Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  eulplig Structured version   Visualization version   GIF version

Theorem eulplig 28268
 Description: Through two distinct points of a planar incidence geometry, there is a unique line. (Contributed by BJ, 2-Dec-2021.)
Hypothesis
Ref Expression
eulplig.1 𝑃 = 𝐺
Assertion
Ref Expression
eulplig ((𝐺 ∈ Plig ∧ ((𝐴𝑃𝐵𝑃) ∧ 𝐴𝐵)) → ∃!𝑙𝐺 (𝐴𝑙𝐵𝑙))
Distinct variable groups:   𝐺,𝑙   𝐴,𝑙   𝐵,𝑙
Allowed substitution hint:   𝑃(𝑙)

Proof of Theorem eulplig
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eulplig.1 . . . . 5 𝑃 = 𝐺
21isplig 28259 . . . 4 (𝐺 ∈ Plig → (𝐺 ∈ Plig ↔ (∀𝑎𝑃𝑏𝑃 (𝑎𝑏 → ∃!𝑙𝐺 (𝑎𝑙𝑏𝑙)) ∧ ∀𝑙𝐺𝑎𝑃𝑏𝑃 (𝑎𝑏𝑎𝑙𝑏𝑙) ∧ ∃𝑎𝑃𝑏𝑃𝑐𝑃𝑙𝐺 ¬ (𝑎𝑙𝑏𝑙𝑐𝑙))))
32ibi 270 . . 3 (𝐺 ∈ Plig → (∀𝑎𝑃𝑏𝑃 (𝑎𝑏 → ∃!𝑙𝐺 (𝑎𝑙𝑏𝑙)) ∧ ∀𝑙𝐺𝑎𝑃𝑏𝑃 (𝑎𝑏𝑎𝑙𝑏𝑙) ∧ ∃𝑎𝑃𝑏𝑃𝑐𝑃𝑙𝐺 ¬ (𝑎𝑙𝑏𝑙𝑐𝑙)))
4 simp1 1133 . . 3 ((∀𝑎𝑃𝑏𝑃 (𝑎𝑏 → ∃!𝑙𝐺 (𝑎𝑙𝑏𝑙)) ∧ ∀𝑙𝐺𝑎𝑃𝑏𝑃 (𝑎𝑏𝑎𝑙𝑏𝑙) ∧ ∃𝑎𝑃𝑏𝑃𝑐𝑃𝑙𝐺 ¬ (𝑎𝑙𝑏𝑙𝑐𝑙)) → ∀𝑎𝑃𝑏𝑃 (𝑎𝑏 → ∃!𝑙𝐺 (𝑎𝑙𝑏𝑙)))
5 simpl 486 . . . . . . . . 9 ((𝑎 = 𝐴𝑏 = 𝐵) → 𝑎 = 𝐴)
6 simpr 488 . . . . . . . . 9 ((𝑎 = 𝐴𝑏 = 𝐵) → 𝑏 = 𝐵)
75, 6neeq12d 3048 . . . . . . . 8 ((𝑎 = 𝐴𝑏 = 𝐵) → (𝑎𝑏𝐴𝐵))
8 eleq1 2877 . . . . . . . . . 10 (𝑎 = 𝐴 → (𝑎𝑙𝐴𝑙))
9 eleq1 2877 . . . . . . . . . 10 (𝑏 = 𝐵 → (𝑏𝑙𝐵𝑙))
108, 9bi2anan9 638 . . . . . . . . 9 ((𝑎 = 𝐴𝑏 = 𝐵) → ((𝑎𝑙𝑏𝑙) ↔ (𝐴𝑙𝐵𝑙)))
1110reubidv 3342 . . . . . . . 8 ((𝑎 = 𝐴𝑏 = 𝐵) → (∃!𝑙𝐺 (𝑎𝑙𝑏𝑙) ↔ ∃!𝑙𝐺 (𝐴𝑙𝐵𝑙)))
127, 11imbi12d 348 . . . . . . 7 ((𝑎 = 𝐴𝑏 = 𝐵) → ((𝑎𝑏 → ∃!𝑙𝐺 (𝑎𝑙𝑏𝑙)) ↔ (𝐴𝐵 → ∃!𝑙𝐺 (𝐴𝑙𝐵𝑙))))
1312rspc2gv 3580 . . . . . 6 ((𝐴𝑃𝐵𝑃) → (∀𝑎𝑃𝑏𝑃 (𝑎𝑏 → ∃!𝑙𝐺 (𝑎𝑙𝑏𝑙)) → (𝐴𝐵 → ∃!𝑙𝐺 (𝐴𝑙𝐵𝑙))))
1413com23 86 . . . . 5 ((𝐴𝑃𝐵𝑃) → (𝐴𝐵 → (∀𝑎𝑃𝑏𝑃 (𝑎𝑏 → ∃!𝑙𝐺 (𝑎𝑙𝑏𝑙)) → ∃!𝑙𝐺 (𝐴𝑙𝐵𝑙))))
1514imp 410 . . . 4 (((𝐴𝑃𝐵𝑃) ∧ 𝐴𝐵) → (∀𝑎𝑃𝑏𝑃 (𝑎𝑏 → ∃!𝑙𝐺 (𝑎𝑙𝑏𝑙)) → ∃!𝑙𝐺 (𝐴𝑙𝐵𝑙)))
1615com12 32 . . 3 (∀𝑎𝑃𝑏𝑃 (𝑎𝑏 → ∃!𝑙𝐺 (𝑎𝑙𝑏𝑙)) → (((𝐴𝑃𝐵𝑃) ∧ 𝐴𝐵) → ∃!𝑙𝐺 (𝐴𝑙𝐵𝑙)))
173, 4, 163syl 18 . 2 (𝐺 ∈ Plig → (((𝐴𝑃𝐵𝑃) ∧ 𝐴𝐵) → ∃!𝑙𝐺 (𝐴𝑙𝐵𝑙)))
1817imp 410 1 ((𝐺 ∈ Plig ∧ ((𝐴𝑃𝐵𝑃) ∧ 𝐴𝐵)) → ∃!𝑙𝐺 (𝐴𝑙𝐵𝑙))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2111   ≠ wne 2987  ∀wral 3106  ∃wrex 3107  ∃!wreu 3108  ∪ cuni 4800  Pligcplig 28257 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-v 3443  df-in 3888  df-ss 3898  df-uni 4801  df-plig 28258 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator