MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pliguhgr Structured version   Visualization version   GIF version

Theorem pliguhgr 28848
Description: Any planar incidence geometry 𝐺 can be regarded as a hypergraph with its points as vertices and its lines as edges. See incistruhgr 27449 for a generalization of this case for arbitrary incidence structures (planar incidence geometries are such incidence structures). (Proposed by Gerard Lang, 24-Nov-2021.) (Contributed by AV, 28-Nov-2021.)
Assertion
Ref Expression
pliguhgr (𝐺 ∈ Plig → ⟨ 𝐺, ( I ↾ 𝐺)⟩ ∈ UHGraph)

Proof of Theorem pliguhgr
StepHypRef Expression
1 f1oi 6754 . . . 4 ( I ↾ 𝐺):𝐺1-1-onto𝐺
2 f1of 6716 . . . 4 (( I ↾ 𝐺):𝐺1-1-onto𝐺 → ( I ↾ 𝐺):𝐺𝐺)
3 pwuni 4878 . . . . . . 7 𝐺 ⊆ 𝒫 𝐺
4 n0lplig 28845 . . . . . . . . . 10 (𝐺 ∈ Plig → ¬ ∅ ∈ 𝐺)
54adantr 481 . . . . . . . . 9 ((𝐺 ∈ Plig ∧ 𝐺 ⊆ 𝒫 𝐺) → ¬ ∅ ∈ 𝐺)
6 disjsn 4647 . . . . . . . . 9 ((𝐺 ∩ {∅}) = ∅ ↔ ¬ ∅ ∈ 𝐺)
75, 6sylibr 233 . . . . . . . 8 ((𝐺 ∈ Plig ∧ 𝐺 ⊆ 𝒫 𝐺) → (𝐺 ∩ {∅}) = ∅)
8 reldisj 4385 . . . . . . . . 9 (𝐺 ⊆ 𝒫 𝐺 → ((𝐺 ∩ {∅}) = ∅ ↔ 𝐺 ⊆ (𝒫 𝐺 ∖ {∅})))
98adantl 482 . . . . . . . 8 ((𝐺 ∈ Plig ∧ 𝐺 ⊆ 𝒫 𝐺) → ((𝐺 ∩ {∅}) = ∅ ↔ 𝐺 ⊆ (𝒫 𝐺 ∖ {∅})))
107, 9mpbid 231 . . . . . . 7 ((𝐺 ∈ Plig ∧ 𝐺 ⊆ 𝒫 𝐺) → 𝐺 ⊆ (𝒫 𝐺 ∖ {∅}))
113, 10mpan2 688 . . . . . 6 (𝐺 ∈ Plig → 𝐺 ⊆ (𝒫 𝐺 ∖ {∅}))
12 fss 6617 . . . . . 6 ((( I ↾ 𝐺):𝐺𝐺𝐺 ⊆ (𝒫 𝐺 ∖ {∅})) → ( I ↾ 𝐺):𝐺⟶(𝒫 𝐺 ∖ {∅}))
1311, 12sylan2 593 . . . . 5 ((( I ↾ 𝐺):𝐺𝐺𝐺 ∈ Plig) → ( I ↾ 𝐺):𝐺⟶(𝒫 𝐺 ∖ {∅}))
1413ex 413 . . . 4 (( I ↾ 𝐺):𝐺𝐺 → (𝐺 ∈ Plig → ( I ↾ 𝐺):𝐺⟶(𝒫 𝐺 ∖ {∅})))
151, 2, 14mp2b 10 . . 3 (𝐺 ∈ Plig → ( I ↾ 𝐺):𝐺⟶(𝒫 𝐺 ∖ {∅}))
1615ffdmd 6631 . 2 (𝐺 ∈ Plig → ( I ↾ 𝐺):dom ( I ↾ 𝐺)⟶(𝒫 𝐺 ∖ {∅}))
17 uniexg 7593 . . 3 (𝐺 ∈ Plig → 𝐺 ∈ V)
18 resiexg 7761 . . 3 (𝐺 ∈ Plig → ( I ↾ 𝐺) ∈ V)
19 isuhgrop 27440 . . 3 (( 𝐺 ∈ V ∧ ( I ↾ 𝐺) ∈ V) → (⟨ 𝐺, ( I ↾ 𝐺)⟩ ∈ UHGraph ↔ ( I ↾ 𝐺):dom ( I ↾ 𝐺)⟶(𝒫 𝐺 ∖ {∅})))
2017, 18, 19syl2anc 584 . 2 (𝐺 ∈ Plig → (⟨ 𝐺, ( I ↾ 𝐺)⟩ ∈ UHGraph ↔ ( I ↾ 𝐺):dom ( I ↾ 𝐺)⟶(𝒫 𝐺 ∖ {∅})))
2116, 20mpbird 256 1 (𝐺 ∈ Plig → ⟨ 𝐺, ( I ↾ 𝐺)⟩ ∈ UHGraph)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  Vcvv 3432  cdif 3884  cin 3886  wss 3887  c0 4256  𝒫 cpw 4533  {csn 4561  cop 4567   cuni 4839   I cid 5488  dom cdm 5589  cres 5591  wf 6429  1-1-ontowf1o 6432  UHGraphcuhgr 27426  Pligcplig 28836
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-1st 7831  df-2nd 7832  df-vtx 27368  df-iedg 27369  df-uhgr 27428  df-plig 28837
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator