MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nqerf Structured version   Visualization version   GIF version

Theorem nqerf 10686
Description: Corollary of nqereu 10685: the function [Q] is actually a function. (Contributed by Mario Carneiro, 6-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
nqerf [Q]:(N × N)⟶Q

Proof of Theorem nqerf
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-erq 10669 . . . . . . 7 [Q] = ( ~Q ∩ ((N × N) × Q))
2 inss2 4163 . . . . . . 7 ( ~Q ∩ ((N × N) × Q)) ⊆ ((N × N) × Q)
31, 2eqsstri 3955 . . . . . 6 [Q] ⊆ ((N × N) × Q)
4 xpss 5605 . . . . . 6 ((N × N) × Q) ⊆ (V × V)
53, 4sstri 3930 . . . . 5 [Q] ⊆ (V × V)
6 df-rel 5596 . . . . 5 (Rel [Q] ↔ [Q] ⊆ (V × V))
75, 6mpbir 230 . . . 4 Rel [Q]
8 nqereu 10685 . . . . . . . 8 (𝑥 ∈ (N × N) → ∃!𝑦Q 𝑦 ~Q 𝑥)
9 df-reu 3072 . . . . . . . . 9 (∃!𝑦Q 𝑦 ~Q 𝑥 ↔ ∃!𝑦(𝑦Q𝑦 ~Q 𝑥))
10 eumo 2578 . . . . . . . . 9 (∃!𝑦(𝑦Q𝑦 ~Q 𝑥) → ∃*𝑦(𝑦Q𝑦 ~Q 𝑥))
119, 10sylbi 216 . . . . . . . 8 (∃!𝑦Q 𝑦 ~Q 𝑥 → ∃*𝑦(𝑦Q𝑦 ~Q 𝑥))
128, 11syl 17 . . . . . . 7 (𝑥 ∈ (N × N) → ∃*𝑦(𝑦Q𝑦 ~Q 𝑥))
13 moanimv 2621 . . . . . . 7 (∃*𝑦(𝑥 ∈ (N × N) ∧ (𝑦Q𝑦 ~Q 𝑥)) ↔ (𝑥 ∈ (N × N) → ∃*𝑦(𝑦Q𝑦 ~Q 𝑥)))
1412, 13mpbir 230 . . . . . 6 ∃*𝑦(𝑥 ∈ (N × N) ∧ (𝑦Q𝑦 ~Q 𝑥))
153brel 5652 . . . . . . . . 9 (𝑥[Q]𝑦 → (𝑥 ∈ (N × N) ∧ 𝑦Q))
1615simpld 495 . . . . . . . 8 (𝑥[Q]𝑦𝑥 ∈ (N × N))
1715simprd 496 . . . . . . . 8 (𝑥[Q]𝑦𝑦Q)
18 enqer 10677 . . . . . . . . . 10 ~Q Er (N × N)
1918a1i 11 . . . . . . . . 9 (𝑥[Q]𝑦 → ~Q Er (N × N))
20 inss1 4162 . . . . . . . . . . 11 ( ~Q ∩ ((N × N) × Q)) ⊆ ~Q
211, 20eqsstri 3955 . . . . . . . . . 10 [Q] ⊆ ~Q
2221ssbri 5119 . . . . . . . . 9 (𝑥[Q]𝑦𝑥 ~Q 𝑦)
2319, 22ersym 8510 . . . . . . . 8 (𝑥[Q]𝑦𝑦 ~Q 𝑥)
2416, 17, 23jca32 516 . . . . . . 7 (𝑥[Q]𝑦 → (𝑥 ∈ (N × N) ∧ (𝑦Q𝑦 ~Q 𝑥)))
2524moimi 2545 . . . . . 6 (∃*𝑦(𝑥 ∈ (N × N) ∧ (𝑦Q𝑦 ~Q 𝑥)) → ∃*𝑦 𝑥[Q]𝑦)
2614, 25ax-mp 5 . . . . 5 ∃*𝑦 𝑥[Q]𝑦
2726ax-gen 1798 . . . 4 𝑥∃*𝑦 𝑥[Q]𝑦
28 dffun6 6449 . . . 4 (Fun [Q] ↔ (Rel [Q] ∧ ∀𝑥∃*𝑦 𝑥[Q]𝑦))
297, 27, 28mpbir2an 708 . . 3 Fun [Q]
30 dmss 5811 . . . . . 6 ([Q] ⊆ ((N × N) × Q) → dom [Q] ⊆ dom ((N × N) × Q))
313, 30ax-mp 5 . . . . 5 dom [Q] ⊆ dom ((N × N) × Q)
32 1nq 10684 . . . . . 6 1QQ
33 ne0i 4268 . . . . . 6 (1QQQ ≠ ∅)
34 dmxp 5838 . . . . . 6 (Q ≠ ∅ → dom ((N × N) × Q) = (N × N))
3532, 33, 34mp2b 10 . . . . 5 dom ((N × N) × Q) = (N × N)
3631, 35sseqtri 3957 . . . 4 dom [Q] ⊆ (N × N)
37 reurex 3362 . . . . . . . 8 (∃!𝑦Q 𝑦 ~Q 𝑥 → ∃𝑦Q 𝑦 ~Q 𝑥)
38 simpll 764 . . . . . . . . . . 11 (((𝑥 ∈ (N × N) ∧ 𝑦Q) ∧ 𝑦 ~Q 𝑥) → 𝑥 ∈ (N × N))
39 simplr 766 . . . . . . . . . . 11 (((𝑥 ∈ (N × N) ∧ 𝑦Q) ∧ 𝑦 ~Q 𝑥) → 𝑦Q)
4018a1i 11 . . . . . . . . . . . 12 (((𝑥 ∈ (N × N) ∧ 𝑦Q) ∧ 𝑦 ~Q 𝑥) → ~Q Er (N × N))
41 simpr 485 . . . . . . . . . . . 12 (((𝑥 ∈ (N × N) ∧ 𝑦Q) ∧ 𝑦 ~Q 𝑥) → 𝑦 ~Q 𝑥)
4240, 41ersym 8510 . . . . . . . . . . 11 (((𝑥 ∈ (N × N) ∧ 𝑦Q) ∧ 𝑦 ~Q 𝑥) → 𝑥 ~Q 𝑦)
431breqi 5080 . . . . . . . . . . . 12 (𝑥[Q]𝑦𝑥( ~Q ∩ ((N × N) × Q))𝑦)
44 brinxp2 5664 . . . . . . . . . . . 12 (𝑥( ~Q ∩ ((N × N) × Q))𝑦 ↔ ((𝑥 ∈ (N × N) ∧ 𝑦Q) ∧ 𝑥 ~Q 𝑦))
4543, 44bitri 274 . . . . . . . . . . 11 (𝑥[Q]𝑦 ↔ ((𝑥 ∈ (N × N) ∧ 𝑦Q) ∧ 𝑥 ~Q 𝑦))
4638, 39, 42, 45syl21anbrc 1343 . . . . . . . . . 10 (((𝑥 ∈ (N × N) ∧ 𝑦Q) ∧ 𝑦 ~Q 𝑥) → 𝑥[Q]𝑦)
4746ex 413 . . . . . . . . 9 ((𝑥 ∈ (N × N) ∧ 𝑦Q) → (𝑦 ~Q 𝑥𝑥[Q]𝑦))
4847reximdva 3203 . . . . . . . 8 (𝑥 ∈ (N × N) → (∃𝑦Q 𝑦 ~Q 𝑥 → ∃𝑦Q 𝑥[Q]𝑦))
49 rexex 3171 . . . . . . . 8 (∃𝑦Q 𝑥[Q]𝑦 → ∃𝑦 𝑥[Q]𝑦)
5037, 48, 49syl56 36 . . . . . . 7 (𝑥 ∈ (N × N) → (∃!𝑦Q 𝑦 ~Q 𝑥 → ∃𝑦 𝑥[Q]𝑦))
518, 50mpd 15 . . . . . 6 (𝑥 ∈ (N × N) → ∃𝑦 𝑥[Q]𝑦)
52 vex 3436 . . . . . . 7 𝑥 ∈ V
5352eldm 5809 . . . . . 6 (𝑥 ∈ dom [Q] ↔ ∃𝑦 𝑥[Q]𝑦)
5451, 53sylibr 233 . . . . 5 (𝑥 ∈ (N × N) → 𝑥 ∈ dom [Q])
5554ssriv 3925 . . . 4 (N × N) ⊆ dom [Q]
5636, 55eqssi 3937 . . 3 dom [Q] = (N × N)
57 df-fn 6436 . . 3 ([Q] Fn (N × N) ↔ (Fun [Q] ∧ dom [Q] = (N × N)))
5829, 56, 57mpbir2an 708 . 2 [Q] Fn (N × N)
593rnssi 5849 . . 3 ran [Q] ⊆ ran ((N × N) × Q)
60 rnxpss 6075 . . 3 ran ((N × N) × Q) ⊆ Q
6159, 60sstri 3930 . 2 ran [Q] ⊆ Q
62 df-f 6437 . 2 ([Q]:(N × N)⟶Q ↔ ([Q] Fn (N × N) ∧ ran [Q] ⊆ Q))
6358, 61, 62mpbir2an 708 1 [Q]:(N × N)⟶Q
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wal 1537   = wceq 1539  wex 1782  wcel 2106  ∃*wmo 2538  ∃!weu 2568  wne 2943  wrex 3065  ∃!wreu 3066  Vcvv 3432  cin 3886  wss 3887  c0 4256   class class class wbr 5074   × cxp 5587  dom cdm 5589  ran crn 5590  Rel wrel 5594  Fun wfun 6427   Fn wfn 6428  wf 6429   Er wer 8495  Ncnpi 10600   ~Q ceq 10607  Qcnq 10608  1Qc1q 10609  [Q]cerq 10610
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-oadd 8301  df-omul 8302  df-er 8498  df-ni 10628  df-mi 10630  df-lti 10631  df-enq 10667  df-nq 10668  df-erq 10669  df-1nq 10672
This theorem is referenced by:  nqercl  10687  nqerrel  10688  nqerid  10689  addnqf  10704  mulnqf  10705  adderpq  10712  mulerpq  10713  lterpq  10726
  Copyright terms: Public domain W3C validator