Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pliguhgr | Structured version Visualization version GIF version |
Description: Any planar incidence geometry 𝐺 can be regarded as a hypergraph with its points as vertices and its lines as edges. See incistruhgr 27352 for a generalization of this case for arbitrary incidence structures (planar incidence geometries are such incidence structures). (Proposed by Gerard Lang, 24-Nov-2021.) (Contributed by AV, 28-Nov-2021.) |
Ref | Expression |
---|---|
pliguhgr | ⊢ (𝐺 ∈ Plig → 〈∪ 𝐺, ( I ↾ 𝐺)〉 ∈ UHGraph) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1oi 6737 | . . . 4 ⊢ ( I ↾ 𝐺):𝐺–1-1-onto→𝐺 | |
2 | f1of 6700 | . . . 4 ⊢ (( I ↾ 𝐺):𝐺–1-1-onto→𝐺 → ( I ↾ 𝐺):𝐺⟶𝐺) | |
3 | pwuni 4875 | . . . . . . 7 ⊢ 𝐺 ⊆ 𝒫 ∪ 𝐺 | |
4 | n0lplig 28746 | . . . . . . . . . 10 ⊢ (𝐺 ∈ Plig → ¬ ∅ ∈ 𝐺) | |
5 | 4 | adantr 480 | . . . . . . . . 9 ⊢ ((𝐺 ∈ Plig ∧ 𝐺 ⊆ 𝒫 ∪ 𝐺) → ¬ ∅ ∈ 𝐺) |
6 | disjsn 4644 | . . . . . . . . 9 ⊢ ((𝐺 ∩ {∅}) = ∅ ↔ ¬ ∅ ∈ 𝐺) | |
7 | 5, 6 | sylibr 233 | . . . . . . . 8 ⊢ ((𝐺 ∈ Plig ∧ 𝐺 ⊆ 𝒫 ∪ 𝐺) → (𝐺 ∩ {∅}) = ∅) |
8 | reldisj 4382 | . . . . . . . . 9 ⊢ (𝐺 ⊆ 𝒫 ∪ 𝐺 → ((𝐺 ∩ {∅}) = ∅ ↔ 𝐺 ⊆ (𝒫 ∪ 𝐺 ∖ {∅}))) | |
9 | 8 | adantl 481 | . . . . . . . 8 ⊢ ((𝐺 ∈ Plig ∧ 𝐺 ⊆ 𝒫 ∪ 𝐺) → ((𝐺 ∩ {∅}) = ∅ ↔ 𝐺 ⊆ (𝒫 ∪ 𝐺 ∖ {∅}))) |
10 | 7, 9 | mpbid 231 | . . . . . . 7 ⊢ ((𝐺 ∈ Plig ∧ 𝐺 ⊆ 𝒫 ∪ 𝐺) → 𝐺 ⊆ (𝒫 ∪ 𝐺 ∖ {∅})) |
11 | 3, 10 | mpan2 687 | . . . . . 6 ⊢ (𝐺 ∈ Plig → 𝐺 ⊆ (𝒫 ∪ 𝐺 ∖ {∅})) |
12 | fss 6601 | . . . . . 6 ⊢ ((( I ↾ 𝐺):𝐺⟶𝐺 ∧ 𝐺 ⊆ (𝒫 ∪ 𝐺 ∖ {∅})) → ( I ↾ 𝐺):𝐺⟶(𝒫 ∪ 𝐺 ∖ {∅})) | |
13 | 11, 12 | sylan2 592 | . . . . 5 ⊢ ((( I ↾ 𝐺):𝐺⟶𝐺 ∧ 𝐺 ∈ Plig) → ( I ↾ 𝐺):𝐺⟶(𝒫 ∪ 𝐺 ∖ {∅})) |
14 | 13 | ex 412 | . . . 4 ⊢ (( I ↾ 𝐺):𝐺⟶𝐺 → (𝐺 ∈ Plig → ( I ↾ 𝐺):𝐺⟶(𝒫 ∪ 𝐺 ∖ {∅}))) |
15 | 1, 2, 14 | mp2b 10 | . . 3 ⊢ (𝐺 ∈ Plig → ( I ↾ 𝐺):𝐺⟶(𝒫 ∪ 𝐺 ∖ {∅})) |
16 | 15 | ffdmd 6615 | . 2 ⊢ (𝐺 ∈ Plig → ( I ↾ 𝐺):dom ( I ↾ 𝐺)⟶(𝒫 ∪ 𝐺 ∖ {∅})) |
17 | uniexg 7571 | . . 3 ⊢ (𝐺 ∈ Plig → ∪ 𝐺 ∈ V) | |
18 | resiexg 7735 | . . 3 ⊢ (𝐺 ∈ Plig → ( I ↾ 𝐺) ∈ V) | |
19 | isuhgrop 27343 | . . 3 ⊢ ((∪ 𝐺 ∈ V ∧ ( I ↾ 𝐺) ∈ V) → (〈∪ 𝐺, ( I ↾ 𝐺)〉 ∈ UHGraph ↔ ( I ↾ 𝐺):dom ( I ↾ 𝐺)⟶(𝒫 ∪ 𝐺 ∖ {∅}))) | |
20 | 17, 18, 19 | syl2anc 583 | . 2 ⊢ (𝐺 ∈ Plig → (〈∪ 𝐺, ( I ↾ 𝐺)〉 ∈ UHGraph ↔ ( I ↾ 𝐺):dom ( I ↾ 𝐺)⟶(𝒫 ∪ 𝐺 ∖ {∅}))) |
21 | 16, 20 | mpbird 256 | 1 ⊢ (𝐺 ∈ Plig → 〈∪ 𝐺, ( I ↾ 𝐺)〉 ∈ UHGraph) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 Vcvv 3422 ∖ cdif 3880 ∩ cin 3882 ⊆ wss 3883 ∅c0 4253 𝒫 cpw 4530 {csn 4558 〈cop 4564 ∪ cuni 4836 I cid 5479 dom cdm 5580 ↾ cres 5582 ⟶wf 6414 –1-1-onto→wf1o 6417 UHGraphcuhgr 27329 Pligcplig 28737 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-1st 7804 df-2nd 7805 df-vtx 27271 df-iedg 27272 df-uhgr 27331 df-plig 28738 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |