MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eulplig Structured version   Visualization version   GIF version

Theorem eulplig 28520
Description: Through two distinct points of a planar incidence geometry, there is a unique line. (Contributed by BJ, 2-Dec-2021.)
Hypothesis
Ref Expression
eulplig.1 𝑃 = 𝐺
Assertion
Ref Expression
eulplig ((𝐺 ∈ Plig ∧ ((𝐴𝑃𝐵𝑃) ∧ 𝐴𝐵)) → ∃!𝑙𝐺 (𝐴𝑙𝐵𝑙))
Distinct variable groups:   𝐺,𝑙   𝐴,𝑙   𝐵,𝑙
Allowed substitution hint:   𝑃(𝑙)

Proof of Theorem eulplig
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eulplig.1 . . . . 5 𝑃 = 𝐺
21isplig 28511 . . . 4 (𝐺 ∈ Plig → (𝐺 ∈ Plig ↔ (∀𝑎𝑃𝑏𝑃 (𝑎𝑏 → ∃!𝑙𝐺 (𝑎𝑙𝑏𝑙)) ∧ ∀𝑙𝐺𝑎𝑃𝑏𝑃 (𝑎𝑏𝑎𝑙𝑏𝑙) ∧ ∃𝑎𝑃𝑏𝑃𝑐𝑃𝑙𝐺 ¬ (𝑎𝑙𝑏𝑙𝑐𝑙))))
32ibi 270 . . 3 (𝐺 ∈ Plig → (∀𝑎𝑃𝑏𝑃 (𝑎𝑏 → ∃!𝑙𝐺 (𝑎𝑙𝑏𝑙)) ∧ ∀𝑙𝐺𝑎𝑃𝑏𝑃 (𝑎𝑏𝑎𝑙𝑏𝑙) ∧ ∃𝑎𝑃𝑏𝑃𝑐𝑃𝑙𝐺 ¬ (𝑎𝑙𝑏𝑙𝑐𝑙)))
4 simp1 1138 . . 3 ((∀𝑎𝑃𝑏𝑃 (𝑎𝑏 → ∃!𝑙𝐺 (𝑎𝑙𝑏𝑙)) ∧ ∀𝑙𝐺𝑎𝑃𝑏𝑃 (𝑎𝑏𝑎𝑙𝑏𝑙) ∧ ∃𝑎𝑃𝑏𝑃𝑐𝑃𝑙𝐺 ¬ (𝑎𝑙𝑏𝑙𝑐𝑙)) → ∀𝑎𝑃𝑏𝑃 (𝑎𝑏 → ∃!𝑙𝐺 (𝑎𝑙𝑏𝑙)))
5 simpl 486 . . . . . . . . 9 ((𝑎 = 𝐴𝑏 = 𝐵) → 𝑎 = 𝐴)
6 simpr 488 . . . . . . . . 9 ((𝑎 = 𝐴𝑏 = 𝐵) → 𝑏 = 𝐵)
75, 6neeq12d 2993 . . . . . . . 8 ((𝑎 = 𝐴𝑏 = 𝐵) → (𝑎𝑏𝐴𝐵))
8 eleq1 2818 . . . . . . . . . 10 (𝑎 = 𝐴 → (𝑎𝑙𝐴𝑙))
9 eleq1 2818 . . . . . . . . . 10 (𝑏 = 𝐵 → (𝑏𝑙𝐵𝑙))
108, 9bi2anan9 639 . . . . . . . . 9 ((𝑎 = 𝐴𝑏 = 𝐵) → ((𝑎𝑙𝑏𝑙) ↔ (𝐴𝑙𝐵𝑙)))
1110reubidv 3291 . . . . . . . 8 ((𝑎 = 𝐴𝑏 = 𝐵) → (∃!𝑙𝐺 (𝑎𝑙𝑏𝑙) ↔ ∃!𝑙𝐺 (𝐴𝑙𝐵𝑙)))
127, 11imbi12d 348 . . . . . . 7 ((𝑎 = 𝐴𝑏 = 𝐵) → ((𝑎𝑏 → ∃!𝑙𝐺 (𝑎𝑙𝑏𝑙)) ↔ (𝐴𝐵 → ∃!𝑙𝐺 (𝐴𝑙𝐵𝑙))))
1312rspc2gv 3536 . . . . . 6 ((𝐴𝑃𝐵𝑃) → (∀𝑎𝑃𝑏𝑃 (𝑎𝑏 → ∃!𝑙𝐺 (𝑎𝑙𝑏𝑙)) → (𝐴𝐵 → ∃!𝑙𝐺 (𝐴𝑙𝐵𝑙))))
1413com23 86 . . . . 5 ((𝐴𝑃𝐵𝑃) → (𝐴𝐵 → (∀𝑎𝑃𝑏𝑃 (𝑎𝑏 → ∃!𝑙𝐺 (𝑎𝑙𝑏𝑙)) → ∃!𝑙𝐺 (𝐴𝑙𝐵𝑙))))
1514imp 410 . . . 4 (((𝐴𝑃𝐵𝑃) ∧ 𝐴𝐵) → (∀𝑎𝑃𝑏𝑃 (𝑎𝑏 → ∃!𝑙𝐺 (𝑎𝑙𝑏𝑙)) → ∃!𝑙𝐺 (𝐴𝑙𝐵𝑙)))
1615com12 32 . . 3 (∀𝑎𝑃𝑏𝑃 (𝑎𝑏 → ∃!𝑙𝐺 (𝑎𝑙𝑏𝑙)) → (((𝐴𝑃𝐵𝑃) ∧ 𝐴𝐵) → ∃!𝑙𝐺 (𝐴𝑙𝐵𝑙)))
173, 4, 163syl 18 . 2 (𝐺 ∈ Plig → (((𝐴𝑃𝐵𝑃) ∧ 𝐴𝐵) → ∃!𝑙𝐺 (𝐴𝑙𝐵𝑙)))
1817imp 410 1 ((𝐺 ∈ Plig ∧ ((𝐴𝑃𝐵𝑃) ∧ 𝐴𝐵)) → ∃!𝑙𝐺 (𝐴𝑙𝐵𝑙))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399  w3a 1089   = wceq 1543  wcel 2112  wne 2932  wral 3051  wrex 3052  ∃!wreu 3053   cuni 4805  Pligcplig 28509
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-ext 2708
This theorem depends on definitions:  df-bi 210  df-an 400  df-3an 1091  df-tru 1546  df-ex 1788  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-ne 2933  df-ral 3056  df-rex 3057  df-reu 3058  df-v 3400  df-in 3860  df-ss 3870  df-uni 4806  df-plig 28510
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator