| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pliguhgr | Structured version Visualization version GIF version | ||
| Description: Any planar incidence geometry 𝐺 can be regarded as a hypergraph with its points as vertices and its lines as edges. See incistruhgr 29043 for a generalization of this case for arbitrary incidence structures (planar incidence geometries are such incidence structures). (Proposed by Gerard Lang, 24-Nov-2021.) (Contributed by AV, 28-Nov-2021.) |
| Ref | Expression |
|---|---|
| pliguhgr | ⊢ (𝐺 ∈ Plig → 〈∪ 𝐺, ( I ↾ 𝐺)〉 ∈ UHGraph) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1oi 6806 | . . . 4 ⊢ ( I ↾ 𝐺):𝐺–1-1-onto→𝐺 | |
| 2 | f1of 6768 | . . . 4 ⊢ (( I ↾ 𝐺):𝐺–1-1-onto→𝐺 → ( I ↾ 𝐺):𝐺⟶𝐺) | |
| 3 | pwuni 4898 | . . . . . . 7 ⊢ 𝐺 ⊆ 𝒫 ∪ 𝐺 | |
| 4 | n0lplig 30446 | . . . . . . . . . 10 ⊢ (𝐺 ∈ Plig → ¬ ∅ ∈ 𝐺) | |
| 5 | 4 | adantr 480 | . . . . . . . . 9 ⊢ ((𝐺 ∈ Plig ∧ 𝐺 ⊆ 𝒫 ∪ 𝐺) → ¬ ∅ ∈ 𝐺) |
| 6 | disjsn 4665 | . . . . . . . . 9 ⊢ ((𝐺 ∩ {∅}) = ∅ ↔ ¬ ∅ ∈ 𝐺) | |
| 7 | 5, 6 | sylibr 234 | . . . . . . . 8 ⊢ ((𝐺 ∈ Plig ∧ 𝐺 ⊆ 𝒫 ∪ 𝐺) → (𝐺 ∩ {∅}) = ∅) |
| 8 | reldisj 4406 | . . . . . . . . 9 ⊢ (𝐺 ⊆ 𝒫 ∪ 𝐺 → ((𝐺 ∩ {∅}) = ∅ ↔ 𝐺 ⊆ (𝒫 ∪ 𝐺 ∖ {∅}))) | |
| 9 | 8 | adantl 481 | . . . . . . . 8 ⊢ ((𝐺 ∈ Plig ∧ 𝐺 ⊆ 𝒫 ∪ 𝐺) → ((𝐺 ∩ {∅}) = ∅ ↔ 𝐺 ⊆ (𝒫 ∪ 𝐺 ∖ {∅}))) |
| 10 | 7, 9 | mpbid 232 | . . . . . . 7 ⊢ ((𝐺 ∈ Plig ∧ 𝐺 ⊆ 𝒫 ∪ 𝐺) → 𝐺 ⊆ (𝒫 ∪ 𝐺 ∖ {∅})) |
| 11 | 3, 10 | mpan2 691 | . . . . . 6 ⊢ (𝐺 ∈ Plig → 𝐺 ⊆ (𝒫 ∪ 𝐺 ∖ {∅})) |
| 12 | fss 6672 | . . . . . 6 ⊢ ((( I ↾ 𝐺):𝐺⟶𝐺 ∧ 𝐺 ⊆ (𝒫 ∪ 𝐺 ∖ {∅})) → ( I ↾ 𝐺):𝐺⟶(𝒫 ∪ 𝐺 ∖ {∅})) | |
| 13 | 11, 12 | sylan2 593 | . . . . 5 ⊢ ((( I ↾ 𝐺):𝐺⟶𝐺 ∧ 𝐺 ∈ Plig) → ( I ↾ 𝐺):𝐺⟶(𝒫 ∪ 𝐺 ∖ {∅})) |
| 14 | 13 | ex 412 | . . . 4 ⊢ (( I ↾ 𝐺):𝐺⟶𝐺 → (𝐺 ∈ Plig → ( I ↾ 𝐺):𝐺⟶(𝒫 ∪ 𝐺 ∖ {∅}))) |
| 15 | 1, 2, 14 | mp2b 10 | . . 3 ⊢ (𝐺 ∈ Plig → ( I ↾ 𝐺):𝐺⟶(𝒫 ∪ 𝐺 ∖ {∅})) |
| 16 | 15 | ffdmd 6686 | . 2 ⊢ (𝐺 ∈ Plig → ( I ↾ 𝐺):dom ( I ↾ 𝐺)⟶(𝒫 ∪ 𝐺 ∖ {∅})) |
| 17 | uniexg 7680 | . . 3 ⊢ (𝐺 ∈ Plig → ∪ 𝐺 ∈ V) | |
| 18 | resiexg 7852 | . . 3 ⊢ (𝐺 ∈ Plig → ( I ↾ 𝐺) ∈ V) | |
| 19 | isuhgrop 29034 | . . 3 ⊢ ((∪ 𝐺 ∈ V ∧ ( I ↾ 𝐺) ∈ V) → (〈∪ 𝐺, ( I ↾ 𝐺)〉 ∈ UHGraph ↔ ( I ↾ 𝐺):dom ( I ↾ 𝐺)⟶(𝒫 ∪ 𝐺 ∖ {∅}))) | |
| 20 | 17, 18, 19 | syl2anc 584 | . 2 ⊢ (𝐺 ∈ Plig → (〈∪ 𝐺, ( I ↾ 𝐺)〉 ∈ UHGraph ↔ ( I ↾ 𝐺):dom ( I ↾ 𝐺)⟶(𝒫 ∪ 𝐺 ∖ {∅}))) |
| 21 | 16, 20 | mpbird 257 | 1 ⊢ (𝐺 ∈ Plig → 〈∪ 𝐺, ( I ↾ 𝐺)〉 ∈ UHGraph) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3438 ∖ cdif 3902 ∩ cin 3904 ⊆ wss 3905 ∅c0 4286 𝒫 cpw 4553 {csn 4579 〈cop 4585 ∪ cuni 4861 I cid 5517 dom cdm 5623 ↾ cres 5625 ⟶wf 6482 –1-1-onto→wf1o 6485 UHGraphcuhgr 29020 Pligcplig 30437 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-1st 7931 df-2nd 7932 df-vtx 28962 df-iedg 28963 df-uhgr 29022 df-plig 30438 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |