Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  omssubaddlem Structured version   Visualization version   GIF version

Theorem omssubaddlem 34290
Description: For any small margin 𝐸, we can find a covering approaching the outer measure of a set 𝐴 by that margin. (Contributed by Thierry Arnoux, 18-Sep-2019.) (Revised by AV, 4-Oct-2020.)
Hypotheses
Ref Expression
oms.m 𝑀 = (toOMeas‘𝑅)
oms.o (𝜑𝑄𝑉)
oms.r (𝜑𝑅:𝑄⟶(0[,]+∞))
omssubaddlem.a (𝜑𝐴 𝑄)
omssubaddlem.m (𝜑 → (𝑀𝐴) ∈ ℝ)
omssubaddlem.e (𝜑𝐸 ∈ ℝ+)
Assertion
Ref Expression
omssubaddlem (𝜑 → ∃𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)}Σ*𝑤𝑥(𝑅𝑤) < ((𝑀𝐴) + 𝐸))
Distinct variable groups:   𝑥,𝑄,𝑧   𝑥,𝑅,𝑧   𝑥,𝑉,𝑧   𝜑,𝑥,𝑧   𝑤,𝐴,𝑥,𝑧   𝑥,𝐸   𝑥,𝑀   𝑤,𝑄   𝑤,𝑅   𝑤,𝑉
Allowed substitution hints:   𝜑(𝑤)   𝐸(𝑧,𝑤)   𝑀(𝑧,𝑤)

Proof of Theorem omssubaddlem
Dummy variables 𝑒 𝑡 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 omssubaddlem.m . . . . . 6 (𝜑 → (𝑀𝐴) ∈ ℝ)
2 omssubaddlem.e . . . . . . 7 (𝜑𝐸 ∈ ℝ+)
32rpred 12995 . . . . . 6 (𝜑𝐸 ∈ ℝ)
41, 3readdcld 11203 . . . . 5 (𝜑 → ((𝑀𝐴) + 𝐸) ∈ ℝ)
54rexrd 11224 . . . 4 (𝜑 → ((𝑀𝐴) + 𝐸) ∈ ℝ*)
6 oms.o . . . . . . . . 9 (𝜑𝑄𝑉)
7 oms.r . . . . . . . . 9 (𝜑𝑅:𝑄⟶(0[,]+∞))
8 omsf 34287 . . . . . . . . 9 ((𝑄𝑉𝑅:𝑄⟶(0[,]+∞)) → (toOMeas‘𝑅):𝒫 dom 𝑅⟶(0[,]+∞))
96, 7, 8syl2anc 584 . . . . . . . 8 (𝜑 → (toOMeas‘𝑅):𝒫 dom 𝑅⟶(0[,]+∞))
10 oms.m . . . . . . . . 9 𝑀 = (toOMeas‘𝑅)
1110feq1i 6679 . . . . . . . 8 (𝑀:𝒫 dom 𝑅⟶(0[,]+∞) ↔ (toOMeas‘𝑅):𝒫 dom 𝑅⟶(0[,]+∞))
129, 11sylibr 234 . . . . . . 7 (𝜑𝑀:𝒫 dom 𝑅⟶(0[,]+∞))
13 omssubaddlem.a . . . . . . . . 9 (𝜑𝐴 𝑄)
147fdmd 6698 . . . . . . . . . 10 (𝜑 → dom 𝑅 = 𝑄)
1514unieqd 4884 . . . . . . . . 9 (𝜑 dom 𝑅 = 𝑄)
1613, 15sseqtrrd 3984 . . . . . . . 8 (𝜑𝐴 dom 𝑅)
176uniexd 7718 . . . . . . . . . 10 (𝜑 𝑄 ∈ V)
1813, 17jca 511 . . . . . . . . 9 (𝜑 → (𝐴 𝑄 𝑄 ∈ V))
19 ssexg 5278 . . . . . . . . 9 ((𝐴 𝑄 𝑄 ∈ V) → 𝐴 ∈ V)
20 elpwg 4566 . . . . . . . . 9 (𝐴 ∈ V → (𝐴 ∈ 𝒫 dom 𝑅𝐴 dom 𝑅))
2118, 19, 203syl 18 . . . . . . . 8 (𝜑 → (𝐴 ∈ 𝒫 dom 𝑅𝐴 dom 𝑅))
2216, 21mpbird 257 . . . . . . 7 (𝜑𝐴 ∈ 𝒫 dom 𝑅)
2312, 22ffvelcdmd 7057 . . . . . 6 (𝜑 → (𝑀𝐴) ∈ (0[,]+∞))
24 elxrge0 13418 . . . . . . 7 ((𝑀𝐴) ∈ (0[,]+∞) ↔ ((𝑀𝐴) ∈ ℝ* ∧ 0 ≤ (𝑀𝐴)))
2524simprbi 496 . . . . . 6 ((𝑀𝐴) ∈ (0[,]+∞) → 0 ≤ (𝑀𝐴))
2623, 25syl 17 . . . . 5 (𝜑 → 0 ≤ (𝑀𝐴))
272rpge0d 12999 . . . . 5 (𝜑 → 0 ≤ 𝐸)
281, 3, 26, 27addge0d 11754 . . . 4 (𝜑 → 0 ≤ ((𝑀𝐴) + 𝐸))
29 elxrge0 13418 . . . 4 (((𝑀𝐴) + 𝐸) ∈ (0[,]+∞) ↔ (((𝑀𝐴) + 𝐸) ∈ ℝ* ∧ 0 ≤ ((𝑀𝐴) + 𝐸)))
305, 28, 29sylanbrc 583 . . 3 (𝜑 → ((𝑀𝐴) + 𝐸) ∈ (0[,]+∞))
3110fveq1i 6859 . . . . 5 (𝑀𝐴) = ((toOMeas‘𝑅)‘𝐴)
32 omsfval 34285 . . . . . 6 ((𝑄𝑉𝑅:𝑄⟶(0[,]+∞) ∧ 𝐴 𝑄) → ((toOMeas‘𝑅)‘𝐴) = inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤)), (0[,]+∞), < ))
336, 7, 13, 32syl3anc 1373 . . . . 5 (𝜑 → ((toOMeas‘𝑅)‘𝐴) = inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤)), (0[,]+∞), < ))
3431, 33eqtr2id 2777 . . . 4 (𝜑 → inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤)), (0[,]+∞), < ) = (𝑀𝐴))
351, 2ltaddrpd 13028 . . . 4 (𝜑 → (𝑀𝐴) < ((𝑀𝐴) + 𝐸))
3634, 35eqbrtrd 5129 . . 3 (𝜑 → inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤)), (0[,]+∞), < ) < ((𝑀𝐴) + 𝐸))
37 iccssxr 13391 . . . . . 6 (0[,]+∞) ⊆ ℝ*
38 xrltso 13101 . . . . . 6 < Or ℝ*
39 soss 5566 . . . . . 6 ((0[,]+∞) ⊆ ℝ* → ( < Or ℝ* → < Or (0[,]+∞)))
4037, 38, 39mp2 9 . . . . 5 < Or (0[,]+∞)
4140a1i 11 . . . 4 (𝜑 → < Or (0[,]+∞))
42 omscl 34286 . . . . . 6 ((𝑄𝑉𝑅:𝑄⟶(0[,]+∞) ∧ 𝐴 ∈ 𝒫 dom 𝑅) → ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤)) ⊆ (0[,]+∞))
436, 7, 22, 42syl3anc 1373 . . . . 5 (𝜑 → ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤)) ⊆ (0[,]+∞))
44 xrge0infss 32683 . . . . 5 (ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤)) ⊆ (0[,]+∞) → ∃𝑒 ∈ (0[,]+∞)(∀𝑡 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤)) ¬ 𝑡 < 𝑒 ∧ ∀𝑡 ∈ (0[,]+∞)(𝑒 < 𝑡 → ∃𝑢 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤))𝑢 < 𝑡)))
4543, 44syl 17 . . . 4 (𝜑 → ∃𝑒 ∈ (0[,]+∞)(∀𝑡 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤)) ¬ 𝑡 < 𝑒 ∧ ∀𝑡 ∈ (0[,]+∞)(𝑒 < 𝑡 → ∃𝑢 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤))𝑢 < 𝑡)))
4641, 45infglb 9442 . . 3 (𝜑 → ((((𝑀𝐴) + 𝐸) ∈ (0[,]+∞) ∧ inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤)), (0[,]+∞), < ) < ((𝑀𝐴) + 𝐸)) → ∃𝑢 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤))𝑢 < ((𝑀𝐴) + 𝐸)))
4730, 36, 46mp2and 699 . 2 (𝜑 → ∃𝑢 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤))𝑢 < ((𝑀𝐴) + 𝐸))
48 eqid 2729 . . . . . . . 8 (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤)) = (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤))
49 esumex 34019 . . . . . . . 8 Σ*𝑤𝑥(𝑅𝑤) ∈ V
5048, 49elrnmpti 5926 . . . . . . 7 (𝑢 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤)) ↔ ∃𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)}𝑢 = Σ*𝑤𝑥(𝑅𝑤))
5150anbi1i 624 . . . . . 6 ((𝑢 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤)) ∧ 𝑢 < ((𝑀𝐴) + 𝐸)) ↔ (∃𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)}𝑢 = Σ*𝑤𝑥(𝑅𝑤) ∧ 𝑢 < ((𝑀𝐴) + 𝐸)))
52 r19.41v 3167 . . . . . 6 (∃𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} (𝑢 = Σ*𝑤𝑥(𝑅𝑤) ∧ 𝑢 < ((𝑀𝐴) + 𝐸)) ↔ (∃𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)}𝑢 = Σ*𝑤𝑥(𝑅𝑤) ∧ 𝑢 < ((𝑀𝐴) + 𝐸)))
5351, 52bitr4i 278 . . . . 5 ((𝑢 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤)) ∧ 𝑢 < ((𝑀𝐴) + 𝐸)) ↔ ∃𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} (𝑢 = Σ*𝑤𝑥(𝑅𝑤) ∧ 𝑢 < ((𝑀𝐴) + 𝐸)))
5453exbii 1848 . . . 4 (∃𝑢(𝑢 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤)) ∧ 𝑢 < ((𝑀𝐴) + 𝐸)) ↔ ∃𝑢𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} (𝑢 = Σ*𝑤𝑥(𝑅𝑤) ∧ 𝑢 < ((𝑀𝐴) + 𝐸)))
55 df-rex 3054 . . . 4 (∃𝑢 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤))𝑢 < ((𝑀𝐴) + 𝐸) ↔ ∃𝑢(𝑢 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤)) ∧ 𝑢 < ((𝑀𝐴) + 𝐸)))
56 rexcom4 3264 . . . 4 (∃𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)}∃𝑢(𝑢 = Σ*𝑤𝑥(𝑅𝑤) ∧ 𝑢 < ((𝑀𝐴) + 𝐸)) ↔ ∃𝑢𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} (𝑢 = Σ*𝑤𝑥(𝑅𝑤) ∧ 𝑢 < ((𝑀𝐴) + 𝐸)))
5754, 55, 563bitr4i 303 . . 3 (∃𝑢 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤))𝑢 < ((𝑀𝐴) + 𝐸) ↔ ∃𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)}∃𝑢(𝑢 = Σ*𝑤𝑥(𝑅𝑤) ∧ 𝑢 < ((𝑀𝐴) + 𝐸)))
58 breq1 5110 . . . . . 6 (𝑢 = Σ*𝑤𝑥(𝑅𝑤) → (𝑢 < ((𝑀𝐴) + 𝐸) ↔ Σ*𝑤𝑥(𝑅𝑤) < ((𝑀𝐴) + 𝐸)))
5958biimpa 476 . . . . 5 ((𝑢 = Σ*𝑤𝑥(𝑅𝑤) ∧ 𝑢 < ((𝑀𝐴) + 𝐸)) → Σ*𝑤𝑥(𝑅𝑤) < ((𝑀𝐴) + 𝐸))
6059exlimiv 1930 . . . 4 (∃𝑢(𝑢 = Σ*𝑤𝑥(𝑅𝑤) ∧ 𝑢 < ((𝑀𝐴) + 𝐸)) → Σ*𝑤𝑥(𝑅𝑤) < ((𝑀𝐴) + 𝐸))
6160reximi 3067 . . 3 (∃𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)}∃𝑢(𝑢 = Σ*𝑤𝑥(𝑅𝑤) ∧ 𝑢 < ((𝑀𝐴) + 𝐸)) → ∃𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)}Σ*𝑤𝑥(𝑅𝑤) < ((𝑀𝐴) + 𝐸))
6257, 61sylbi 217 . 2 (∃𝑢 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤))𝑢 < ((𝑀𝐴) + 𝐸) → ∃𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)}Σ*𝑤𝑥(𝑅𝑤) < ((𝑀𝐴) + 𝐸))
6347, 62syl 17 1 (𝜑 → ∃𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)}Σ*𝑤𝑥(𝑅𝑤) < ((𝑀𝐴) + 𝐸))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  wral 3044  wrex 3053  {crab 3405  Vcvv 3447  wss 3914  𝒫 cpw 4563   cuni 4871   class class class wbr 5107  cmpt 5188   Or wor 5545  dom cdm 5638  ran crn 5639  wf 6507  cfv 6511  (class class class)co 7387  ωcom 7842  cdom 8916  infcinf 9392  cr 11067  0cc0 11068   + caddc 11071  +∞cpnf 11205  *cxr 11207   < clt 11208  cle 11209  +crp 12951  [,]cicc 13309  Σ*cesum 34017  toOMeascoms 34282
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-fi 9362  df-sup 9393  df-inf 9394  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-q 12908  df-rp 12952  df-xadd 13073  df-ioo 13310  df-ioc 13311  df-ico 13312  df-icc 13313  df-fz 13469  df-fzo 13616  df-seq 13967  df-hash 14296  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-tset 17239  df-ple 17240  df-ds 17242  df-rest 17385  df-topn 17386  df-0g 17404  df-gsum 17405  df-topgen 17406  df-ordt 17464  df-xrs 17465  df-mre 17547  df-mrc 17548  df-acs 17550  df-ps 18525  df-tsr 18526  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-submnd 18711  df-cntz 19249  df-cmn 19712  df-fbas 21261  df-fg 21262  df-top 22781  df-topon 22798  df-topsp 22820  df-bases 22833  df-ntr 22907  df-nei 22985  df-cn 23114  df-haus 23202  df-fil 23733  df-fm 23825  df-flim 23826  df-flf 23827  df-tsms 24014  df-esum 34018  df-oms 34283
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator