![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > esumgect | Structured version Visualization version GIF version |
Description: "Send 𝑛 to +∞ " in an inequality with an extended sum. (Contributed by Thierry Arnoux, 24-May-2020.) |
Ref | Expression |
---|---|
esumsup.1 | ⊢ (𝜑 → 𝐵 ∈ (0[,]+∞)) |
esumsup.2 | ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝐴 ∈ (0[,]+∞)) |
esumgect.1 | ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → Σ*𝑘 ∈ (1...𝑛)𝐴 ≤ 𝐵) |
Ref | Expression |
---|---|
esumgect | ⊢ (𝜑 → Σ*𝑘 ∈ ℕ𝐴 ≤ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | esumsup.1 | . . 3 ⊢ (𝜑 → 𝐵 ∈ (0[,]+∞)) | |
2 | esumsup.2 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝐴 ∈ (0[,]+∞)) | |
3 | 1, 2 | esumsup 34053 | . 2 ⊢ (𝜑 → Σ*𝑘 ∈ ℕ𝐴 = sup(ran (𝑛 ∈ ℕ ↦ Σ*𝑘 ∈ (1...𝑛)𝐴), ℝ*, < )) |
4 | nfv 1913 | . . . . . 6 ⊢ Ⅎ𝑛𝜑 | |
5 | nfcv 2908 | . . . . . . 7 ⊢ Ⅎ𝑛𝑧 | |
6 | nfmpt1 5274 | . . . . . . . 8 ⊢ Ⅎ𝑛(𝑛 ∈ ℕ ↦ Σ*𝑘 ∈ (1...𝑛)𝐴) | |
7 | 6 | nfrn 5977 | . . . . . . 7 ⊢ Ⅎ𝑛ran (𝑛 ∈ ℕ ↦ Σ*𝑘 ∈ (1...𝑛)𝐴) |
8 | 5, 7 | nfel 2923 | . . . . . 6 ⊢ Ⅎ𝑛 𝑧 ∈ ran (𝑛 ∈ ℕ ↦ Σ*𝑘 ∈ (1...𝑛)𝐴) |
9 | 4, 8 | nfan 1898 | . . . . 5 ⊢ Ⅎ𝑛(𝜑 ∧ 𝑧 ∈ ran (𝑛 ∈ ℕ ↦ Σ*𝑘 ∈ (1...𝑛)𝐴)) |
10 | simpr 484 | . . . . . 6 ⊢ ((((𝜑 ∧ 𝑧 ∈ ran (𝑛 ∈ ℕ ↦ Σ*𝑘 ∈ (1...𝑛)𝐴)) ∧ 𝑛 ∈ ℕ) ∧ 𝑧 = Σ*𝑘 ∈ (1...𝑛)𝐴) → 𝑧 = Σ*𝑘 ∈ (1...𝑛)𝐴) | |
11 | simplll 774 | . . . . . . 7 ⊢ ((((𝜑 ∧ 𝑧 ∈ ran (𝑛 ∈ ℕ ↦ Σ*𝑘 ∈ (1...𝑛)𝐴)) ∧ 𝑛 ∈ ℕ) ∧ 𝑧 = Σ*𝑘 ∈ (1...𝑛)𝐴) → 𝜑) | |
12 | simplr 768 | . . . . . . 7 ⊢ ((((𝜑 ∧ 𝑧 ∈ ran (𝑛 ∈ ℕ ↦ Σ*𝑘 ∈ (1...𝑛)𝐴)) ∧ 𝑛 ∈ ℕ) ∧ 𝑧 = Σ*𝑘 ∈ (1...𝑛)𝐴) → 𝑛 ∈ ℕ) | |
13 | esumgect.1 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → Σ*𝑘 ∈ (1...𝑛)𝐴 ≤ 𝐵) | |
14 | 11, 12, 13 | syl2anc 583 | . . . . . 6 ⊢ ((((𝜑 ∧ 𝑧 ∈ ran (𝑛 ∈ ℕ ↦ Σ*𝑘 ∈ (1...𝑛)𝐴)) ∧ 𝑛 ∈ ℕ) ∧ 𝑧 = Σ*𝑘 ∈ (1...𝑛)𝐴) → Σ*𝑘 ∈ (1...𝑛)𝐴 ≤ 𝐵) |
15 | 10, 14 | eqbrtrd 5188 | . . . . 5 ⊢ ((((𝜑 ∧ 𝑧 ∈ ran (𝑛 ∈ ℕ ↦ Σ*𝑘 ∈ (1...𝑛)𝐴)) ∧ 𝑛 ∈ ℕ) ∧ 𝑧 = Σ*𝑘 ∈ (1...𝑛)𝐴) → 𝑧 ≤ 𝐵) |
16 | eqid 2740 | . . . . . . . 8 ⊢ (𝑛 ∈ ℕ ↦ Σ*𝑘 ∈ (1...𝑛)𝐴) = (𝑛 ∈ ℕ ↦ Σ*𝑘 ∈ (1...𝑛)𝐴) | |
17 | esumex 33993 | . . . . . . . 8 ⊢ Σ*𝑘 ∈ (1...𝑛)𝐴 ∈ V | |
18 | 16, 17 | elrnmpti 5985 | . . . . . . 7 ⊢ (𝑧 ∈ ran (𝑛 ∈ ℕ ↦ Σ*𝑘 ∈ (1...𝑛)𝐴) ↔ ∃𝑛 ∈ ℕ 𝑧 = Σ*𝑘 ∈ (1...𝑛)𝐴) |
19 | 18 | biimpi 216 | . . . . . 6 ⊢ (𝑧 ∈ ran (𝑛 ∈ ℕ ↦ Σ*𝑘 ∈ (1...𝑛)𝐴) → ∃𝑛 ∈ ℕ 𝑧 = Σ*𝑘 ∈ (1...𝑛)𝐴) |
20 | 19 | adantl 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑧 ∈ ran (𝑛 ∈ ℕ ↦ Σ*𝑘 ∈ (1...𝑛)𝐴)) → ∃𝑛 ∈ ℕ 𝑧 = Σ*𝑘 ∈ (1...𝑛)𝐴) |
21 | 9, 15, 20 | r19.29af 3274 | . . . 4 ⊢ ((𝜑 ∧ 𝑧 ∈ ran (𝑛 ∈ ℕ ↦ Σ*𝑘 ∈ (1...𝑛)𝐴)) → 𝑧 ≤ 𝐵) |
22 | 21 | ralrimiva 3152 | . . 3 ⊢ (𝜑 → ∀𝑧 ∈ ran (𝑛 ∈ ℕ ↦ Σ*𝑘 ∈ (1...𝑛)𝐴)𝑧 ≤ 𝐵) |
23 | ovexd 7483 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (1...𝑛) ∈ V) | |
24 | simpll 766 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → 𝜑) | |
25 | fz1ssnn 13615 | . . . . . . . . . . . 12 ⊢ (1...𝑛) ⊆ ℕ | |
26 | 25 | a1i 11 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (1...𝑛) ⊆ ℕ) |
27 | 26 | sselda 4008 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → 𝑘 ∈ ℕ) |
28 | 24, 27, 2 | syl2anc 583 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → 𝐴 ∈ (0[,]+∞)) |
29 | 28 | ralrimiva 3152 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ∀𝑘 ∈ (1...𝑛)𝐴 ∈ (0[,]+∞)) |
30 | nfcv 2908 | . . . . . . . . 9 ⊢ Ⅎ𝑘(1...𝑛) | |
31 | 30 | esumcl 33994 | . . . . . . . 8 ⊢ (((1...𝑛) ∈ V ∧ ∀𝑘 ∈ (1...𝑛)𝐴 ∈ (0[,]+∞)) → Σ*𝑘 ∈ (1...𝑛)𝐴 ∈ (0[,]+∞)) |
32 | 23, 29, 31 | syl2anc 583 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → Σ*𝑘 ∈ (1...𝑛)𝐴 ∈ (0[,]+∞)) |
33 | 32 | ralrimiva 3152 | . . . . . 6 ⊢ (𝜑 → ∀𝑛 ∈ ℕ Σ*𝑘 ∈ (1...𝑛)𝐴 ∈ (0[,]+∞)) |
34 | 16 | rnmptss 7157 | . . . . . 6 ⊢ (∀𝑛 ∈ ℕ Σ*𝑘 ∈ (1...𝑛)𝐴 ∈ (0[,]+∞) → ran (𝑛 ∈ ℕ ↦ Σ*𝑘 ∈ (1...𝑛)𝐴) ⊆ (0[,]+∞)) |
35 | 33, 34 | syl 17 | . . . . 5 ⊢ (𝜑 → ran (𝑛 ∈ ℕ ↦ Σ*𝑘 ∈ (1...𝑛)𝐴) ⊆ (0[,]+∞)) |
36 | iccssxr 13490 | . . . . 5 ⊢ (0[,]+∞) ⊆ ℝ* | |
37 | 35, 36 | sstrdi 4021 | . . . 4 ⊢ (𝜑 → ran (𝑛 ∈ ℕ ↦ Σ*𝑘 ∈ (1...𝑛)𝐴) ⊆ ℝ*) |
38 | 36, 1 | sselid 4006 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
39 | supxrleub 13388 | . . . 4 ⊢ ((ran (𝑛 ∈ ℕ ↦ Σ*𝑘 ∈ (1...𝑛)𝐴) ⊆ ℝ* ∧ 𝐵 ∈ ℝ*) → (sup(ran (𝑛 ∈ ℕ ↦ Σ*𝑘 ∈ (1...𝑛)𝐴), ℝ*, < ) ≤ 𝐵 ↔ ∀𝑧 ∈ ran (𝑛 ∈ ℕ ↦ Σ*𝑘 ∈ (1...𝑛)𝐴)𝑧 ≤ 𝐵)) | |
40 | 37, 38, 39 | syl2anc 583 | . . 3 ⊢ (𝜑 → (sup(ran (𝑛 ∈ ℕ ↦ Σ*𝑘 ∈ (1...𝑛)𝐴), ℝ*, < ) ≤ 𝐵 ↔ ∀𝑧 ∈ ran (𝑛 ∈ ℕ ↦ Σ*𝑘 ∈ (1...𝑛)𝐴)𝑧 ≤ 𝐵)) |
41 | 22, 40 | mpbird 257 | . 2 ⊢ (𝜑 → sup(ran (𝑛 ∈ ℕ ↦ Σ*𝑘 ∈ (1...𝑛)𝐴), ℝ*, < ) ≤ 𝐵) |
42 | 3, 41 | eqbrtrd 5188 | 1 ⊢ (𝜑 → Σ*𝑘 ∈ ℕ𝐴 ≤ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∀wral 3067 ∃wrex 3076 Vcvv 3488 ⊆ wss 3976 class class class wbr 5166 ↦ cmpt 5249 ran crn 5701 (class class class)co 7448 supcsup 9509 0cc0 11184 1c1 11185 +∞cpnf 11321 ℝ*cxr 11323 < clt 11324 ≤ cle 11325 ℕcn 12293 [,]cicc 13410 ...cfz 13567 Σ*cesum 33991 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-inf2 9710 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 ax-addf 11263 ax-mulf 11264 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-iin 5018 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-of 7714 df-om 7904 df-1st 8030 df-2nd 8031 df-supp 8202 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-er 8763 df-map 8886 df-pm 8887 df-ixp 8956 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-fsupp 9432 df-fi 9480 df-sup 9511 df-inf 9512 df-oi 9579 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-z 12640 df-dec 12759 df-uz 12904 df-q 13014 df-rp 13058 df-xneg 13175 df-xadd 13176 df-xmul 13177 df-ioo 13411 df-ioc 13412 df-ico 13413 df-icc 13414 df-fz 13568 df-fzo 13712 df-fl 13843 df-mod 13921 df-seq 14053 df-exp 14113 df-fac 14323 df-bc 14352 df-hash 14380 df-shft 15116 df-cj 15148 df-re 15149 df-im 15150 df-sqrt 15284 df-abs 15285 df-limsup 15517 df-clim 15534 df-rlim 15535 df-sum 15735 df-ef 16115 df-sin 16117 df-cos 16118 df-pi 16120 df-struct 17194 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-plusg 17324 df-mulr 17325 df-starv 17326 df-sca 17327 df-vsca 17328 df-ip 17329 df-tset 17330 df-ple 17331 df-ds 17333 df-unif 17334 df-hom 17335 df-cco 17336 df-rest 17482 df-topn 17483 df-0g 17501 df-gsum 17502 df-topgen 17503 df-pt 17504 df-prds 17507 df-ordt 17561 df-xrs 17562 df-qtop 17567 df-imas 17568 df-xps 17570 df-mre 17644 df-mrc 17645 df-acs 17647 df-ps 18636 df-tsr 18637 df-plusf 18677 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-mhm 18818 df-submnd 18819 df-grp 18976 df-minusg 18977 df-sbg 18978 df-mulg 19108 df-subg 19163 df-cntz 19357 df-cmn 19824 df-abl 19825 df-mgp 20162 df-rng 20180 df-ur 20209 df-ring 20262 df-cring 20263 df-subrng 20572 df-subrg 20597 df-abv 20832 df-lmod 20882 df-scaf 20883 df-sra 21195 df-rgmod 21196 df-psmet 21379 df-xmet 21380 df-met 21381 df-bl 21382 df-mopn 21383 df-fbas 21384 df-fg 21385 df-cnfld 21388 df-top 22921 df-topon 22938 df-topsp 22960 df-bases 22974 df-cld 23048 df-ntr 23049 df-cls 23050 df-nei 23127 df-lp 23165 df-perf 23166 df-cn 23256 df-cnp 23257 df-haus 23344 df-tx 23591 df-hmeo 23784 df-fil 23875 df-fm 23967 df-flim 23968 df-flf 23969 df-tmd 24101 df-tgp 24102 df-tsms 24156 df-trg 24189 df-xms 24351 df-ms 24352 df-tms 24353 df-nm 24616 df-ngp 24617 df-nrg 24619 df-nlm 24620 df-ii 24922 df-cncf 24923 df-limc 25921 df-dv 25922 df-log 26616 df-esum 33992 |
This theorem is referenced by: carsggect 34283 carsgclctunlem2 34284 |
Copyright terms: Public domain | W3C validator |