MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pliguhgr Structured version   Visualization version   GIF version

Theorem pliguhgr 30518
Description: Any planar incidence geometry 𝐺 can be regarded as a hypergraph with its points as vertices and its lines as edges. See incistruhgr 29114 for a generalization of this case for arbitrary incidence structures (planar incidence geometries are such incidence structures). (Proposed by Gerard Lang, 24-Nov-2021.) (Contributed by AV, 28-Nov-2021.)
Assertion
Ref Expression
pliguhgr (𝐺 ∈ Plig → ⟨ 𝐺, ( I ↾ 𝐺)⟩ ∈ UHGraph)

Proof of Theorem pliguhgr
StepHypRef Expression
1 f1oi 6900 . . . 4 ( I ↾ 𝐺):𝐺1-1-onto𝐺
2 f1of 6862 . . . 4 (( I ↾ 𝐺):𝐺1-1-onto𝐺 → ( I ↾ 𝐺):𝐺𝐺)
3 pwuni 4969 . . . . . . 7 𝐺 ⊆ 𝒫 𝐺
4 n0lplig 30515 . . . . . . . . . 10 (𝐺 ∈ Plig → ¬ ∅ ∈ 𝐺)
54adantr 480 . . . . . . . . 9 ((𝐺 ∈ Plig ∧ 𝐺 ⊆ 𝒫 𝐺) → ¬ ∅ ∈ 𝐺)
6 disjsn 4736 . . . . . . . . 9 ((𝐺 ∩ {∅}) = ∅ ↔ ¬ ∅ ∈ 𝐺)
75, 6sylibr 234 . . . . . . . 8 ((𝐺 ∈ Plig ∧ 𝐺 ⊆ 𝒫 𝐺) → (𝐺 ∩ {∅}) = ∅)
8 reldisj 4476 . . . . . . . . 9 (𝐺 ⊆ 𝒫 𝐺 → ((𝐺 ∩ {∅}) = ∅ ↔ 𝐺 ⊆ (𝒫 𝐺 ∖ {∅})))
98adantl 481 . . . . . . . 8 ((𝐺 ∈ Plig ∧ 𝐺 ⊆ 𝒫 𝐺) → ((𝐺 ∩ {∅}) = ∅ ↔ 𝐺 ⊆ (𝒫 𝐺 ∖ {∅})))
107, 9mpbid 232 . . . . . . 7 ((𝐺 ∈ Plig ∧ 𝐺 ⊆ 𝒫 𝐺) → 𝐺 ⊆ (𝒫 𝐺 ∖ {∅}))
113, 10mpan2 690 . . . . . 6 (𝐺 ∈ Plig → 𝐺 ⊆ (𝒫 𝐺 ∖ {∅}))
12 fss 6763 . . . . . 6 ((( I ↾ 𝐺):𝐺𝐺𝐺 ⊆ (𝒫 𝐺 ∖ {∅})) → ( I ↾ 𝐺):𝐺⟶(𝒫 𝐺 ∖ {∅}))
1311, 12sylan2 592 . . . . 5 ((( I ↾ 𝐺):𝐺𝐺𝐺 ∈ Plig) → ( I ↾ 𝐺):𝐺⟶(𝒫 𝐺 ∖ {∅}))
1413ex 412 . . . 4 (( I ↾ 𝐺):𝐺𝐺 → (𝐺 ∈ Plig → ( I ↾ 𝐺):𝐺⟶(𝒫 𝐺 ∖ {∅})))
151, 2, 14mp2b 10 . . 3 (𝐺 ∈ Plig → ( I ↾ 𝐺):𝐺⟶(𝒫 𝐺 ∖ {∅}))
1615ffdmd 6778 . 2 (𝐺 ∈ Plig → ( I ↾ 𝐺):dom ( I ↾ 𝐺)⟶(𝒫 𝐺 ∖ {∅}))
17 uniexg 7775 . . 3 (𝐺 ∈ Plig → 𝐺 ∈ V)
18 resiexg 7952 . . 3 (𝐺 ∈ Plig → ( I ↾ 𝐺) ∈ V)
19 isuhgrop 29105 . . 3 (( 𝐺 ∈ V ∧ ( I ↾ 𝐺) ∈ V) → (⟨ 𝐺, ( I ↾ 𝐺)⟩ ∈ UHGraph ↔ ( I ↾ 𝐺):dom ( I ↾ 𝐺)⟶(𝒫 𝐺 ∖ {∅})))
2017, 18, 19syl2anc 583 . 2 (𝐺 ∈ Plig → (⟨ 𝐺, ( I ↾ 𝐺)⟩ ∈ UHGraph ↔ ( I ↾ 𝐺):dom ( I ↾ 𝐺)⟶(𝒫 𝐺 ∖ {∅})))
2116, 20mpbird 257 1 (𝐺 ∈ Plig → ⟨ 𝐺, ( I ↾ 𝐺)⟩ ∈ UHGraph)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  Vcvv 3488  cdif 3973  cin 3975  wss 3976  c0 4352  𝒫 cpw 4622  {csn 4648  cop 4654   cuni 4931   I cid 5592  dom cdm 5700  cres 5702  wf 6569  1-1-ontowf1o 6572  UHGraphcuhgr 29091  Pligcplig 30506
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-1st 8030  df-2nd 8031  df-vtx 29033  df-iedg 29034  df-uhgr 29093  df-plig 30507
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator