd 18708 df-cntz 19224 df-cmn 19693 df-fbas 21143 df-fg 21144 df-top 22618 df-topon 22635 df-topsp 22657 df-bases 22671 df-ntr 22746 df-nei 22824 df-cn 22953 df-haus 23041 df-fil 23572 df-fm 23664 df-flim 23665 df-flf 23666 df-tsms 23853 df-esum 33322 |
This theorem is referenced by: esumel 33341 esummono 33348 esumpad 33349 esumpad2 33350 esumle 33352 esumlef 33356 esumrnmpt2 33362 esumfsup 33364 esumpinfval 33367 esumpinfsum 33371 esumpmono 33373 esummulc1 33375 esummulc2 33376 esumdivc 33377 hasheuni 33379 esumcvg 33380 esumgect 33384 esum2dlem 33386 esum2d 33387 measiun 33512 omscl 33590 oms0 33592 omsmon 33593 omssubadd 33595 carsggect 33613 carsgclctunlem2 33614 omsmeas 33618 |
Copyright terms: Public domain | W3C validator |