| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pliguhgr | Structured version Visualization version GIF version | ||
| Description: Any planar incidence geometry 𝐺 can be regarded as a hypergraph with its points as vertices and its lines as edges. See incistruhgr 28982 for a generalization of this case for arbitrary incidence structures (planar incidence geometries are such incidence structures). (Proposed by Gerard Lang, 24-Nov-2021.) (Contributed by AV, 28-Nov-2021.) |
| Ref | Expression |
|---|---|
| pliguhgr | ⊢ (𝐺 ∈ Plig → 〈∪ 𝐺, ( I ↾ 𝐺)〉 ∈ UHGraph) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1oi 6820 | . . . 4 ⊢ ( I ↾ 𝐺):𝐺–1-1-onto→𝐺 | |
| 2 | f1of 6782 | . . . 4 ⊢ (( I ↾ 𝐺):𝐺–1-1-onto→𝐺 → ( I ↾ 𝐺):𝐺⟶𝐺) | |
| 3 | pwuni 4905 | . . . . . . 7 ⊢ 𝐺 ⊆ 𝒫 ∪ 𝐺 | |
| 4 | n0lplig 30385 | . . . . . . . . . 10 ⊢ (𝐺 ∈ Plig → ¬ ∅ ∈ 𝐺) | |
| 5 | 4 | adantr 480 | . . . . . . . . 9 ⊢ ((𝐺 ∈ Plig ∧ 𝐺 ⊆ 𝒫 ∪ 𝐺) → ¬ ∅ ∈ 𝐺) |
| 6 | disjsn 4671 | . . . . . . . . 9 ⊢ ((𝐺 ∩ {∅}) = ∅ ↔ ¬ ∅ ∈ 𝐺) | |
| 7 | 5, 6 | sylibr 234 | . . . . . . . 8 ⊢ ((𝐺 ∈ Plig ∧ 𝐺 ⊆ 𝒫 ∪ 𝐺) → (𝐺 ∩ {∅}) = ∅) |
| 8 | reldisj 4412 | . . . . . . . . 9 ⊢ (𝐺 ⊆ 𝒫 ∪ 𝐺 → ((𝐺 ∩ {∅}) = ∅ ↔ 𝐺 ⊆ (𝒫 ∪ 𝐺 ∖ {∅}))) | |
| 9 | 8 | adantl 481 | . . . . . . . 8 ⊢ ((𝐺 ∈ Plig ∧ 𝐺 ⊆ 𝒫 ∪ 𝐺) → ((𝐺 ∩ {∅}) = ∅ ↔ 𝐺 ⊆ (𝒫 ∪ 𝐺 ∖ {∅}))) |
| 10 | 7, 9 | mpbid 232 | . . . . . . 7 ⊢ ((𝐺 ∈ Plig ∧ 𝐺 ⊆ 𝒫 ∪ 𝐺) → 𝐺 ⊆ (𝒫 ∪ 𝐺 ∖ {∅})) |
| 11 | 3, 10 | mpan2 691 | . . . . . 6 ⊢ (𝐺 ∈ Plig → 𝐺 ⊆ (𝒫 ∪ 𝐺 ∖ {∅})) |
| 12 | fss 6686 | . . . . . 6 ⊢ ((( I ↾ 𝐺):𝐺⟶𝐺 ∧ 𝐺 ⊆ (𝒫 ∪ 𝐺 ∖ {∅})) → ( I ↾ 𝐺):𝐺⟶(𝒫 ∪ 𝐺 ∖ {∅})) | |
| 13 | 11, 12 | sylan2 593 | . . . . 5 ⊢ ((( I ↾ 𝐺):𝐺⟶𝐺 ∧ 𝐺 ∈ Plig) → ( I ↾ 𝐺):𝐺⟶(𝒫 ∪ 𝐺 ∖ {∅})) |
| 14 | 13 | ex 412 | . . . 4 ⊢ (( I ↾ 𝐺):𝐺⟶𝐺 → (𝐺 ∈ Plig → ( I ↾ 𝐺):𝐺⟶(𝒫 ∪ 𝐺 ∖ {∅}))) |
| 15 | 1, 2, 14 | mp2b 10 | . . 3 ⊢ (𝐺 ∈ Plig → ( I ↾ 𝐺):𝐺⟶(𝒫 ∪ 𝐺 ∖ {∅})) |
| 16 | 15 | ffdmd 6700 | . 2 ⊢ (𝐺 ∈ Plig → ( I ↾ 𝐺):dom ( I ↾ 𝐺)⟶(𝒫 ∪ 𝐺 ∖ {∅})) |
| 17 | uniexg 7696 | . . 3 ⊢ (𝐺 ∈ Plig → ∪ 𝐺 ∈ V) | |
| 18 | resiexg 7868 | . . 3 ⊢ (𝐺 ∈ Plig → ( I ↾ 𝐺) ∈ V) | |
| 19 | isuhgrop 28973 | . . 3 ⊢ ((∪ 𝐺 ∈ V ∧ ( I ↾ 𝐺) ∈ V) → (〈∪ 𝐺, ( I ↾ 𝐺)〉 ∈ UHGraph ↔ ( I ↾ 𝐺):dom ( I ↾ 𝐺)⟶(𝒫 ∪ 𝐺 ∖ {∅}))) | |
| 20 | 17, 18, 19 | syl2anc 584 | . 2 ⊢ (𝐺 ∈ Plig → (〈∪ 𝐺, ( I ↾ 𝐺)〉 ∈ UHGraph ↔ ( I ↾ 𝐺):dom ( I ↾ 𝐺)⟶(𝒫 ∪ 𝐺 ∖ {∅}))) |
| 21 | 16, 20 | mpbird 257 | 1 ⊢ (𝐺 ∈ Plig → 〈∪ 𝐺, ( I ↾ 𝐺)〉 ∈ UHGraph) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3444 ∖ cdif 3908 ∩ cin 3910 ⊆ wss 3911 ∅c0 4292 𝒫 cpw 4559 {csn 4585 〈cop 4591 ∪ cuni 4867 I cid 5525 dom cdm 5631 ↾ cres 5633 ⟶wf 6495 –1-1-onto→wf1o 6498 UHGraphcuhgr 28959 Pligcplig 30376 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-1st 7947 df-2nd 7948 df-vtx 28901 df-iedg 28902 df-uhgr 28961 df-plig 30377 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |