Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > neeq12d | Structured version Visualization version GIF version |
Description: Deduction for inequality. (Contributed by NM, 24-Jul-2012.) (Proof shortened by Wolf Lammen, 25-Nov-2019.) |
Ref | Expression |
---|---|
neeq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
neeq12d.2 | ⊢ (𝜑 → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
neeq12d | ⊢ (𝜑 → (𝐴 ≠ 𝐶 ↔ 𝐵 ≠ 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neeq1d.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | neeq12d.2 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐷) | |
3 | 1, 2 | eqeq12d 2754 | . 2 ⊢ (𝜑 → (𝐴 = 𝐶 ↔ 𝐵 = 𝐷)) |
4 | 3 | necon3bid 2987 | 1 ⊢ (𝜑 → (𝐴 ≠ 𝐶 ↔ 𝐵 ≠ 𝐷)) |
Copyright terms: Public domain | W3C validator |