![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pliguhgr | Structured version Visualization version GIF version |
Description: Any planar incidence geometry 𝐺 can be regarded as a hypergraph with its points as vertices and its lines as edges. See incistruhgr 29114 for a generalization of this case for arbitrary incidence structures (planar incidence geometries are such incidence structures). (Proposed by Gerard Lang, 24-Nov-2021.) (Contributed by AV, 28-Nov-2021.) |
Ref | Expression |
---|---|
pliguhgr | ⊢ (𝐺 ∈ Plig → 〈∪ 𝐺, ( I ↾ 𝐺)〉 ∈ UHGraph) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1oi 6900 | . . . 4 ⊢ ( I ↾ 𝐺):𝐺–1-1-onto→𝐺 | |
2 | f1of 6862 | . . . 4 ⊢ (( I ↾ 𝐺):𝐺–1-1-onto→𝐺 → ( I ↾ 𝐺):𝐺⟶𝐺) | |
3 | pwuni 4969 | . . . . . . 7 ⊢ 𝐺 ⊆ 𝒫 ∪ 𝐺 | |
4 | n0lplig 30515 | . . . . . . . . . 10 ⊢ (𝐺 ∈ Plig → ¬ ∅ ∈ 𝐺) | |
5 | 4 | adantr 480 | . . . . . . . . 9 ⊢ ((𝐺 ∈ Plig ∧ 𝐺 ⊆ 𝒫 ∪ 𝐺) → ¬ ∅ ∈ 𝐺) |
6 | disjsn 4736 | . . . . . . . . 9 ⊢ ((𝐺 ∩ {∅}) = ∅ ↔ ¬ ∅ ∈ 𝐺) | |
7 | 5, 6 | sylibr 234 | . . . . . . . 8 ⊢ ((𝐺 ∈ Plig ∧ 𝐺 ⊆ 𝒫 ∪ 𝐺) → (𝐺 ∩ {∅}) = ∅) |
8 | reldisj 4476 | . . . . . . . . 9 ⊢ (𝐺 ⊆ 𝒫 ∪ 𝐺 → ((𝐺 ∩ {∅}) = ∅ ↔ 𝐺 ⊆ (𝒫 ∪ 𝐺 ∖ {∅}))) | |
9 | 8 | adantl 481 | . . . . . . . 8 ⊢ ((𝐺 ∈ Plig ∧ 𝐺 ⊆ 𝒫 ∪ 𝐺) → ((𝐺 ∩ {∅}) = ∅ ↔ 𝐺 ⊆ (𝒫 ∪ 𝐺 ∖ {∅}))) |
10 | 7, 9 | mpbid 232 | . . . . . . 7 ⊢ ((𝐺 ∈ Plig ∧ 𝐺 ⊆ 𝒫 ∪ 𝐺) → 𝐺 ⊆ (𝒫 ∪ 𝐺 ∖ {∅})) |
11 | 3, 10 | mpan2 690 | . . . . . 6 ⊢ (𝐺 ∈ Plig → 𝐺 ⊆ (𝒫 ∪ 𝐺 ∖ {∅})) |
12 | fss 6763 | . . . . . 6 ⊢ ((( I ↾ 𝐺):𝐺⟶𝐺 ∧ 𝐺 ⊆ (𝒫 ∪ 𝐺 ∖ {∅})) → ( I ↾ 𝐺):𝐺⟶(𝒫 ∪ 𝐺 ∖ {∅})) | |
13 | 11, 12 | sylan2 592 | . . . . 5 ⊢ ((( I ↾ 𝐺):𝐺⟶𝐺 ∧ 𝐺 ∈ Plig) → ( I ↾ 𝐺):𝐺⟶(𝒫 ∪ 𝐺 ∖ {∅})) |
14 | 13 | ex 412 | . . . 4 ⊢ (( I ↾ 𝐺):𝐺⟶𝐺 → (𝐺 ∈ Plig → ( I ↾ 𝐺):𝐺⟶(𝒫 ∪ 𝐺 ∖ {∅}))) |
15 | 1, 2, 14 | mp2b 10 | . . 3 ⊢ (𝐺 ∈ Plig → ( I ↾ 𝐺):𝐺⟶(𝒫 ∪ 𝐺 ∖ {∅})) |
16 | 15 | ffdmd 6778 | . 2 ⊢ (𝐺 ∈ Plig → ( I ↾ 𝐺):dom ( I ↾ 𝐺)⟶(𝒫 ∪ 𝐺 ∖ {∅})) |
17 | uniexg 7775 | . . 3 ⊢ (𝐺 ∈ Plig → ∪ 𝐺 ∈ V) | |
18 | resiexg 7952 | . . 3 ⊢ (𝐺 ∈ Plig → ( I ↾ 𝐺) ∈ V) | |
19 | isuhgrop 29105 | . . 3 ⊢ ((∪ 𝐺 ∈ V ∧ ( I ↾ 𝐺) ∈ V) → (〈∪ 𝐺, ( I ↾ 𝐺)〉 ∈ UHGraph ↔ ( I ↾ 𝐺):dom ( I ↾ 𝐺)⟶(𝒫 ∪ 𝐺 ∖ {∅}))) | |
20 | 17, 18, 19 | syl2anc 583 | . 2 ⊢ (𝐺 ∈ Plig → (〈∪ 𝐺, ( I ↾ 𝐺)〉 ∈ UHGraph ↔ ( I ↾ 𝐺):dom ( I ↾ 𝐺)⟶(𝒫 ∪ 𝐺 ∖ {∅}))) |
21 | 16, 20 | mpbird 257 | 1 ⊢ (𝐺 ∈ Plig → 〈∪ 𝐺, ( I ↾ 𝐺)〉 ∈ UHGraph) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 Vcvv 3488 ∖ cdif 3973 ∩ cin 3975 ⊆ wss 3976 ∅c0 4352 𝒫 cpw 4622 {csn 4648 〈cop 4654 ∪ cuni 4931 I cid 5592 dom cdm 5700 ↾ cres 5702 ⟶wf 6569 –1-1-onto→wf1o 6572 UHGraphcuhgr 29091 Pligcplig 30506 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-1st 8030 df-2nd 8031 df-vtx 29033 df-iedg 29034 df-uhgr 29093 df-plig 30507 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |