Step | Hyp | Ref
| Expression |
1 | | omssubaddlem.m |
. . . . . 6
β’ (π β (πβπ΄) β β) |
2 | | omssubaddlem.e |
. . . . . . 7
β’ (π β πΈ β
β+) |
3 | 2 | rpred 13012 |
. . . . . 6
β’ (π β πΈ β β) |
4 | 1, 3 | readdcld 11239 |
. . . . 5
β’ (π β ((πβπ΄) + πΈ) β β) |
5 | 4 | rexrd 11260 |
. . . 4
β’ (π β ((πβπ΄) + πΈ) β
β*) |
6 | | oms.o |
. . . . . . . . 9
β’ (π β π β π) |
7 | | oms.r |
. . . . . . . . 9
β’ (π β π
:πβΆ(0[,]+β)) |
8 | | omsf 33283 |
. . . . . . . . 9
β’ ((π β π β§ π
:πβΆ(0[,]+β)) β
(toOMeasβπ
):π«
βͺ dom π
βΆ(0[,]+β)) |
9 | 6, 7, 8 | syl2anc 584 |
. . . . . . . 8
β’ (π β (toOMeasβπ
):π« βͺ dom π
βΆ(0[,]+β)) |
10 | | oms.m |
. . . . . . . . 9
β’ π = (toOMeasβπ
) |
11 | 10 | feq1i 6705 |
. . . . . . . 8
β’ (π:π« βͺ dom π
βΆ(0[,]+β) β
(toOMeasβπ
):π«
βͺ dom π
βΆ(0[,]+β)) |
12 | 9, 11 | sylibr 233 |
. . . . . . 7
β’ (π β π:π« βͺ dom
π
βΆ(0[,]+β)) |
13 | | omssubaddlem.a |
. . . . . . . . 9
β’ (π β π΄ β βͺ π) |
14 | 7 | fdmd 6725 |
. . . . . . . . . 10
β’ (π β dom π
= π) |
15 | 14 | unieqd 4921 |
. . . . . . . . 9
β’ (π β βͺ dom π
= βͺ π) |
16 | 13, 15 | sseqtrrd 4022 |
. . . . . . . 8
β’ (π β π΄ β βͺ dom
π
) |
17 | 6 | uniexd 7728 |
. . . . . . . . . 10
β’ (π β βͺ π
β V) |
18 | 13, 17 | jca 512 |
. . . . . . . . 9
β’ (π β (π΄ β βͺ π β§ βͺ π
β V)) |
19 | | ssexg 5322 |
. . . . . . . . 9
β’ ((π΄ β βͺ π
β§ βͺ π β V) β π΄ β V) |
20 | | elpwg 4604 |
. . . . . . . . 9
β’ (π΄ β V β (π΄ β π« βͺ dom π
β π΄ β βͺ dom
π
)) |
21 | 18, 19, 20 | 3syl 18 |
. . . . . . . 8
β’ (π β (π΄ β π« βͺ dom π
β π΄ β βͺ dom
π
)) |
22 | 16, 21 | mpbird 256 |
. . . . . . 7
β’ (π β π΄ β π« βͺ dom π
) |
23 | 12, 22 | ffvelcdmd 7084 |
. . . . . 6
β’ (π β (πβπ΄) β (0[,]+β)) |
24 | | elxrge0 13430 |
. . . . . . 7
β’ ((πβπ΄) β (0[,]+β) β ((πβπ΄) β β* β§ 0 β€
(πβπ΄))) |
25 | 24 | simprbi 497 |
. . . . . 6
β’ ((πβπ΄) β (0[,]+β) β 0 β€ (πβπ΄)) |
26 | 23, 25 | syl 17 |
. . . . 5
β’ (π β 0 β€ (πβπ΄)) |
27 | 2 | rpge0d 13016 |
. . . . 5
β’ (π β 0 β€ πΈ) |
28 | 1, 3, 26, 27 | addge0d 11786 |
. . . 4
β’ (π β 0 β€ ((πβπ΄) + πΈ)) |
29 | | elxrge0 13430 |
. . . 4
β’ (((πβπ΄) + πΈ) β (0[,]+β) β (((πβπ΄) + πΈ) β β* β§ 0 β€
((πβπ΄) + πΈ))) |
30 | 5, 28, 29 | sylanbrc 583 |
. . 3
β’ (π β ((πβπ΄) + πΈ) β (0[,]+β)) |
31 | 10 | fveq1i 6889 |
. . . . 5
β’ (πβπ΄) = ((toOMeasβπ
)βπ΄) |
32 | | omsfval 33281 |
. . . . . 6
β’ ((π β π β§ π
:πβΆ(0[,]+β) β§ π΄ β βͺ π)
β ((toOMeasβπ
)βπ΄) = inf(ran (π₯ β {π§ β π« dom π
β£ (π΄ β βͺ π§ β§ π§ βΌ Ο)} β¦
Ξ£*π€ β
π₯(π
βπ€)), (0[,]+β), < )) |
33 | 6, 7, 13, 32 | syl3anc 1371 |
. . . . 5
β’ (π β ((toOMeasβπ
)βπ΄) = inf(ran (π₯ β {π§ β π« dom π
β£ (π΄ β βͺ π§ β§ π§ βΌ Ο)} β¦
Ξ£*π€ β
π₯(π
βπ€)), (0[,]+β), < )) |
34 | 31, 33 | eqtr2id 2785 |
. . . 4
β’ (π β inf(ran (π₯ β {π§ β π« dom π
β£ (π΄ β βͺ π§ β§ π§ βΌ Ο)} β¦
Ξ£*π€ β
π₯(π
βπ€)), (0[,]+β), < ) = (πβπ΄)) |
35 | 1, 2 | ltaddrpd 13045 |
. . . 4
β’ (π β (πβπ΄) < ((πβπ΄) + πΈ)) |
36 | 34, 35 | eqbrtrd 5169 |
. . 3
β’ (π β inf(ran (π₯ β {π§ β π« dom π
β£ (π΄ β βͺ π§ β§ π§ βΌ Ο)} β¦
Ξ£*π€ β
π₯(π
βπ€)), (0[,]+β), < ) < ((πβπ΄) + πΈ)) |
37 | | iccssxr 13403 |
. . . . . 6
β’
(0[,]+β) β β* |
38 | | xrltso 13116 |
. . . . . 6
β’ < Or
β* |
39 | | soss 5607 |
. . . . . 6
β’
((0[,]+β) β β* β ( < Or
β* β < Or (0[,]+β))) |
40 | 37, 38, 39 | mp2 9 |
. . . . 5
β’ < Or
(0[,]+β) |
41 | 40 | a1i 11 |
. . . 4
β’ (π β < Or
(0[,]+β)) |
42 | | omscl 33282 |
. . . . . 6
β’ ((π β π β§ π
:πβΆ(0[,]+β) β§ π΄ β π« βͺ dom π
) β ran (π₯ β {π§ β π« dom π
β£ (π΄ β βͺ π§ β§ π§ βΌ Ο)} β¦
Ξ£*π€ β
π₯(π
βπ€)) β (0[,]+β)) |
43 | 6, 7, 22, 42 | syl3anc 1371 |
. . . . 5
β’ (π β ran (π₯ β {π§ β π« dom π
β£ (π΄ β βͺ π§ β§ π§ βΌ Ο)} β¦
Ξ£*π€ β
π₯(π
βπ€)) β (0[,]+β)) |
44 | | xrge0infss 31960 |
. . . . 5
β’ (ran
(π₯ β {π§ β π« dom π
β£ (π΄ β βͺ π§ β§ π§ βΌ Ο)} β¦
Ξ£*π€ β
π₯(π
βπ€)) β (0[,]+β) β βπ β
(0[,]+β)(βπ‘
β ran (π₯ β {π§ β π« dom π
β£ (π΄ β βͺ π§ β§ π§ βΌ Ο)} β¦
Ξ£*π€ β
π₯(π
βπ€)) Β¬ π‘ < π β§ βπ‘ β (0[,]+β)(π < π‘ β βπ’ β ran (π₯ β {π§ β π« dom π
β£ (π΄ β βͺ π§ β§ π§ βΌ Ο)} β¦
Ξ£*π€ β
π₯(π
βπ€))π’ < π‘))) |
45 | 43, 44 | syl 17 |
. . . 4
β’ (π β βπ β (0[,]+β)(βπ‘ β ran (π₯ β {π§ β π« dom π
β£ (π΄ β βͺ π§ β§ π§ βΌ Ο)} β¦
Ξ£*π€ β
π₯(π
βπ€)) Β¬ π‘ < π β§ βπ‘ β (0[,]+β)(π < π‘ β βπ’ β ran (π₯ β {π§ β π« dom π
β£ (π΄ β βͺ π§ β§ π§ βΌ Ο)} β¦
Ξ£*π€ β
π₯(π
βπ€))π’ < π‘))) |
46 | 41, 45 | infglb 9481 |
. . 3
β’ (π β ((((πβπ΄) + πΈ) β (0[,]+β) β§ inf(ran (π₯ β {π§ β π« dom π
β£ (π΄ β βͺ π§ β§ π§ βΌ Ο)} β¦
Ξ£*π€ β
π₯(π
βπ€)), (0[,]+β), < ) < ((πβπ΄) + πΈ)) β βπ’ β ran (π₯ β {π§ β π« dom π
β£ (π΄ β βͺ π§ β§ π§ βΌ Ο)} β¦
Ξ£*π€ β
π₯(π
βπ€))π’ < ((πβπ΄) + πΈ))) |
47 | 30, 36, 46 | mp2and 697 |
. 2
β’ (π β βπ’ β ran (π₯ β {π§ β π« dom π
β£ (π΄ β βͺ π§ β§ π§ βΌ Ο)} β¦
Ξ£*π€ β
π₯(π
βπ€))π’ < ((πβπ΄) + πΈ)) |
48 | | eqid 2732 |
. . . . . . . 8
β’ (π₯ β {π§ β π« dom π
β£ (π΄ β βͺ π§ β§ π§ βΌ Ο)} β¦
Ξ£*π€ β
π₯(π
βπ€)) = (π₯ β {π§ β π« dom π
β£ (π΄ β βͺ π§ β§ π§ βΌ Ο)} β¦
Ξ£*π€ β
π₯(π
βπ€)) |
49 | | esumex 33015 |
. . . . . . . 8
β’
Ξ£*π€
β π₯(π
βπ€) β V |
50 | 48, 49 | elrnmpti 5957 |
. . . . . . 7
β’ (π’ β ran (π₯ β {π§ β π« dom π
β£ (π΄ β βͺ π§ β§ π§ βΌ Ο)} β¦
Ξ£*π€ β
π₯(π
βπ€)) β βπ₯ β {π§ β π« dom π
β£ (π΄ β βͺ π§ β§ π§ βΌ Ο)}π’ = Ξ£*π€ β π₯(π
βπ€)) |
51 | 50 | anbi1i 624 |
. . . . . 6
β’ ((π’ β ran (π₯ β {π§ β π« dom π
β£ (π΄ β βͺ π§ β§ π§ βΌ Ο)} β¦
Ξ£*π€ β
π₯(π
βπ€)) β§ π’ < ((πβπ΄) + πΈ)) β (βπ₯ β {π§ β π« dom π
β£ (π΄ β βͺ π§ β§ π§ βΌ Ο)}π’ = Ξ£*π€ β π₯(π
βπ€) β§ π’ < ((πβπ΄) + πΈ))) |
52 | | r19.41v 3188 |
. . . . . 6
β’
(βπ₯ β
{π§ β π« dom
π
β£ (π΄ β βͺ π§
β§ π§ βΌ Ο)}
(π’ =
Ξ£*π€ β
π₯(π
βπ€) β§ π’ < ((πβπ΄) + πΈ)) β (βπ₯ β {π§ β π« dom π
β£ (π΄ β βͺ π§ β§ π§ βΌ Ο)}π’ = Ξ£*π€ β π₯(π
βπ€) β§ π’ < ((πβπ΄) + πΈ))) |
53 | 51, 52 | bitr4i 277 |
. . . . 5
β’ ((π’ β ran (π₯ β {π§ β π« dom π
β£ (π΄ β βͺ π§ β§ π§ βΌ Ο)} β¦
Ξ£*π€ β
π₯(π
βπ€)) β§ π’ < ((πβπ΄) + πΈ)) β βπ₯ β {π§ β π« dom π
β£ (π΄ β βͺ π§ β§ π§ βΌ Ο)} (π’ = Ξ£*π€ β π₯(π
βπ€) β§ π’ < ((πβπ΄) + πΈ))) |
54 | 53 | exbii 1850 |
. . . 4
β’
(βπ’(π’ β ran (π₯ β {π§ β π« dom π
β£ (π΄ β βͺ π§ β§ π§ βΌ Ο)} β¦
Ξ£*π€ β
π₯(π
βπ€)) β§ π’ < ((πβπ΄) + πΈ)) β βπ’βπ₯ β {π§ β π« dom π
β£ (π΄ β βͺ π§ β§ π§ βΌ Ο)} (π’ = Ξ£*π€ β π₯(π
βπ€) β§ π’ < ((πβπ΄) + πΈ))) |
55 | | df-rex 3071 |
. . . 4
β’
(βπ’ β ran
(π₯ β {π§ β π« dom π
β£ (π΄ β βͺ π§ β§ π§ βΌ Ο)} β¦
Ξ£*π€ β
π₯(π
βπ€))π’ < ((πβπ΄) + πΈ) β βπ’(π’ β ran (π₯ β {π§ β π« dom π
β£ (π΄ β βͺ π§ β§ π§ βΌ Ο)} β¦
Ξ£*π€ β
π₯(π
βπ€)) β§ π’ < ((πβπ΄) + πΈ))) |
56 | | rexcom4 3285 |
. . . 4
β’
(βπ₯ β
{π§ β π« dom
π
β£ (π΄ β βͺ π§
β§ π§ βΌ
Ο)}βπ’(π’ = Ξ£*π€ β π₯(π
βπ€) β§ π’ < ((πβπ΄) + πΈ)) β βπ’βπ₯ β {π§ β π« dom π
β£ (π΄ β βͺ π§ β§ π§ βΌ Ο)} (π’ = Ξ£*π€ β π₯(π
βπ€) β§ π’ < ((πβπ΄) + πΈ))) |
57 | 54, 55, 56 | 3bitr4i 302 |
. . 3
β’
(βπ’ β ran
(π₯ β {π§ β π« dom π
β£ (π΄ β βͺ π§ β§ π§ βΌ Ο)} β¦
Ξ£*π€ β
π₯(π
βπ€))π’ < ((πβπ΄) + πΈ) β βπ₯ β {π§ β π« dom π
β£ (π΄ β βͺ π§ β§ π§ βΌ Ο)}βπ’(π’ = Ξ£*π€ β π₯(π
βπ€) β§ π’ < ((πβπ΄) + πΈ))) |
58 | | breq1 5150 |
. . . . . 6
β’ (π’ = Ξ£*π€ β π₯(π
βπ€) β (π’ < ((πβπ΄) + πΈ) β Ξ£*π€ β π₯(π
βπ€) < ((πβπ΄) + πΈ))) |
59 | 58 | biimpa 477 |
. . . . 5
β’ ((π’ = Ξ£*π€ β π₯(π
βπ€) β§ π’ < ((πβπ΄) + πΈ)) β Ξ£*π€ β π₯(π
βπ€) < ((πβπ΄) + πΈ)) |
60 | 59 | exlimiv 1933 |
. . . 4
β’
(βπ’(π’ = Ξ£*π€ β π₯(π
βπ€) β§ π’ < ((πβπ΄) + πΈ)) β Ξ£*π€ β π₯(π
βπ€) < ((πβπ΄) + πΈ)) |
61 | 60 | reximi 3084 |
. . 3
β’
(βπ₯ β
{π§ β π« dom
π
β£ (π΄ β βͺ π§
β§ π§ βΌ
Ο)}βπ’(π’ = Ξ£*π€ β π₯(π
βπ€) β§ π’ < ((πβπ΄) + πΈ)) β βπ₯ β {π§ β π« dom π
β£ (π΄ β βͺ π§ β§ π§ βΌ Ο)}Ξ£*π€ β π₯(π
βπ€) < ((πβπ΄) + πΈ)) |
62 | 57, 61 | sylbi 216 |
. 2
β’
(βπ’ β ran
(π₯ β {π§ β π« dom π
β£ (π΄ β βͺ π§ β§ π§ βΌ Ο)} β¦
Ξ£*π€ β
π₯(π
βπ€))π’ < ((πβπ΄) + πΈ) β βπ₯ β {π§ β π« dom π
β£ (π΄ β βͺ π§ β§ π§ βΌ Ο)}Ξ£*π€ β π₯(π
βπ€) < ((πβπ΄) + πΈ)) |
63 | 47, 62 | syl 17 |
1
β’ (π β βπ₯ β {π§ β π« dom π
β£ (π΄ β βͺ π§ β§ π§ βΌ Ο)}Ξ£*π€ β π₯(π
βπ€) < ((πβπ΄) + πΈ)) |