Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  esumcl Structured version   Visualization version   GIF version

Theorem esumcl 34031
Description: Closure for extended sum in the extended positive reals. (Contributed by Thierry Arnoux, 2-Jan-2017.)
Hypothesis
Ref Expression
esumcl.1 𝑘𝐴
Assertion
Ref Expression
esumcl ((𝐴𝑉 ∧ ∀𝑘𝐴 𝐵 ∈ (0[,]+∞)) → Σ*𝑘𝐴𝐵 ∈ (0[,]+∞))
Distinct variable group:   𝑘,𝑉
Allowed substitution hints:   𝐴(𝑘)   𝐵(𝑘)

Proof of Theorem esumcl
StepHypRef Expression
1 xrge0base 33016 . . 3 (0[,]+∞) = (Base‘(ℝ*𝑠s (0[,]+∞)))
2 xrge0cmn 21426 . . . 4 (ℝ*𝑠s (0[,]+∞)) ∈ CMnd
32a1i 11 . . 3 ((𝐴𝑉 ∧ ∀𝑘𝐴 𝐵 ∈ (0[,]+∞)) → (ℝ*𝑠s (0[,]+∞)) ∈ CMnd)
4 xrge0tps 33941 . . . 4 (ℝ*𝑠s (0[,]+∞)) ∈ TopSp
54a1i 11 . . 3 ((𝐴𝑉 ∧ ∀𝑘𝐴 𝐵 ∈ (0[,]+∞)) → (ℝ*𝑠s (0[,]+∞)) ∈ TopSp)
6 simpl 482 . . 3 ((𝐴𝑉 ∧ ∀𝑘𝐴 𝐵 ∈ (0[,]+∞)) → 𝐴𝑉)
7 esumcl.1 . . . . . 6 𝑘𝐴
87nfel1 2922 . . . . 5 𝑘 𝐴𝑉
9 nfra1 3284 . . . . 5 𝑘𝑘𝐴 𝐵 ∈ (0[,]+∞)
108, 9nfan 1899 . . . 4 𝑘(𝐴𝑉 ∧ ∀𝑘𝐴 𝐵 ∈ (0[,]+∞))
11 nfcv 2905 . . . 4 𝑘(0[,]+∞)
12 simpr 484 . . . . 5 ((𝐴𝑉 ∧ ∀𝑘𝐴 𝐵 ∈ (0[,]+∞)) → ∀𝑘𝐴 𝐵 ∈ (0[,]+∞))
1312r19.21bi 3251 . . . 4 (((𝐴𝑉 ∧ ∀𝑘𝐴 𝐵 ∈ (0[,]+∞)) ∧ 𝑘𝐴) → 𝐵 ∈ (0[,]+∞))
14 eqid 2737 . . . 4 (𝑘𝐴𝐵) = (𝑘𝐴𝐵)
1510, 7, 11, 13, 14fmptdF 32666 . . 3 ((𝐴𝑉 ∧ ∀𝑘𝐴 𝐵 ∈ (0[,]+∞)) → (𝑘𝐴𝐵):𝐴⟶(0[,]+∞))
161, 3, 5, 6, 15tsmscl 24143 . 2 ((𝐴𝑉 ∧ ∀𝑘𝐴 𝐵 ∈ (0[,]+∞)) → ((ℝ*𝑠s (0[,]+∞)) tsums (𝑘𝐴𝐵)) ⊆ (0[,]+∞))
17 df-esum 34029 . . 3 Σ*𝑘𝐴𝐵 = ((ℝ*𝑠s (0[,]+∞)) tsums (𝑘𝐴𝐵))
18 eqid 2737 . . . 4 (ℝ*𝑠s (0[,]+∞)) = (ℝ*𝑠s (0[,]+∞))
1918, 6, 15xrge0tsmsbi 33066 . . 3 ((𝐴𝑉 ∧ ∀𝑘𝐴 𝐵 ∈ (0[,]+∞)) → (Σ*𝑘𝐴𝐵 ∈ ((ℝ*𝑠s (0[,]+∞)) tsums (𝑘𝐴𝐵)) ↔ Σ*𝑘𝐴𝐵 = ((ℝ*𝑠s (0[,]+∞)) tsums (𝑘𝐴𝐵))))
2017, 19mpbiri 258 . 2 ((𝐴𝑉 ∧ ∀𝑘𝐴 𝐵 ∈ (0[,]+∞)) → Σ*𝑘𝐴𝐵 ∈ ((ℝ*𝑠s (0[,]+∞)) tsums (𝑘𝐴𝐵)))
2116, 20sseldd 3984 1 ((𝐴𝑉 ∧ ∀𝑘𝐴 𝐵 ∈ (0[,]+∞)) → Σ*𝑘𝐴𝐵 ∈ (0[,]+∞))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wnfc 2890  wral 3061   cuni 4907  cmpt 5225  (class class class)co 7431  0cc0 11155  +∞cpnf 11292  [,]cicc 13390  s cress 17274  *𝑠cxrs 17545  CMndccmn 19798  TopSpctps 22938   tsums ctsu 24134  Σ*cesum 34028
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-er 8745  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-fi 9451  df-sup 9482  df-inf 9483  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-q 12991  df-xadd 13155  df-ioo 13391  df-ioc 13392  df-ico 13393  df-icc 13394  df-fz 13548  df-fzo 13695  df-seq 14043  df-hash 14370  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-tset 17316  df-ple 17317  df-ds 17319  df-rest 17467  df-topn 17468  df-0g 17486  df-gsum 17487  df-topgen 17488  df-ordt 17546  df-xrs 17547  df-mre 17629  df-mrc 17630  df-acs 17632  df-ps 18611  df-tsr 18612  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-submnd 18797  df-cntz 19335  df-cmn 19800  df-fbas 21361  df-fg 21362  df-top 22900  df-topon 22917  df-topsp 22939  df-bases 22953  df-ntr 23028  df-nei 23106  df-cn 23235  df-haus 23323  df-fil 23854  df-fm 23946  df-flim 23947  df-flf 23948  df-tsms 24135  df-esum 34029
This theorem is referenced by:  esumel  34048  esummono  34055  esumpad  34056  esumpad2  34057  esumle  34059  esumlef  34063  esumrnmpt2  34069  esumfsup  34071  esumpinfval  34074  esumpinfsum  34078  esumpmono  34080  esummulc1  34082  esummulc2  34083  esumdivc  34084  hasheuni  34086  esumcvg  34087  esumgect  34091  esum2dlem  34093  esum2d  34094  measiun  34219  omscl  34297  oms0  34299  omsmon  34300  omssubadd  34302  carsggect  34320  carsgclctunlem2  34321  omsmeas  34325
  Copyright terms: Public domain W3C validator