Proof of Theorem tfsconcatun
| Step | Hyp | Ref
| Expression |
| 1 | | tfsconcat.op |
. . 3
⊢ + = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑎 ∪ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ((dom 𝑎 +o dom 𝑏) ∖ dom 𝑎) ∧ ∃𝑧 ∈ dom 𝑏(𝑥 = (dom 𝑎 +o 𝑧) ∧ 𝑦 = (𝑏‘𝑧)))})) |
| 2 | 1 | a1i 11 |
. 2
⊢ (((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → + = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑎 ∪ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ((dom 𝑎 +o dom 𝑏) ∖ dom 𝑎) ∧ ∃𝑧 ∈ dom 𝑏(𝑥 = (dom 𝑎 +o 𝑧) ∧ 𝑦 = (𝑏‘𝑧)))}))) |
| 3 | | simprl 770 |
. . 3
⊢ ((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ (𝑎 = 𝐴 ∧ 𝑏 = 𝐵)) → 𝑎 = 𝐴) |
| 4 | | dmeq 5913 |
. . . . . . . . . 10
⊢ (𝑎 = 𝐴 → dom 𝑎 = dom 𝐴) |
| 5 | 4 | adantr 480 |
. . . . . . . . 9
⊢ ((𝑎 = 𝐴 ∧ 𝑏 = 𝐵) → dom 𝑎 = dom 𝐴) |
| 6 | | fndm 6670 |
. . . . . . . . . . 11
⊢ (𝐴 Fn 𝐶 → dom 𝐴 = 𝐶) |
| 7 | 6 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) → dom 𝐴 = 𝐶) |
| 8 | 7 | adantr 480 |
. . . . . . . . 9
⊢ (((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → dom 𝐴 = 𝐶) |
| 9 | 5, 8 | sylan9eqr 2798 |
. . . . . . . 8
⊢ ((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ (𝑎 = 𝐴 ∧ 𝑏 = 𝐵)) → dom 𝑎 = 𝐶) |
| 10 | | dmeq 5913 |
. . . . . . . . . 10
⊢ (𝑏 = 𝐵 → dom 𝑏 = dom 𝐵) |
| 11 | 10 | adantl 481 |
. . . . . . . . 9
⊢ ((𝑎 = 𝐴 ∧ 𝑏 = 𝐵) → dom 𝑏 = dom 𝐵) |
| 12 | | fndm 6670 |
. . . . . . . . . . 11
⊢ (𝐵 Fn 𝐷 → dom 𝐵 = 𝐷) |
| 13 | 12 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) → dom 𝐵 = 𝐷) |
| 14 | 13 | adantr 480 |
. . . . . . . . 9
⊢ (((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → dom 𝐵 = 𝐷) |
| 15 | 11, 14 | sylan9eqr 2798 |
. . . . . . . 8
⊢ ((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ (𝑎 = 𝐴 ∧ 𝑏 = 𝐵)) → dom 𝑏 = 𝐷) |
| 16 | 9, 15 | oveq12d 7450 |
. . . . . . 7
⊢ ((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ (𝑎 = 𝐴 ∧ 𝑏 = 𝐵)) → (dom 𝑎 +o dom 𝑏) = (𝐶 +o 𝐷)) |
| 17 | 16, 9 | difeq12d 4126 |
. . . . . 6
⊢ ((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ (𝑎 = 𝐴 ∧ 𝑏 = 𝐵)) → ((dom 𝑎 +o dom 𝑏) ∖ dom 𝑎) = ((𝐶 +o 𝐷) ∖ 𝐶)) |
| 18 | 17 | eleq2d 2826 |
. . . . 5
⊢ ((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ (𝑎 = 𝐴 ∧ 𝑏 = 𝐵)) → (𝑥 ∈ ((dom 𝑎 +o dom 𝑏) ∖ dom 𝑎) ↔ 𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶))) |
| 19 | 9 | oveq1d 7447 |
. . . . . . . 8
⊢ ((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ (𝑎 = 𝐴 ∧ 𝑏 = 𝐵)) → (dom 𝑎 +o 𝑧) = (𝐶 +o 𝑧)) |
| 20 | 19 | eqeq2d 2747 |
. . . . . . 7
⊢ ((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ (𝑎 = 𝐴 ∧ 𝑏 = 𝐵)) → (𝑥 = (dom 𝑎 +o 𝑧) ↔ 𝑥 = (𝐶 +o 𝑧))) |
| 21 | | fveq1 6904 |
. . . . . . . . . 10
⊢ (𝑏 = 𝐵 → (𝑏‘𝑧) = (𝐵‘𝑧)) |
| 22 | 21 | eqeq2d 2747 |
. . . . . . . . 9
⊢ (𝑏 = 𝐵 → (𝑦 = (𝑏‘𝑧) ↔ 𝑦 = (𝐵‘𝑧))) |
| 23 | 22 | adantl 481 |
. . . . . . . 8
⊢ ((𝑎 = 𝐴 ∧ 𝑏 = 𝐵) → (𝑦 = (𝑏‘𝑧) ↔ 𝑦 = (𝐵‘𝑧))) |
| 24 | 23 | adantl 481 |
. . . . . . 7
⊢ ((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ (𝑎 = 𝐴 ∧ 𝑏 = 𝐵)) → (𝑦 = (𝑏‘𝑧) ↔ 𝑦 = (𝐵‘𝑧))) |
| 25 | 20, 24 | anbi12d 632 |
. . . . . 6
⊢ ((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ (𝑎 = 𝐴 ∧ 𝑏 = 𝐵)) → ((𝑥 = (dom 𝑎 +o 𝑧) ∧ 𝑦 = (𝑏‘𝑧)) ↔ (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵‘𝑧)))) |
| 26 | 15, 25 | rexeqbidv 3346 |
. . . . 5
⊢ ((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ (𝑎 = 𝐴 ∧ 𝑏 = 𝐵)) → (∃𝑧 ∈ dom 𝑏(𝑥 = (dom 𝑎 +o 𝑧) ∧ 𝑦 = (𝑏‘𝑧)) ↔ ∃𝑧 ∈ 𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵‘𝑧)))) |
