MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nqerf Structured version   Visualization version   GIF version

Theorem nqerf 10617
Description: Corollary of nqereu 10616: the function [Q] is actually a function. (Contributed by Mario Carneiro, 6-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
nqerf [Q]:(N × N)⟶Q

Proof of Theorem nqerf
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-erq 10600 . . . . . . 7 [Q] = ( ~Q ∩ ((N × N) × Q))
2 inss2 4160 . . . . . . 7 ( ~Q ∩ ((N × N) × Q)) ⊆ ((N × N) × Q)
31, 2eqsstri 3951 . . . . . 6 [Q] ⊆ ((N × N) × Q)
4 xpss 5596 . . . . . 6 ((N × N) × Q) ⊆ (V × V)
53, 4sstri 3926 . . . . 5 [Q] ⊆ (V × V)
6 df-rel 5587 . . . . 5 (Rel [Q] ↔ [Q] ⊆ (V × V))
75, 6mpbir 230 . . . 4 Rel [Q]
8 nqereu 10616 . . . . . . . 8 (𝑥 ∈ (N × N) → ∃!𝑦Q 𝑦 ~Q 𝑥)
9 df-reu 3070 . . . . . . . . 9 (∃!𝑦Q 𝑦 ~Q 𝑥 ↔ ∃!𝑦(𝑦Q𝑦 ~Q 𝑥))
10 eumo 2578 . . . . . . . . 9 (∃!𝑦(𝑦Q𝑦 ~Q 𝑥) → ∃*𝑦(𝑦Q𝑦 ~Q 𝑥))
119, 10sylbi 216 . . . . . . . 8 (∃!𝑦Q 𝑦 ~Q 𝑥 → ∃*𝑦(𝑦Q𝑦 ~Q 𝑥))
128, 11syl 17 . . . . . . 7 (𝑥 ∈ (N × N) → ∃*𝑦(𝑦Q𝑦 ~Q 𝑥))
13 moanimv 2621 . . . . . . 7 (∃*𝑦(𝑥 ∈ (N × N) ∧ (𝑦Q𝑦 ~Q 𝑥)) ↔ (𝑥 ∈ (N × N) → ∃*𝑦(𝑦Q𝑦 ~Q 𝑥)))
1412, 13mpbir 230 . . . . . 6 ∃*𝑦(𝑥 ∈ (N × N) ∧ (𝑦Q𝑦 ~Q 𝑥))
153brel 5643 . . . . . . . . 9 (𝑥[Q]𝑦 → (𝑥 ∈ (N × N) ∧ 𝑦Q))
1615simpld 494 . . . . . . . 8 (𝑥[Q]𝑦𝑥 ∈ (N × N))
1715simprd 495 . . . . . . . 8 (𝑥[Q]𝑦𝑦Q)
18 enqer 10608 . . . . . . . . . 10 ~Q Er (N × N)
1918a1i 11 . . . . . . . . 9 (𝑥[Q]𝑦 → ~Q Er (N × N))
20 inss1 4159 . . . . . . . . . . 11 ( ~Q ∩ ((N × N) × Q)) ⊆ ~Q
211, 20eqsstri 3951 . . . . . . . . . 10 [Q] ⊆ ~Q
2221ssbri 5115 . . . . . . . . 9 (𝑥[Q]𝑦𝑥 ~Q 𝑦)
2319, 22ersym 8468 . . . . . . . 8 (𝑥[Q]𝑦𝑦 ~Q 𝑥)
2416, 17, 23jca32 515 . . . . . . 7 (𝑥[Q]𝑦 → (𝑥 ∈ (N × N) ∧ (𝑦Q𝑦 ~Q 𝑥)))
2524moimi 2545 . . . . . 6 (∃*𝑦(𝑥 ∈ (N × N) ∧ (𝑦Q𝑦 ~Q 𝑥)) → ∃*𝑦 𝑥[Q]𝑦)
2614, 25ax-mp 5 . . . . 5 ∃*𝑦 𝑥[Q]𝑦
2726ax-gen 1799 . . . 4 𝑥∃*𝑦 𝑥[Q]𝑦
28 dffun6 6433 . . . 4 (Fun [Q] ↔ (Rel [Q] ∧ ∀𝑥∃*𝑦 𝑥[Q]𝑦))
297, 27, 28mpbir2an 707 . . 3 Fun [Q]
30 dmss 5800 . . . . . 6 ([Q] ⊆ ((N × N) × Q) → dom [Q] ⊆ dom ((N × N) × Q))
313, 30ax-mp 5 . . . . 5 dom [Q] ⊆ dom ((N × N) × Q)
32 1nq 10615 . . . . . 6 1QQ
33 ne0i 4265 . . . . . 6 (1QQQ ≠ ∅)
34 dmxp 5827 . . . . . 6 (Q ≠ ∅ → dom ((N × N) × Q) = (N × N))
3532, 33, 34mp2b 10 . . . . 5 dom ((N × N) × Q) = (N × N)
3631, 35sseqtri 3953 . . . 4 dom [Q] ⊆ (N × N)
37 reurex 3352 . . . . . . . 8 (∃!𝑦Q 𝑦 ~Q 𝑥 → ∃𝑦Q 𝑦 ~Q 𝑥)
38 simpll 763 . . . . . . . . . . 11 (((𝑥 ∈ (N × N) ∧ 𝑦Q) ∧ 𝑦 ~Q 𝑥) → 𝑥 ∈ (N × N))
39 simplr 765 . . . . . . . . . . 11 (((𝑥 ∈ (N × N) ∧ 𝑦Q) ∧ 𝑦 ~Q 𝑥) → 𝑦Q)
4018a1i 11 . . . . . . . . . . . 12 (((𝑥 ∈ (N × N) ∧ 𝑦Q) ∧ 𝑦 ~Q 𝑥) → ~Q Er (N × N))
41 simpr 484 . . . . . . . . . . . 12 (((𝑥 ∈ (N × N) ∧ 𝑦Q) ∧ 𝑦 ~Q 𝑥) → 𝑦 ~Q 𝑥)
4240, 41ersym 8468 . . . . . . . . . . 11 (((𝑥 ∈ (N × N) ∧ 𝑦Q) ∧ 𝑦 ~Q 𝑥) → 𝑥 ~Q 𝑦)
431breqi 5076 . . . . . . . . . . . 12 (𝑥[Q]𝑦𝑥( ~Q ∩ ((N × N) × Q))𝑦)
44 brinxp2 5655 . . . . . . . . . . . 12 (𝑥( ~Q ∩ ((N × N) × Q))𝑦 ↔ ((𝑥 ∈ (N × N) ∧ 𝑦Q) ∧ 𝑥 ~Q 𝑦))
4543, 44bitri 274 . . . . . . . . . . 11 (𝑥[Q]𝑦 ↔ ((𝑥 ∈ (N × N) ∧ 𝑦Q) ∧ 𝑥 ~Q 𝑦))
4638, 39, 42, 45syl21anbrc 1342 . . . . . . . . . 10 (((𝑥 ∈ (N × N) ∧ 𝑦Q) ∧ 𝑦 ~Q 𝑥) → 𝑥[Q]𝑦)
4746ex 412 . . . . . . . . 9 ((𝑥 ∈ (N × N) ∧ 𝑦Q) → (𝑦 ~Q 𝑥𝑥[Q]𝑦))
4847reximdva 3202 . . . . . . . 8 (𝑥 ∈ (N × N) → (∃𝑦Q 𝑦 ~Q 𝑥 → ∃𝑦Q 𝑥[Q]𝑦))
49 rexex 3167 . . . . . . . 8 (∃𝑦Q 𝑥[Q]𝑦 → ∃𝑦 𝑥[Q]𝑦)
5037, 48, 49syl56 36 . . . . . . 7 (𝑥 ∈ (N × N) → (∃!𝑦Q 𝑦 ~Q 𝑥 → ∃𝑦 𝑥[Q]𝑦))
518, 50mpd 15 . . . . . 6 (𝑥 ∈ (N × N) → ∃𝑦 𝑥[Q]𝑦)
52 vex 3426 . . . . . . 7 𝑥 ∈ V
5352eldm 5798 . . . . . 6 (𝑥 ∈ dom [Q] ↔ ∃𝑦 𝑥[Q]𝑦)
5451, 53sylibr 233 . . . . 5 (𝑥 ∈ (N × N) → 𝑥 ∈ dom [Q])
5554ssriv 3921 . . . 4 (N × N) ⊆ dom [Q]
5636, 55eqssi 3933 . . 3 dom [Q] = (N × N)
57 df-fn 6421 . . 3 ([Q] Fn (N × N) ↔ (Fun [Q] ∧ dom [Q] = (N × N)))
5829, 56, 57mpbir2an 707 . 2 [Q] Fn (N × N)
593rnssi 5838 . . 3 ran [Q] ⊆ ran ((N × N) × Q)
60 rnxpss 6064 . . 3 ran ((N × N) × Q) ⊆ Q
6159, 60sstri 3926 . 2 ran [Q] ⊆ Q
62 df-f 6422 . 2 ([Q]:(N × N)⟶Q ↔ ([Q] Fn (N × N) ∧ ran [Q] ⊆ Q))
6358, 61, 62mpbir2an 707 1 [Q]:(N × N)⟶Q
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1537   = wceq 1539  wex 1783  wcel 2108  ∃*wmo 2538  ∃!weu 2568  wne 2942  wrex 3064  ∃!wreu 3065  Vcvv 3422  cin 3882  wss 3883  c0 4253   class class class wbr 5070   × cxp 5578  dom cdm 5580  ran crn 5581  Rel wrel 5585  Fun wfun 6412   Fn wfn 6413  wf 6414   Er wer 8453  Ncnpi 10531   ~Q ceq 10538  Qcnq 10539  1Qc1q 10540  [Q]cerq 10541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-oadd 8271  df-omul 8272  df-er 8456  df-ni 10559  df-mi 10561  df-lti 10562  df-enq 10598  df-nq 10599  df-erq 10600  df-1nq 10603
This theorem is referenced by:  nqercl  10618  nqerrel  10619  nqerid  10620  addnqf  10635  mulnqf  10636  adderpq  10643  mulerpq  10644  lterpq  10657
  Copyright terms: Public domain W3C validator