Step | Hyp | Ref
| Expression |
1 | | omssubaddlem.m |
. . . . . 6
⊢ (𝜑 → (𝑀‘𝐴) ∈ ℝ) |
2 | | omssubaddlem.e |
. . . . . . 7
⊢ (𝜑 → 𝐸 ∈
ℝ+) |
3 | 2 | rpred 12770 |
. . . . . 6
⊢ (𝜑 → 𝐸 ∈ ℝ) |
4 | 1, 3 | readdcld 11002 |
. . . . 5
⊢ (𝜑 → ((𝑀‘𝐴) + 𝐸) ∈ ℝ) |
5 | 4 | rexrd 11023 |
. . . 4
⊢ (𝜑 → ((𝑀‘𝐴) + 𝐸) ∈
ℝ*) |
6 | | oms.o |
. . . . . . . . 9
⊢ (𝜑 → 𝑄 ∈ 𝑉) |
7 | | oms.r |
. . . . . . . . 9
⊢ (𝜑 → 𝑅:𝑄⟶(0[,]+∞)) |
8 | | omsf 32260 |
. . . . . . . . 9
⊢ ((𝑄 ∈ 𝑉 ∧ 𝑅:𝑄⟶(0[,]+∞)) →
(toOMeas‘𝑅):𝒫
∪ dom 𝑅⟶(0[,]+∞)) |
9 | 6, 7, 8 | syl2anc 584 |
. . . . . . . 8
⊢ (𝜑 → (toOMeas‘𝑅):𝒫 ∪ dom 𝑅⟶(0[,]+∞)) |
10 | | oms.m |
. . . . . . . . 9
⊢ 𝑀 = (toOMeas‘𝑅) |
11 | 10 | feq1i 6593 |
. . . . . . . 8
⊢ (𝑀:𝒫 ∪ dom 𝑅⟶(0[,]+∞) ↔
(toOMeas‘𝑅):𝒫
∪ dom 𝑅⟶(0[,]+∞)) |
12 | 9, 11 | sylibr 233 |
. . . . . . 7
⊢ (𝜑 → 𝑀:𝒫 ∪ dom
𝑅⟶(0[,]+∞)) |
13 | | omssubaddlem.a |
. . . . . . . . 9
⊢ (𝜑 → 𝐴 ⊆ ∪ 𝑄) |
14 | 7 | fdmd 6613 |
. . . . . . . . . 10
⊢ (𝜑 → dom 𝑅 = 𝑄) |
15 | 14 | unieqd 4855 |
. . . . . . . . 9
⊢ (𝜑 → ∪ dom 𝑅 = ∪ 𝑄) |
16 | 13, 15 | sseqtrrd 3963 |
. . . . . . . 8
⊢ (𝜑 → 𝐴 ⊆ ∪ dom
𝑅) |
17 | 6 | uniexd 7595 |
. . . . . . . . . 10
⊢ (𝜑 → ∪ 𝑄
∈ V) |
18 | 13, 17 | jca 512 |
. . . . . . . . 9
⊢ (𝜑 → (𝐴 ⊆ ∪ 𝑄 ∧ ∪ 𝑄
∈ V)) |
19 | | ssexg 5249 |
. . . . . . . . 9
⊢ ((𝐴 ⊆ ∪ 𝑄
∧ ∪ 𝑄 ∈ V) → 𝐴 ∈ V) |
20 | | elpwg 4538 |
. . . . . . . . 9
⊢ (𝐴 ∈ V → (𝐴 ∈ 𝒫 ∪ dom 𝑅 ↔ 𝐴 ⊆ ∪ dom
𝑅)) |
21 | 18, 19, 20 | 3syl 18 |
. . . . . . . 8
⊢ (𝜑 → (𝐴 ∈ 𝒫 ∪ dom 𝑅 ↔ 𝐴 ⊆ ∪ dom
𝑅)) |
22 | 16, 21 | mpbird 256 |
. . . . . . 7
⊢ (𝜑 → 𝐴 ∈ 𝒫 ∪ dom 𝑅) |
23 | 12, 22 | ffvelrnd 6964 |
. . . . . 6
⊢ (𝜑 → (𝑀‘𝐴) ∈ (0[,]+∞)) |
24 | | elxrge0 13187 |
. . . . . . 7
⊢ ((𝑀‘𝐴) ∈ (0[,]+∞) ↔ ((𝑀‘𝐴) ∈ ℝ* ∧ 0 ≤
(𝑀‘𝐴))) |
25 | 24 | simprbi 497 |
. . . . . 6
⊢ ((𝑀‘𝐴) ∈ (0[,]+∞) → 0 ≤ (𝑀‘𝐴)) |
26 | 23, 25 | syl 17 |
. . . . 5
⊢ (𝜑 → 0 ≤ (𝑀‘𝐴)) |
27 | 2 | rpge0d 12774 |
. . . . 5
⊢ (𝜑 → 0 ≤ 𝐸) |
28 | 1, 3, 26, 27 | addge0d 11549 |
. . . 4
⊢ (𝜑 → 0 ≤ ((𝑀‘𝐴) + 𝐸)) |
29 | | elxrge0 13187 |
. . . 4
⊢ (((𝑀‘𝐴) + 𝐸) ∈ (0[,]+∞) ↔ (((𝑀‘𝐴) + 𝐸) ∈ ℝ* ∧ 0 ≤
((𝑀‘𝐴) + 𝐸))) |
30 | 5, 28, 29 | sylanbrc 583 |
. . 3
⊢ (𝜑 → ((𝑀‘𝐴) + 𝐸) ∈ (0[,]+∞)) |
31 | 10 | fveq1i 6777 |
. . . . 5
⊢ (𝑀‘𝐴) = ((toOMeas‘𝑅)‘𝐴) |
32 | | omsfval 32258 |
. . . . . 6
⊢ ((𝑄 ∈ 𝑉 ∧ 𝑅:𝑄⟶(0[,]+∞) ∧ 𝐴 ⊆ ∪ 𝑄)
→ ((toOMeas‘𝑅)‘𝐴) = inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω)} ↦
Σ*𝑤 ∈
𝑥(𝑅‘𝑤)), (0[,]+∞), < )) |
33 | 6, 7, 13, 32 | syl3anc 1370 |
. . . . 5
⊢ (𝜑 → ((toOMeas‘𝑅)‘𝐴) = inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω)} ↦
Σ*𝑤 ∈
𝑥(𝑅‘𝑤)), (0[,]+∞), < )) |
34 | 31, 33 | eqtr2id 2791 |
. . . 4
⊢ (𝜑 → inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω)} ↦
Σ*𝑤 ∈
𝑥(𝑅‘𝑤)), (0[,]+∞), < ) = (𝑀‘𝐴)) |
35 | 1, 2 | ltaddrpd 12803 |
. . . 4
⊢ (𝜑 → (𝑀‘𝐴) < ((𝑀‘𝐴) + 𝐸)) |
36 | 34, 35 | eqbrtrd 5098 |
. . 3
⊢ (𝜑 → inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω)} ↦
Σ*𝑤 ∈
𝑥(𝑅‘𝑤)), (0[,]+∞), < ) < ((𝑀‘𝐴) + 𝐸)) |
37 | | iccssxr 13160 |
. . . . . 6
⊢
(0[,]+∞) ⊆ ℝ* |
38 | | xrltso 12873 |
. . . . . 6
⊢ < Or
ℝ* |
39 | | soss 5525 |
. . . . . 6
⊢
((0[,]+∞) ⊆ ℝ* → ( < Or
ℝ* → < Or (0[,]+∞))) |
40 | 37, 38, 39 | mp2 9 |
. . . . 5
⊢ < Or
(0[,]+∞) |
41 | 40 | a1i 11 |
. . . 4
⊢ (𝜑 → < Or
(0[,]+∞)) |
42 | | omscl 32259 |
. . . . . 6
⊢ ((𝑄 ∈ 𝑉 ∧ 𝑅:𝑄⟶(0[,]+∞) ∧ 𝐴 ∈ 𝒫 ∪ dom 𝑅) → ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω)} ↦
Σ*𝑤 ∈
𝑥(𝑅‘𝑤)) ⊆ (0[,]+∞)) |
43 | 6, 7, 22, 42 | syl3anc 1370 |
. . . . 5
⊢ (𝜑 → ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω)} ↦
Σ*𝑤 ∈
𝑥(𝑅‘𝑤)) ⊆ (0[,]+∞)) |
44 | | xrge0infss 31080 |
. . . . 5
⊢ (ran
(𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω)} ↦
Σ*𝑤 ∈
𝑥(𝑅‘𝑤)) ⊆ (0[,]+∞) → ∃𝑒 ∈
(0[,]+∞)(∀𝑡
∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω)} ↦
Σ*𝑤 ∈
𝑥(𝑅‘𝑤)) ¬ 𝑡 < 𝑒 ∧ ∀𝑡 ∈ (0[,]+∞)(𝑒 < 𝑡 → ∃𝑢 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω)} ↦
Σ*𝑤 ∈
𝑥(𝑅‘𝑤))𝑢 < 𝑡))) |
45 | 43, 44 | syl 17 |
. . . 4
⊢ (𝜑 → ∃𝑒 ∈ (0[,]+∞)(∀𝑡 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω)} ↦
Σ*𝑤 ∈
𝑥(𝑅‘𝑤)) ¬ 𝑡 < 𝑒 ∧ ∀𝑡 ∈ (0[,]+∞)(𝑒 < 𝑡 → ∃𝑢 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω)} ↦
Σ*𝑤 ∈
𝑥(𝑅‘𝑤))𝑢 < 𝑡))) |
46 | 41, 45 | infglb 9247 |
. . 3
⊢ (𝜑 → ((((𝑀‘𝐴) + 𝐸) ∈ (0[,]+∞) ∧ inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω)} ↦
Σ*𝑤 ∈
𝑥(𝑅‘𝑤)), (0[,]+∞), < ) < ((𝑀‘𝐴) + 𝐸)) → ∃𝑢 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω)} ↦
Σ*𝑤 ∈
𝑥(𝑅‘𝑤))𝑢 < ((𝑀‘𝐴) + 𝐸))) |
47 | 30, 36, 46 | mp2and 696 |
. 2
⊢ (𝜑 → ∃𝑢 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω)} ↦
Σ*𝑤 ∈
𝑥(𝑅‘𝑤))𝑢 < ((𝑀‘𝐴) + 𝐸)) |
48 | | eqid 2738 |
. . . . . . . 8
⊢ (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω)} ↦
Σ*𝑤 ∈
𝑥(𝑅‘𝑤)) = (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω)} ↦
Σ*𝑤 ∈
𝑥(𝑅‘𝑤)) |
49 | | esumex 31994 |
. . . . . . . 8
⊢
Σ*𝑤
∈ 𝑥(𝑅‘𝑤) ∈ V |
50 | 48, 49 | elrnmpti 5871 |
. . . . . . 7
⊢ (𝑢 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω)} ↦
Σ*𝑤 ∈
𝑥(𝑅‘𝑤)) ↔ ∃𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω)}𝑢 = Σ*𝑤 ∈ 𝑥(𝑅‘𝑤)) |
51 | 50 | anbi1i 624 |
. . . . . 6
⊢ ((𝑢 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω)} ↦
Σ*𝑤 ∈
𝑥(𝑅‘𝑤)) ∧ 𝑢 < ((𝑀‘𝐴) + 𝐸)) ↔ (∃𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω)}𝑢 = Σ*𝑤 ∈ 𝑥(𝑅‘𝑤) ∧ 𝑢 < ((𝑀‘𝐴) + 𝐸))) |
52 | | r19.41v 3275 |
. . . . . 6
⊢
(∃𝑥 ∈
{𝑧 ∈ 𝒫 dom
𝑅 ∣ (𝐴 ⊆ ∪ 𝑧
∧ 𝑧 ≼ ω)}
(𝑢 =
Σ*𝑤 ∈
𝑥(𝑅‘𝑤) ∧ 𝑢 < ((𝑀‘𝐴) + 𝐸)) ↔ (∃𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω)}𝑢 = Σ*𝑤 ∈ 𝑥(𝑅‘𝑤) ∧ 𝑢 < ((𝑀‘𝐴) + 𝐸))) |
53 | 51, 52 | bitr4i 277 |
. . . . 5
⊢ ((𝑢 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω)} ↦
Σ*𝑤 ∈
𝑥(𝑅‘𝑤)) ∧ 𝑢 < ((𝑀‘𝐴) + 𝐸)) ↔ ∃𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω)} (𝑢 = Σ*𝑤 ∈ 𝑥(𝑅‘𝑤) ∧ 𝑢 < ((𝑀‘𝐴) + 𝐸))) |
54 | 53 | exbii 1850 |
. . . 4
⊢
(∃𝑢(𝑢 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω)} ↦
Σ*𝑤 ∈
𝑥(𝑅‘𝑤)) ∧ 𝑢 < ((𝑀‘𝐴) + 𝐸)) ↔ ∃𝑢∃𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω)} (𝑢 = Σ*𝑤 ∈ 𝑥(𝑅‘𝑤) ∧ 𝑢 < ((𝑀‘𝐴) + 𝐸))) |
55 | | df-rex 3070 |
. . . 4
⊢
(∃𝑢 ∈ ran
(𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω)} ↦
Σ*𝑤 ∈
𝑥(𝑅‘𝑤))𝑢 < ((𝑀‘𝐴) + 𝐸) ↔ ∃𝑢(𝑢 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω)} ↦
Σ*𝑤 ∈
𝑥(𝑅‘𝑤)) ∧ 𝑢 < ((𝑀‘𝐴) + 𝐸))) |
56 | | rexcom4 3232 |
. . . 4
⊢
(∃𝑥 ∈
{𝑧 ∈ 𝒫 dom
𝑅 ∣ (𝐴 ⊆ ∪ 𝑧
∧ 𝑧 ≼
ω)}∃𝑢(𝑢 = Σ*𝑤 ∈ 𝑥(𝑅‘𝑤) ∧ 𝑢 < ((𝑀‘𝐴) + 𝐸)) ↔ ∃𝑢∃𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω)} (𝑢 = Σ*𝑤 ∈ 𝑥(𝑅‘𝑤) ∧ 𝑢 < ((𝑀‘𝐴) + 𝐸))) |
57 | 54, 55, 56 | 3bitr4i 303 |
. . 3
⊢
(∃𝑢 ∈ ran
(𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω)} ↦
Σ*𝑤 ∈
𝑥(𝑅‘𝑤))𝑢 < ((𝑀‘𝐴) + 𝐸) ↔ ∃𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω)}∃𝑢(𝑢 = Σ*𝑤 ∈ 𝑥(𝑅‘𝑤) ∧ 𝑢 < ((𝑀‘𝐴) + 𝐸))) |
58 | | breq1 5079 |
. . . . . 6
⊢ (𝑢 = Σ*𝑤 ∈ 𝑥(𝑅‘𝑤) → (𝑢 < ((𝑀‘𝐴) + 𝐸) ↔ Σ*𝑤 ∈ 𝑥(𝑅‘𝑤) < ((𝑀‘𝐴) + 𝐸))) |
59 | 58 | biimpa 477 |
. . . . 5
⊢ ((𝑢 = Σ*𝑤 ∈ 𝑥(𝑅‘𝑤) ∧ 𝑢 < ((𝑀‘𝐴) + 𝐸)) → Σ*𝑤 ∈ 𝑥(𝑅‘𝑤) < ((𝑀‘𝐴) + 𝐸)) |
60 | 59 | exlimiv 1933 |
. . . 4
⊢
(∃𝑢(𝑢 = Σ*𝑤 ∈ 𝑥(𝑅‘𝑤) ∧ 𝑢 < ((𝑀‘𝐴) + 𝐸)) → Σ*𝑤 ∈ 𝑥(𝑅‘𝑤) < ((𝑀‘𝐴) + 𝐸)) |
61 | 60 | reximi 3177 |
. . 3
⊢
(∃𝑥 ∈
{𝑧 ∈ 𝒫 dom
𝑅 ∣ (𝐴 ⊆ ∪ 𝑧
∧ 𝑧 ≼
ω)}∃𝑢(𝑢 = Σ*𝑤 ∈ 𝑥(𝑅‘𝑤) ∧ 𝑢 < ((𝑀‘𝐴) + 𝐸)) → ∃𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω)}Σ*𝑤 ∈ 𝑥(𝑅‘𝑤) < ((𝑀‘𝐴) + 𝐸)) |
62 | 57, 61 | sylbi 216 |
. 2
⊢
(∃𝑢 ∈ ran
(𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω)} ↦
Σ*𝑤 ∈
𝑥(𝑅‘𝑤))𝑢 < ((𝑀‘𝐴) + 𝐸) → ∃𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω)}Σ*𝑤 ∈ 𝑥(𝑅‘𝑤) < ((𝑀‘𝐴) + 𝐸)) |
63 | 47, 62 | syl 17 |
1
⊢ (𝜑 → ∃𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω)}Σ*𝑤 ∈ 𝑥(𝑅‘𝑤) < ((𝑀‘𝐴) + 𝐸)) |