| 27 | 18, 26 | anbi12d 632 |
. . . 4
⊢ ((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ (𝑎 = 𝐴 ∧ 𝑏 = 𝐵)) → ((𝑥 ∈ ((dom 𝑎 +o dom 𝑏) ∖ dom 𝑎) ∧ ∃𝑧 ∈ dom 𝑏(𝑥 = (dom 𝑎 +o 𝑧) ∧ 𝑦 = (𝑏‘𝑧))) ↔ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧 ∈ 𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵‘𝑧))))) |
| 28 | 27 | opabbidv 5208 |
. . 3
⊢ ((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ (𝑎 = 𝐴 ∧ 𝑏 = 𝐵)) → {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ((dom 𝑎 +o dom 𝑏) ∖ dom 𝑎) ∧ ∃𝑧 ∈ dom 𝑏(𝑥 = (dom 𝑎 +o 𝑧) ∧ 𝑦 = (𝑏‘𝑧)))} = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧 ∈ 𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵‘𝑧)))}) |
| 29 | 3, 28 | uneq12d 4168 |
. 2
⊢ ((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ (𝑎 = 𝐴 ∧ 𝑏 = 𝐵)) → (𝑎 ∪ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ((dom 𝑎 +o dom 𝑏) ∖ dom 𝑎) ∧ ∃𝑧 ∈ dom 𝑏(𝑥 = (dom 𝑎 +o 𝑧) ∧ 𝑦 = (𝑏‘𝑧)))}) = (𝐴 ∪ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧 ∈ 𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵‘𝑧)))})) |
| 30 | | fnex 7238 |
. . 3
⊢ ((𝐴 Fn 𝐶 ∧ 𝐶 ∈ On) → 𝐴 ∈ V) |
| 31 | 30 | ad2ant2r 747 |
. 2
⊢ (((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → 𝐴 ∈ V) |
| 32 | | fnex 7238 |
. . 3
⊢ ((𝐵 Fn 𝐷 ∧ 𝐷 ∈ On) → 𝐵 ∈ V) |
| 33 | 32 | ad2ant2l 746 |
. 2
⊢ (((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → 𝐵 ∈ V) |
| 34 | | oacl 8574 |
. . . . . 6
⊢ ((𝐶 ∈ On ∧ 𝐷 ∈ On) → (𝐶 +o 𝐷) ∈ On) |
| 35 | 34 | difexd 5330 |
. . . . 5
⊢ ((𝐶 ∈ On ∧ 𝐷 ∈ On) → ((𝐶 +o 𝐷) ∖ 𝐶) ∈ V) |
| 36 | 35 | adantl 481 |
. . . 4
⊢ (((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → ((𝐶 +o 𝐷) ∖ 𝐶) ∈ V) |
| 37 | | simplrl 776 |
. . . . . 6
⊢ ((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶)) → 𝐶 ∈ On) |
| 38 | | simplrr 777 |
. . . . . 6
⊢ ((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶)) → 𝐷 ∈ On) |
| 39 | | simpr 484 |
. . . . . 6
⊢ ((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶)) → 𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶)) |
| 40 | | tfsconcatlem 43354 |
. . . . . 6
⊢ ((𝐶 ∈ On ∧ 𝐷 ∈ On ∧ 𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶)) → ∃!𝑦∃𝑧 ∈ 𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵‘𝑧))) |
| 41 | 37, 38, 39, 40 | syl3anc 1372 |
. . . . 5
⊢ ((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶)) → ∃!𝑦∃𝑧 ∈ 𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵‘𝑧))) |
| 42 | | euabex 5465 |
. . . . 5
⊢
(∃!𝑦∃𝑧 ∈ 𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵‘𝑧)) → {𝑦 ∣ ∃𝑧 ∈ 𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵‘𝑧))} ∈ V) |
| 43 | 41, 42 | syl 17 |
. . . 4
⊢ ((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶)) → {𝑦 ∣ ∃𝑧 ∈ 𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵‘𝑧))} ∈ V) |
| 44 | 36, 43 | opabex3d 7991 |
. . 3
⊢ (((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧 ∈ 𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵‘𝑧)))} ∈ V) |
| 45 | 31, 44 | unexd 7775 |
. 2
⊢ (((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (𝐴 ∪ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧 ∈ 𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵‘𝑧)))}) ∈ V) |
| 46 | 2, 29, 31, 33, 45 | ovmpod 7586 |
1
⊢ (((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (𝐴 + 𝐵) = (𝐴 ∪ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧 ∈ 𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵‘𝑧)))})) |