Step | Hyp | Ref
| Expression |
1 | | eulplig.1 |
. . . . 5
⊢ 𝑃 = ∪
𝐺 |
2 | 1 | isplig 28838 |
. . . 4
⊢ (𝐺 ∈ Plig → (𝐺 ∈ Plig ↔
(∀𝑎 ∈ 𝑃 ∀𝑏 ∈ 𝑃 (𝑎 ≠ 𝑏 → ∃!𝑙 ∈ 𝐺 (𝑎 ∈ 𝑙 ∧ 𝑏 ∈ 𝑙)) ∧ ∀𝑙 ∈ 𝐺 ∃𝑎 ∈ 𝑃 ∃𝑏 ∈ 𝑃 (𝑎 ≠ 𝑏 ∧ 𝑎 ∈ 𝑙 ∧ 𝑏 ∈ 𝑙) ∧ ∃𝑎 ∈ 𝑃 ∃𝑏 ∈ 𝑃 ∃𝑐 ∈ 𝑃 ∀𝑙 ∈ 𝐺 ¬ (𝑎 ∈ 𝑙 ∧ 𝑏 ∈ 𝑙 ∧ 𝑐 ∈ 𝑙)))) |
3 | 2 | ibi 266 |
. . 3
⊢ (𝐺 ∈ Plig →
(∀𝑎 ∈ 𝑃 ∀𝑏 ∈ 𝑃 (𝑎 ≠ 𝑏 → ∃!𝑙 ∈ 𝐺 (𝑎 ∈ 𝑙 ∧ 𝑏 ∈ 𝑙)) ∧ ∀𝑙 ∈ 𝐺 ∃𝑎 ∈ 𝑃 ∃𝑏 ∈ 𝑃 (𝑎 ≠ 𝑏 ∧ 𝑎 ∈ 𝑙 ∧ 𝑏 ∈ 𝑙) ∧ ∃𝑎 ∈ 𝑃 ∃𝑏 ∈ 𝑃 ∃𝑐 ∈ 𝑃 ∀𝑙 ∈ 𝐺 ¬ (𝑎 ∈ 𝑙 ∧ 𝑏 ∈ 𝑙 ∧ 𝑐 ∈ 𝑙))) |
4 | | simp1 1135 |
. . 3
⊢
((∀𝑎 ∈
𝑃 ∀𝑏 ∈ 𝑃 (𝑎 ≠ 𝑏 → ∃!𝑙 ∈ 𝐺 (𝑎 ∈ 𝑙 ∧ 𝑏 ∈ 𝑙)) ∧ ∀𝑙 ∈ 𝐺 ∃𝑎 ∈ 𝑃 ∃𝑏 ∈ 𝑃 (𝑎 ≠ 𝑏 ∧ 𝑎 ∈ 𝑙 ∧ 𝑏 ∈ 𝑙) ∧ ∃𝑎 ∈ 𝑃 ∃𝑏 ∈ 𝑃 ∃𝑐 ∈ 𝑃 ∀𝑙 ∈ 𝐺 ¬ (𝑎 ∈ 𝑙 ∧ 𝑏 ∈ 𝑙 ∧ 𝑐 ∈ 𝑙)) → ∀𝑎 ∈ 𝑃 ∀𝑏 ∈ 𝑃 (𝑎 ≠ 𝑏 → ∃!𝑙 ∈ 𝐺 (𝑎 ∈ 𝑙 ∧ 𝑏 ∈ 𝑙))) |
5 | | simpl 483 |
. . . . . . . . 9
⊢ ((𝑎 = 𝐴 ∧ 𝑏 = 𝐵) → 𝑎 = 𝐴) |
6 | | simpr 485 |
. . . . . . . . 9
⊢ ((𝑎 = 𝐴 ∧ 𝑏 = 𝐵) → 𝑏 = 𝐵) |
7 | 5, 6 | neeq12d 3005 |
. . . . . . . 8
⊢ ((𝑎 = 𝐴 ∧ 𝑏 = 𝐵) → (𝑎 ≠ 𝑏 ↔ 𝐴 ≠ 𝐵)) |
8 | | eleq1 2826 |
. . . . . . . . . 10
⊢ (𝑎 = 𝐴 → (𝑎 ∈ 𝑙 ↔ 𝐴 ∈ 𝑙)) |
9 | | eleq1 2826 |
. . . . . . . . . 10
⊢ (𝑏 = 𝐵 → (𝑏 ∈ 𝑙 ↔ 𝐵 ∈ 𝑙)) |
10 | 8, 9 | bi2anan9 636 |
. . . . . . . . 9
⊢ ((𝑎 = 𝐴 ∧ 𝑏 = 𝐵) → ((𝑎 ∈ 𝑙 ∧ 𝑏 ∈ 𝑙) ↔ (𝐴 ∈ 𝑙 ∧ 𝐵 ∈ 𝑙))) |
11 | 10 | reubidv 3323 |
. . . . . . . 8
⊢ ((𝑎 = 𝐴 ∧ 𝑏 = 𝐵) → (∃!𝑙 ∈ 𝐺 (𝑎 ∈ 𝑙 ∧ 𝑏 ∈ 𝑙) ↔ ∃!𝑙 ∈ 𝐺 (𝐴 ∈ 𝑙 ∧ 𝐵 ∈ 𝑙))) |
12 | 7, 11 | imbi12d 345 |
. . . . . . 7
⊢ ((𝑎 = 𝐴 ∧ 𝑏 = 𝐵) → ((𝑎 ≠ 𝑏 → ∃!𝑙 ∈ 𝐺 (𝑎 ∈ 𝑙 ∧ 𝑏 ∈ 𝑙)) ↔ (𝐴 ≠ 𝐵 → ∃!𝑙 ∈ 𝐺 (𝐴 ∈ 𝑙 ∧ 𝐵 ∈ 𝑙)))) |
13 | 12 | rspc2gv 3569 |
. . . . . 6
⊢ ((𝐴 ∈ 𝑃 ∧ 𝐵 ∈ 𝑃) → (∀𝑎 ∈ 𝑃 ∀𝑏 ∈ 𝑃 (𝑎 ≠ 𝑏 → ∃!𝑙 ∈ 𝐺 (𝑎 ∈ 𝑙 ∧ 𝑏 ∈ 𝑙)) → (𝐴 ≠ 𝐵 → ∃!𝑙 ∈ 𝐺 (𝐴 ∈ 𝑙 ∧ 𝐵 ∈ 𝑙)))) |
14 | 13 | com23 86 |
. . . . 5
⊢ ((𝐴 ∈ 𝑃 ∧ 𝐵 ∈ 𝑃) → (𝐴 ≠ 𝐵 → (∀𝑎 ∈ 𝑃 ∀𝑏 ∈ 𝑃 (𝑎 ≠ 𝑏 → ∃!𝑙 ∈ 𝐺 (𝑎 ∈ 𝑙 ∧ 𝑏 ∈ 𝑙)) → ∃!𝑙 ∈ 𝐺 (𝐴 ∈ 𝑙 ∧ 𝐵 ∈ 𝑙)))) |
15 | 14 | imp 407 |
. . . 4
⊢ (((𝐴 ∈ 𝑃 ∧ 𝐵 ∈ 𝑃) ∧ 𝐴 ≠ 𝐵) → (∀𝑎 ∈ 𝑃 ∀𝑏 ∈ 𝑃 (𝑎 ≠ 𝑏 → ∃!𝑙 ∈ 𝐺 (𝑎 ∈ 𝑙 ∧ 𝑏 ∈ 𝑙)) → ∃!𝑙 ∈ 𝐺 (𝐴 ∈ 𝑙 ∧ 𝐵 ∈ 𝑙))) |
16 | 15 | com12 32 |
. . 3
⊢
(∀𝑎 ∈
𝑃 ∀𝑏 ∈ 𝑃 (𝑎 ≠ 𝑏 → ∃!𝑙 ∈ 𝐺 (𝑎 ∈ 𝑙 ∧ 𝑏 ∈ 𝑙)) → (((𝐴 ∈ 𝑃 ∧ 𝐵 ∈ 𝑃) ∧ 𝐴 ≠ 𝐵) → ∃!𝑙 ∈ 𝐺 (𝐴 ∈ 𝑙 ∧ 𝐵 ∈ 𝑙))) |
17 | 3, 4, 16 | 3syl 18 |
. 2
⊢ (𝐺 ∈ Plig → (((𝐴 ∈ 𝑃 ∧ 𝐵 ∈ 𝑃) ∧ 𝐴 ≠ 𝐵) → ∃!𝑙 ∈ 𝐺 (𝐴 ∈ 𝑙 ∧ 𝐵 ∈ 𝑙))) |
18 | 17 | imp 407 |
1
⊢ ((𝐺 ∈ Plig ∧ ((𝐴 ∈ 𝑃 ∧ 𝐵 ∈ 𝑃) ∧ 𝐴 ≠ 𝐵)) → ∃!𝑙 ∈ 𝐺 (𝐴 ∈ 𝑙 ∧ 𝐵 ∈ 𝑙)) |