Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  omssubaddlem Structured version   Visualization version   GIF version

Theorem omssubaddlem 31950
Description: For any small margin 𝐸, we can find a covering approaching the outer measure of a set 𝐴 by that margin. (Contributed by Thierry Arnoux, 18-Sep-2019.) (Revised by AV, 4-Oct-2020.)
Hypotheses
Ref Expression
oms.m 𝑀 = (toOMeas‘𝑅)
oms.o (𝜑𝑄𝑉)
oms.r (𝜑𝑅:𝑄⟶(0[,]+∞))
omssubaddlem.a (𝜑𝐴 𝑄)
omssubaddlem.m (𝜑 → (𝑀𝐴) ∈ ℝ)
omssubaddlem.e (𝜑𝐸 ∈ ℝ+)
Assertion
Ref Expression
omssubaddlem (𝜑 → ∃𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)}Σ*𝑤𝑥(𝑅𝑤) < ((𝑀𝐴) + 𝐸))
Distinct variable groups:   𝑥,𝑄,𝑧   𝑥,𝑅,𝑧   𝑥,𝑉,𝑧   𝜑,𝑥,𝑧   𝑤,𝐴,𝑥,𝑧   𝑥,𝐸   𝑥,𝑀   𝑤,𝑄   𝑤,𝑅   𝑤,𝑉
Allowed substitution hints:   𝜑(𝑤)   𝐸(𝑧,𝑤)   𝑀(𝑧,𝑤)

Proof of Theorem omssubaddlem
Dummy variables 𝑒 𝑡 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 omssubaddlem.m . . . . . 6 (𝜑 → (𝑀𝐴) ∈ ℝ)
2 omssubaddlem.e . . . . . . 7 (𝜑𝐸 ∈ ℝ+)
32rpred 12611 . . . . . 6 (𝜑𝐸 ∈ ℝ)
41, 3readdcld 10845 . . . . 5 (𝜑 → ((𝑀𝐴) + 𝐸) ∈ ℝ)
54rexrd 10866 . . . 4 (𝜑 → ((𝑀𝐴) + 𝐸) ∈ ℝ*)
6 oms.o . . . . . . . . 9 (𝜑𝑄𝑉)
7 oms.r . . . . . . . . 9 (𝜑𝑅:𝑄⟶(0[,]+∞))
8 omsf 31947 . . . . . . . . 9 ((𝑄𝑉𝑅:𝑄⟶(0[,]+∞)) → (toOMeas‘𝑅):𝒫 dom 𝑅⟶(0[,]+∞))
96, 7, 8syl2anc 587 . . . . . . . 8 (𝜑 → (toOMeas‘𝑅):𝒫 dom 𝑅⟶(0[,]+∞))
10 oms.m . . . . . . . . 9 𝑀 = (toOMeas‘𝑅)
1110feq1i 6525 . . . . . . . 8 (𝑀:𝒫 dom 𝑅⟶(0[,]+∞) ↔ (toOMeas‘𝑅):𝒫 dom 𝑅⟶(0[,]+∞))
129, 11sylibr 237 . . . . . . 7 (𝜑𝑀:𝒫 dom 𝑅⟶(0[,]+∞))
13 omssubaddlem.a . . . . . . . . 9 (𝜑𝐴 𝑄)
147fdmd 6545 . . . . . . . . . 10 (𝜑 → dom 𝑅 = 𝑄)
1514unieqd 4823 . . . . . . . . 9 (𝜑 dom 𝑅 = 𝑄)
1613, 15sseqtrrd 3932 . . . . . . . 8 (𝜑𝐴 dom 𝑅)
176uniexd 7519 . . . . . . . . . 10 (𝜑 𝑄 ∈ V)
1813, 17jca 515 . . . . . . . . 9 (𝜑 → (𝐴 𝑄 𝑄 ∈ V))
19 ssexg 5205 . . . . . . . . 9 ((𝐴 𝑄 𝑄 ∈ V) → 𝐴 ∈ V)
20 elpwg 4506 . . . . . . . . 9 (𝐴 ∈ V → (𝐴 ∈ 𝒫 dom 𝑅𝐴 dom 𝑅))
2118, 19, 203syl 18 . . . . . . . 8 (𝜑 → (𝐴 ∈ 𝒫 dom 𝑅𝐴 dom 𝑅))
2216, 21mpbird 260 . . . . . . 7 (𝜑𝐴 ∈ 𝒫 dom 𝑅)
2312, 22ffvelrnd 6894 . . . . . 6 (𝜑 → (𝑀𝐴) ∈ (0[,]+∞))
24 elxrge0 13028 . . . . . . 7 ((𝑀𝐴) ∈ (0[,]+∞) ↔ ((𝑀𝐴) ∈ ℝ* ∧ 0 ≤ (𝑀𝐴)))
2524simprbi 500 . . . . . 6 ((𝑀𝐴) ∈ (0[,]+∞) → 0 ≤ (𝑀𝐴))
2623, 25syl 17 . . . . 5 (𝜑 → 0 ≤ (𝑀𝐴))
272rpge0d 12615 . . . . 5 (𝜑 → 0 ≤ 𝐸)
281, 3, 26, 27addge0d 11391 . . . 4 (𝜑 → 0 ≤ ((𝑀𝐴) + 𝐸))
29 elxrge0 13028 . . . 4 (((𝑀𝐴) + 𝐸) ∈ (0[,]+∞) ↔ (((𝑀𝐴) + 𝐸) ∈ ℝ* ∧ 0 ≤ ((𝑀𝐴) + 𝐸)))
305, 28, 29sylanbrc 586 . . 3 (𝜑 → ((𝑀𝐴) + 𝐸) ∈ (0[,]+∞))
3110fveq1i 6707 . . . . 5 (𝑀𝐴) = ((toOMeas‘𝑅)‘𝐴)
32 omsfval 31945 . . . . . 6 ((𝑄𝑉𝑅:𝑄⟶(0[,]+∞) ∧ 𝐴 𝑄) → ((toOMeas‘𝑅)‘𝐴) = inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤)), (0[,]+∞), < ))
336, 7, 13, 32syl3anc 1373 . . . . 5 (𝜑 → ((toOMeas‘𝑅)‘𝐴) = inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤)), (0[,]+∞), < ))
3431, 33eqtr2id 2787 . . . 4 (𝜑 → inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤)), (0[,]+∞), < ) = (𝑀𝐴))
351, 2ltaddrpd 12644 . . . 4 (𝜑 → (𝑀𝐴) < ((𝑀𝐴) + 𝐸))
3634, 35eqbrtrd 5065 . . 3 (𝜑 → inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤)), (0[,]+∞), < ) < ((𝑀𝐴) + 𝐸))
37 iccssxr 13001 . . . . . 6 (0[,]+∞) ⊆ ℝ*
38 xrltso 12714 . . . . . 6 < Or ℝ*
39 soss 5477 . . . . . 6 ((0[,]+∞) ⊆ ℝ* → ( < Or ℝ* → < Or (0[,]+∞)))
4037, 38, 39mp2 9 . . . . 5 < Or (0[,]+∞)
4140a1i 11 . . . 4 (𝜑 → < Or (0[,]+∞))
42 omscl 31946 . . . . . 6 ((𝑄𝑉𝑅:𝑄⟶(0[,]+∞) ∧ 𝐴 ∈ 𝒫 dom 𝑅) → ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤)) ⊆ (0[,]+∞))
436, 7, 22, 42syl3anc 1373 . . . . 5 (𝜑 → ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤)) ⊆ (0[,]+∞))
44 xrge0infss 30775 . . . . 5 (ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤)) ⊆ (0[,]+∞) → ∃𝑒 ∈ (0[,]+∞)(∀𝑡 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤)) ¬ 𝑡 < 𝑒 ∧ ∀𝑡 ∈ (0[,]+∞)(𝑒 < 𝑡 → ∃𝑢 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤))𝑢 < 𝑡)))
4543, 44syl 17 . . . 4 (𝜑 → ∃𝑒 ∈ (0[,]+∞)(∀𝑡 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤)) ¬ 𝑡 < 𝑒 ∧ ∀𝑡 ∈ (0[,]+∞)(𝑒 < 𝑡 → ∃𝑢 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤))𝑢 < 𝑡)))
4641, 45infglb 9095 . . 3 (𝜑 → ((((𝑀𝐴) + 𝐸) ∈ (0[,]+∞) ∧ inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤)), (0[,]+∞), < ) < ((𝑀𝐴) + 𝐸)) → ∃𝑢 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤))𝑢 < ((𝑀𝐴) + 𝐸)))
4730, 36, 46mp2and 699 . 2 (𝜑 → ∃𝑢 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤))𝑢 < ((𝑀𝐴) + 𝐸))
48 eqid 2734 . . . . . . . 8 (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤)) = (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤))
49 esumex 31681 . . . . . . . 8 Σ*𝑤𝑥(𝑅𝑤) ∈ V
5048, 49elrnmpti 5818 . . . . . . 7 (𝑢 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤)) ↔ ∃𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)}𝑢 = Σ*𝑤𝑥(𝑅𝑤))
5150anbi1i 627 . . . . . 6 ((𝑢 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤)) ∧ 𝑢 < ((𝑀𝐴) + 𝐸)) ↔ (∃𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)}𝑢 = Σ*𝑤𝑥(𝑅𝑤) ∧ 𝑢 < ((𝑀𝐴) + 𝐸)))
52 r19.41v 3253 . . . . . 6 (∃𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} (𝑢 = Σ*𝑤𝑥(𝑅𝑤) ∧ 𝑢 < ((𝑀𝐴) + 𝐸)) ↔ (∃𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)}𝑢 = Σ*𝑤𝑥(𝑅𝑤) ∧ 𝑢 < ((𝑀𝐴) + 𝐸)))
5351, 52bitr4i 281 . . . . 5 ((𝑢 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤)) ∧ 𝑢 < ((𝑀𝐴) + 𝐸)) ↔ ∃𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} (𝑢 = Σ*𝑤𝑥(𝑅𝑤) ∧ 𝑢 < ((𝑀𝐴) + 𝐸)))
5453exbii 1855 . . . 4 (∃𝑢(𝑢 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤)) ∧ 𝑢 < ((𝑀𝐴) + 𝐸)) ↔ ∃𝑢𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} (𝑢 = Σ*𝑤𝑥(𝑅𝑤) ∧ 𝑢 < ((𝑀𝐴) + 𝐸)))
55 df-rex 3060 . . . 4 (∃𝑢 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤))𝑢 < ((𝑀𝐴) + 𝐸) ↔ ∃𝑢(𝑢 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤)) ∧ 𝑢 < ((𝑀𝐴) + 𝐸)))
56 rexcom4 3165 . . . 4 (∃𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)}∃𝑢(𝑢 = Σ*𝑤𝑥(𝑅𝑤) ∧ 𝑢 < ((𝑀𝐴) + 𝐸)) ↔ ∃𝑢𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} (𝑢 = Σ*𝑤𝑥(𝑅𝑤) ∧ 𝑢 < ((𝑀𝐴) + 𝐸)))
5754, 55, 563bitr4i 306 . . 3 (∃𝑢 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤))𝑢 < ((𝑀𝐴) + 𝐸) ↔ ∃𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)}∃𝑢(𝑢 = Σ*𝑤𝑥(𝑅𝑤) ∧ 𝑢 < ((𝑀𝐴) + 𝐸)))
58 breq1 5046 . . . . . 6 (𝑢 = Σ*𝑤𝑥(𝑅𝑤) → (𝑢 < ((𝑀𝐴) + 𝐸) ↔ Σ*𝑤𝑥(𝑅𝑤) < ((𝑀𝐴) + 𝐸)))
5958biimpa 480 . . . . 5 ((𝑢 = Σ*𝑤𝑥(𝑅𝑤) ∧ 𝑢 < ((𝑀𝐴) + 𝐸)) → Σ*𝑤𝑥(𝑅𝑤) < ((𝑀𝐴) + 𝐸))
6059exlimiv 1938 . . . 4 (∃𝑢(𝑢 = Σ*𝑤𝑥(𝑅𝑤) ∧ 𝑢 < ((𝑀𝐴) + 𝐸)) → Σ*𝑤𝑥(𝑅𝑤) < ((𝑀𝐴) + 𝐸))
6160reximi 3159 . . 3 (∃𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)}∃𝑢(𝑢 = Σ*𝑤𝑥(𝑅𝑤) ∧ 𝑢 < ((𝑀𝐴) + 𝐸)) → ∃𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)}Σ*𝑤𝑥(𝑅𝑤) < ((𝑀𝐴) + 𝐸))
6257, 61sylbi 220 . 2 (∃𝑢 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤))𝑢 < ((𝑀𝐴) + 𝐸) → ∃𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)}Σ*𝑤𝑥(𝑅𝑤) < ((𝑀𝐴) + 𝐸))
6347, 62syl 17 1 (𝜑 → ∃𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)}Σ*𝑤𝑥(𝑅𝑤) < ((𝑀𝐴) + 𝐸))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399   = wceq 1543  wex 1787  wcel 2110  wral 3054  wrex 3055  {crab 3058  Vcvv 3401  wss 3857  𝒫 cpw 4503   cuni 4809   class class class wbr 5043  cmpt 5124   Or wor 5456  dom cdm 5540  ran crn 5541  wf 6365  cfv 6369  (class class class)co 7202  ωcom 7633  cdom 8613  infcinf 9046  cr 10711  0cc0 10712   + caddc 10715  +∞cpnf 10847  *cxr 10849   < clt 10850  cle 10851  +crp 12569  [,]cicc 12921  Σ*cesum 31679  toOMeascoms 31942
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2706  ax-rep 5168  ax-sep 5181  ax-nul 5188  ax-pow 5247  ax-pr 5311  ax-un 7512  ax-cnex 10768  ax-resscn 10769  ax-1cn 10770  ax-icn 10771  ax-addcl 10772  ax-addrcl 10773  ax-mulcl 10774  ax-mulrcl 10775  ax-mulcom 10776  ax-addass 10777  ax-mulass 10778  ax-distr 10779  ax-i2m1 10780  ax-1ne0 10781  ax-1rid 10782  ax-rnegex 10783  ax-rrecex 10784  ax-cnre 10785  ax-pre-lttri 10786  ax-pre-lttrn 10787  ax-pre-ltadd 10788  ax-pre-mulgt0 10789  ax-pre-sup 10790
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2537  df-eu 2566  df-clab 2713  df-cleq 2726  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rmo 3062  df-rab 3063  df-v 3403  df-sbc 3688  df-csb 3803  df-dif 3860  df-un 3862  df-in 3864  df-ss 3874  df-pss 3876  df-nul 4228  df-if 4430  df-pw 4505  df-sn 4532  df-pr 4534  df-tp 4536  df-op 4538  df-uni 4810  df-int 4850  df-iun 4896  df-iin 4897  df-br 5044  df-opab 5106  df-mpt 5125  df-tr 5151  df-id 5444  df-eprel 5449  df-po 5457  df-so 5458  df-fr 5498  df-se 5499  df-we 5500  df-xp 5546  df-rel 5547  df-cnv 5548  df-co 5549  df-dm 5550  df-rn 5551  df-res 5552  df-ima 5553  df-pred 6149  df-ord 6205  df-on 6206  df-lim 6207  df-suc 6208  df-iota 6327  df-fun 6371  df-fn 6372  df-f 6373  df-f1 6374  df-fo 6375  df-f1o 6376  df-fv 6377  df-isom 6378  df-riota 7159  df-ov 7205  df-oprab 7206  df-mpo 7207  df-of 7458  df-om 7634  df-1st 7750  df-2nd 7751  df-supp 7893  df-wrecs 8036  df-recs 8097  df-rdg 8135  df-1o 8191  df-er 8380  df-map 8499  df-en 8616  df-dom 8617  df-sdom 8618  df-fin 8619  df-fsupp 8975  df-fi 9016  df-sup 9047  df-inf 9048  df-oi 9115  df-card 9538  df-pnf 10852  df-mnf 10853  df-xr 10854  df-ltxr 10855  df-le 10856  df-sub 11047  df-neg 11048  df-div 11473  df-nn 11814  df-2 11876  df-3 11877  df-4 11878  df-5 11879  df-6 11880  df-7 11881  df-8 11882  df-9 11883  df-n0 12074  df-z 12160  df-dec 12277  df-uz 12422  df-q 12528  df-rp 12570  df-xadd 12688  df-ioo 12922  df-ioc 12923  df-ico 12924  df-icc 12925  df-fz 13079  df-fzo 13222  df-seq 13558  df-hash 13880  df-struct 16686  df-ndx 16687  df-slot 16688  df-base 16690  df-sets 16691  df-ress 16692  df-plusg 16780  df-mulr 16781  df-tset 16786  df-ple 16787  df-ds 16789  df-rest 16899  df-topn 16900  df-0g 16918  df-gsum 16919  df-topgen 16920  df-ordt 16978  df-xrs 16979  df-mre 17061  df-mrc 17062  df-acs 17064  df-ps 18044  df-tsr 18045  df-mgm 18086  df-sgrp 18135  df-mnd 18146  df-submnd 18191  df-cntz 18683  df-cmn 19144  df-fbas 20332  df-fg 20333  df-top 21763  df-topon 21780  df-topsp 21802  df-bases 21815  df-ntr 21889  df-nei 21967  df-cn 22096  df-haus 22184  df-fil 22715  df-fm 22807  df-flim 22808  df-flf 22809  df-tsms 22996  df-esum 31680  df-oms 31943
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator