| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > esumcl | Structured version Visualization version GIF version | ||
| Description: Closure for extended sum in the extended positive reals. (Contributed by Thierry Arnoux, 2-Jan-2017.) |
| Ref | Expression |
|---|---|
| esumcl.1 | ⊢ Ⅎ𝑘𝐴 |
| Ref | Expression |
|---|---|
| esumcl | ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ (0[,]+∞)) → Σ*𝑘 ∈ 𝐴𝐵 ∈ (0[,]+∞)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrge0base 33006 | . . 3 ⊢ (0[,]+∞) = (Base‘(ℝ*𝑠 ↾s (0[,]+∞))) | |
| 2 | xrge0cmn 21376 | . . . 4 ⊢ (ℝ*𝑠 ↾s (0[,]+∞)) ∈ CMnd | |
| 3 | 2 | a1i 11 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ (0[,]+∞)) → (ℝ*𝑠 ↾s (0[,]+∞)) ∈ CMnd) |
| 4 | xrge0tps 33973 | . . . 4 ⊢ (ℝ*𝑠 ↾s (0[,]+∞)) ∈ TopSp | |
| 5 | 4 | a1i 11 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ (0[,]+∞)) → (ℝ*𝑠 ↾s (0[,]+∞)) ∈ TopSp) |
| 6 | simpl 482 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ (0[,]+∞)) → 𝐴 ∈ 𝑉) | |
| 7 | esumcl.1 | . . . . . 6 ⊢ Ⅎ𝑘𝐴 | |
| 8 | 7 | nfel1 2915 | . . . . 5 ⊢ Ⅎ𝑘 𝐴 ∈ 𝑉 |
| 9 | nfra1 3266 | . . . . 5 ⊢ Ⅎ𝑘∀𝑘 ∈ 𝐴 𝐵 ∈ (0[,]+∞) | |
| 10 | 8, 9 | nfan 1899 | . . . 4 ⊢ Ⅎ𝑘(𝐴 ∈ 𝑉 ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ (0[,]+∞)) |
| 11 | nfcv 2898 | . . . 4 ⊢ Ⅎ𝑘(0[,]+∞) | |
| 12 | simpr 484 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ (0[,]+∞)) → ∀𝑘 ∈ 𝐴 𝐵 ∈ (0[,]+∞)) | |
| 13 | 12 | r19.21bi 3234 | . . . 4 ⊢ (((𝐴 ∈ 𝑉 ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ (0[,]+∞)) ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) |
| 14 | eqid 2735 | . . . 4 ⊢ (𝑘 ∈ 𝐴 ↦ 𝐵) = (𝑘 ∈ 𝐴 ↦ 𝐵) | |
| 15 | 10, 7, 11, 13, 14 | fmptdF 32634 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ (0[,]+∞)) → (𝑘 ∈ 𝐴 ↦ 𝐵):𝐴⟶(0[,]+∞)) |
| 16 | 1, 3, 5, 6, 15 | tsmscl 24073 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ (0[,]+∞)) → ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐴 ↦ 𝐵)) ⊆ (0[,]+∞)) |
| 17 | df-esum 34059 | . . 3 ⊢ Σ*𝑘 ∈ 𝐴𝐵 = ∪ ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐴 ↦ 𝐵)) | |
| 18 | eqid 2735 | . . . 4 ⊢ (ℝ*𝑠 ↾s (0[,]+∞)) = (ℝ*𝑠 ↾s (0[,]+∞)) | |
| 19 | 18, 6, 15 | xrge0tsmsbi 33057 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ (0[,]+∞)) → (Σ*𝑘 ∈ 𝐴𝐵 ∈ ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐴 ↦ 𝐵)) ↔ Σ*𝑘 ∈ 𝐴𝐵 = ∪ ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐴 ↦ 𝐵)))) |
| 20 | 17, 19 | mpbiri 258 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ (0[,]+∞)) → Σ*𝑘 ∈ 𝐴𝐵 ∈ ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐴 ↦ 𝐵))) |
| 21 | 16, 20 | sseldd 3959 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ (0[,]+∞)) → Σ*𝑘 ∈ 𝐴𝐵 ∈ (0[,]+∞)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 Ⅎwnfc 2883 ∀wral 3051 ∪ cuni 4883 ↦ cmpt 5201 (class class class)co 7405 0cc0 11129 +∞cpnf 11266 [,]cicc 13365 ↾s cress 17251 ℝ*𝑠cxrs 17514 CMndccmn 19761 TopSpctps 22870 tsums ctsu 24064 Σ*cesum 34058 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 ax-pre-sup 11207 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-iin 4970 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-isom 6540 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-of 7671 df-om 7862 df-1st 7988 df-2nd 7989 df-supp 8160 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-2o 8481 df-er 8719 df-map 8842 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-fsupp 9374 df-fi 9423 df-sup 9454 df-inf 9455 df-oi 9524 df-card 9953 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-div 11895 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-7 12308 df-8 12309 df-9 12310 df-n0 12502 df-z 12589 df-dec 12709 df-uz 12853 df-q 12965 df-xadd 13129 df-ioo 13366 df-ioc 13367 df-ico 13368 df-icc 13369 df-fz 13525 df-fzo 13672 df-seq 14020 df-hash 14349 df-struct 17166 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17229 df-ress 17252 df-plusg 17284 df-mulr 17285 df-tset 17290 df-ple 17291 df-ds 17293 df-rest 17436 df-topn 17437 df-0g 17455 df-gsum 17456 df-topgen 17457 df-ordt 17515 df-xrs 17516 df-mre 17598 df-mrc 17599 df-acs 17601 df-ps 18576 df-tsr 18577 df-mgm 18618 df-sgrp 18697 df-mnd 18713 df-submnd 18762 df-cntz 19300 df-cmn 19763 df-fbas 21312 df-fg 21313 df-top 22832 df-topon 22849 df-topsp 22871 df-bases 22884 df-ntr 22958 df-nei 23036 df-cn 23165 df-haus 23253 df-fil 23784 df-fm 23876 df-flim 23877 df-flf 23878 df-tsms 24065 df-esum 34059 |
| This theorem is referenced by: esumel 34078 esummono 34085 esumpad 34086 esumpad2 34087 esumle 34089 esumlef 34093 esumrnmpt2 34099 esumfsup 34101 esumpinfval 34104 esumpinfsum 34108 esumpmono 34110 esummulc1 34112 esummulc2 34113 esumdivc 34114 hasheuni 34116 esumcvg 34117 esumgect 34121 esum2dlem 34123 esum2d 34124 measiun 34249 omscl 34327 oms0 34329 omsmon 34330 omssubadd 34332 carsggect 34350 carsgclctunlem2 34351 omsmeas 34355 |
| Copyright terms: Public domain | W3C validator |