MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eulplig Structured version   Visualization version   GIF version

Theorem eulplig 28748
Description: Through two distinct points of a planar incidence geometry, there is a unique line. (Contributed by BJ, 2-Dec-2021.)
Hypothesis
Ref Expression
eulplig.1 𝑃 = 𝐺
Assertion
Ref Expression
eulplig ((𝐺 ∈ Plig ∧ ((𝐴𝑃𝐵𝑃) ∧ 𝐴𝐵)) → ∃!𝑙𝐺 (𝐴𝑙𝐵𝑙))
Distinct variable groups:   𝐺,𝑙   𝐴,𝑙   𝐵,𝑙
Allowed substitution hint:   𝑃(𝑙)

Proof of Theorem eulplig
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eulplig.1 . . . . 5 𝑃 = 𝐺
21isplig 28739 . . . 4 (𝐺 ∈ Plig → (𝐺 ∈ Plig ↔ (∀𝑎𝑃𝑏𝑃 (𝑎𝑏 → ∃!𝑙𝐺 (𝑎𝑙𝑏𝑙)) ∧ ∀𝑙𝐺𝑎𝑃𝑏𝑃 (𝑎𝑏𝑎𝑙𝑏𝑙) ∧ ∃𝑎𝑃𝑏𝑃𝑐𝑃𝑙𝐺 ¬ (𝑎𝑙𝑏𝑙𝑐𝑙))))
32ibi 266 . . 3 (𝐺 ∈ Plig → (∀𝑎𝑃𝑏𝑃 (𝑎𝑏 → ∃!𝑙𝐺 (𝑎𝑙𝑏𝑙)) ∧ ∀𝑙𝐺𝑎𝑃𝑏𝑃 (𝑎𝑏𝑎𝑙𝑏𝑙) ∧ ∃𝑎𝑃𝑏𝑃𝑐𝑃𝑙𝐺 ¬ (𝑎𝑙𝑏𝑙𝑐𝑙)))
4 simp1 1134 . . 3 ((∀𝑎𝑃𝑏𝑃 (𝑎𝑏 → ∃!𝑙𝐺 (𝑎𝑙𝑏𝑙)) ∧ ∀𝑙𝐺𝑎𝑃𝑏𝑃 (𝑎𝑏𝑎𝑙𝑏𝑙) ∧ ∃𝑎𝑃𝑏𝑃𝑐𝑃𝑙𝐺 ¬ (𝑎𝑙𝑏𝑙𝑐𝑙)) → ∀𝑎𝑃𝑏𝑃 (𝑎𝑏 → ∃!𝑙𝐺 (𝑎𝑙𝑏𝑙)))
5 simpl 482 . . . . . . . . 9 ((𝑎 = 𝐴𝑏 = 𝐵) → 𝑎 = 𝐴)
6 simpr 484 . . . . . . . . 9 ((𝑎 = 𝐴𝑏 = 𝐵) → 𝑏 = 𝐵)
75, 6neeq12d 3004 . . . . . . . 8 ((𝑎 = 𝐴𝑏 = 𝐵) → (𝑎𝑏𝐴𝐵))
8 eleq1 2826 . . . . . . . . . 10 (𝑎 = 𝐴 → (𝑎𝑙𝐴𝑙))
9 eleq1 2826 . . . . . . . . . 10 (𝑏 = 𝐵 → (𝑏𝑙𝐵𝑙))
108, 9bi2anan9 635 . . . . . . . . 9 ((𝑎 = 𝐴𝑏 = 𝐵) → ((𝑎𝑙𝑏𝑙) ↔ (𝐴𝑙𝐵𝑙)))
1110reubidv 3315 . . . . . . . 8 ((𝑎 = 𝐴𝑏 = 𝐵) → (∃!𝑙𝐺 (𝑎𝑙𝑏𝑙) ↔ ∃!𝑙𝐺 (𝐴𝑙𝐵𝑙)))
127, 11imbi12d 344 . . . . . . 7 ((𝑎 = 𝐴𝑏 = 𝐵) → ((𝑎𝑏 → ∃!𝑙𝐺 (𝑎𝑙𝑏𝑙)) ↔ (𝐴𝐵 → ∃!𝑙𝐺 (𝐴𝑙𝐵𝑙))))
1312rspc2gv 3561 . . . . . 6 ((𝐴𝑃𝐵𝑃) → (∀𝑎𝑃𝑏𝑃 (𝑎𝑏 → ∃!𝑙𝐺 (𝑎𝑙𝑏𝑙)) → (𝐴𝐵 → ∃!𝑙𝐺 (𝐴𝑙𝐵𝑙))))
1413com23 86 . . . . 5 ((𝐴𝑃𝐵𝑃) → (𝐴𝐵 → (∀𝑎𝑃𝑏𝑃 (𝑎𝑏 → ∃!𝑙𝐺 (𝑎𝑙𝑏𝑙)) → ∃!𝑙𝐺 (𝐴𝑙𝐵𝑙))))
1514imp 406 . . . 4 (((𝐴𝑃𝐵𝑃) ∧ 𝐴𝐵) → (∀𝑎𝑃𝑏𝑃 (𝑎𝑏 → ∃!𝑙𝐺 (𝑎𝑙𝑏𝑙)) → ∃!𝑙𝐺 (𝐴𝑙𝐵𝑙)))
1615com12 32 . . 3 (∀𝑎𝑃𝑏𝑃 (𝑎𝑏 → ∃!𝑙𝐺 (𝑎𝑙𝑏𝑙)) → (((𝐴𝑃𝐵𝑃) ∧ 𝐴𝐵) → ∃!𝑙𝐺 (𝐴𝑙𝐵𝑙)))
173, 4, 163syl 18 . 2 (𝐺 ∈ Plig → (((𝐴𝑃𝐵𝑃) ∧ 𝐴𝐵) → ∃!𝑙𝐺 (𝐴𝑙𝐵𝑙)))
1817imp 406 1 ((𝐺 ∈ Plig ∧ ((𝐴𝑃𝐵𝑃) ∧ 𝐴𝐵)) → ∃!𝑙𝐺 (𝐴𝑙𝐵𝑙))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  wral 3063  wrex 3064  ∃!wreu 3065   cuni 4836  Pligcplig 28737
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-3an 1087  df-tru 1542  df-ex 1784  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-v 3424  df-in 3890  df-ss 3900  df-uni 4837  df-plig 28738
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator