MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nqerf Structured version   Visualization version   GIF version

Theorem nqerf 10859
Description: Corollary of nqereu 10858: the function [Q] is actually a function. (Contributed by Mario Carneiro, 6-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
nqerf [Q]:(N × N)⟶Q

Proof of Theorem nqerf
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-erq 10842 . . . . . . 7 [Q] = ( ~Q ∩ ((N × N) × Q))
2 inss2 4197 . . . . . . 7 ( ~Q ∩ ((N × N) × Q)) ⊆ ((N × N) × Q)
31, 2eqsstri 3990 . . . . . 6 [Q] ⊆ ((N × N) × Q)
4 xpss 5647 . . . . . 6 ((N × N) × Q) ⊆ (V × V)
53, 4sstri 3953 . . . . 5 [Q] ⊆ (V × V)
6 df-rel 5638 . . . . 5 (Rel [Q] ↔ [Q] ⊆ (V × V))
75, 6mpbir 231 . . . 4 Rel [Q]
8 nqereu 10858 . . . . . . . 8 (𝑥 ∈ (N × N) → ∃!𝑦Q 𝑦 ~Q 𝑥)
9 df-reu 3352 . . . . . . . . 9 (∃!𝑦Q 𝑦 ~Q 𝑥 ↔ ∃!𝑦(𝑦Q𝑦 ~Q 𝑥))
10 eumo 2571 . . . . . . . . 9 (∃!𝑦(𝑦Q𝑦 ~Q 𝑥) → ∃*𝑦(𝑦Q𝑦 ~Q 𝑥))
119, 10sylbi 217 . . . . . . . 8 (∃!𝑦Q 𝑦 ~Q 𝑥 → ∃*𝑦(𝑦Q𝑦 ~Q 𝑥))
128, 11syl 17 . . . . . . 7 (𝑥 ∈ (N × N) → ∃*𝑦(𝑦Q𝑦 ~Q 𝑥))
13 moanimv 2612 . . . . . . 7 (∃*𝑦(𝑥 ∈ (N × N) ∧ (𝑦Q𝑦 ~Q 𝑥)) ↔ (𝑥 ∈ (N × N) → ∃*𝑦(𝑦Q𝑦 ~Q 𝑥)))
1412, 13mpbir 231 . . . . . 6 ∃*𝑦(𝑥 ∈ (N × N) ∧ (𝑦Q𝑦 ~Q 𝑥))
153brel 5696 . . . . . . . . 9 (𝑥[Q]𝑦 → (𝑥 ∈ (N × N) ∧ 𝑦Q))
1615simpld 494 . . . . . . . 8 (𝑥[Q]𝑦𝑥 ∈ (N × N))
1715simprd 495 . . . . . . . 8 (𝑥[Q]𝑦𝑦Q)
18 enqer 10850 . . . . . . . . . 10 ~Q Er (N × N)
1918a1i 11 . . . . . . . . 9 (𝑥[Q]𝑦 → ~Q Er (N × N))
20 inss1 4196 . . . . . . . . . . 11 ( ~Q ∩ ((N × N) × Q)) ⊆ ~Q
211, 20eqsstri 3990 . . . . . . . . . 10 [Q] ⊆ ~Q
2221ssbri 5147 . . . . . . . . 9 (𝑥[Q]𝑦𝑥 ~Q 𝑦)
2319, 22ersym 8660 . . . . . . . 8 (𝑥[Q]𝑦𝑦 ~Q 𝑥)
2416, 17, 23jca32 515 . . . . . . 7 (𝑥[Q]𝑦 → (𝑥 ∈ (N × N) ∧ (𝑦Q𝑦 ~Q 𝑥)))
2524moimi 2538 . . . . . 6 (∃*𝑦(𝑥 ∈ (N × N) ∧ (𝑦Q𝑦 ~Q 𝑥)) → ∃*𝑦 𝑥[Q]𝑦)
2614, 25ax-mp 5 . . . . 5 ∃*𝑦 𝑥[Q]𝑦
2726ax-gen 1795 . . . 4 𝑥∃*𝑦 𝑥[Q]𝑦
28 dffun6 6511 . . . 4 (Fun [Q] ↔ (Rel [Q] ∧ ∀𝑥∃*𝑦 𝑥[Q]𝑦))
297, 27, 28mpbir2an 711 . . 3 Fun [Q]
30 dmss 5856 . . . . . 6 ([Q] ⊆ ((N × N) × Q) → dom [Q] ⊆ dom ((N × N) × Q))
313, 30ax-mp 5 . . . . 5 dom [Q] ⊆ dom ((N × N) × Q)
32 1nq 10857 . . . . . 6 1QQ
33 ne0i 4300 . . . . . 6 (1QQQ ≠ ∅)
34 dmxp 5882 . . . . . 6 (Q ≠ ∅ → dom ((N × N) × Q) = (N × N))
3532, 33, 34mp2b 10 . . . . 5 dom ((N × N) × Q) = (N × N)
3631, 35sseqtri 3992 . . . 4 dom [Q] ⊆ (N × N)
37 reurex 3355 . . . . . . . 8 (∃!𝑦Q 𝑦 ~Q 𝑥 → ∃𝑦Q 𝑦 ~Q 𝑥)
38 simpll 766 . . . . . . . . . . 11 (((𝑥 ∈ (N × N) ∧ 𝑦Q) ∧ 𝑦 ~Q 𝑥) → 𝑥 ∈ (N × N))
39 simplr 768 . . . . . . . . . . 11 (((𝑥 ∈ (N × N) ∧ 𝑦Q) ∧ 𝑦 ~Q 𝑥) → 𝑦Q)
4018a1i 11 . . . . . . . . . . . 12 (((𝑥 ∈ (N × N) ∧ 𝑦Q) ∧ 𝑦 ~Q 𝑥) → ~Q Er (N × N))
41 simpr 484 . . . . . . . . . . . 12 (((𝑥 ∈ (N × N) ∧ 𝑦Q) ∧ 𝑦 ~Q 𝑥) → 𝑦 ~Q 𝑥)
4240, 41ersym 8660 . . . . . . . . . . 11 (((𝑥 ∈ (N × N) ∧ 𝑦Q) ∧ 𝑦 ~Q 𝑥) → 𝑥 ~Q 𝑦)
431breqi 5108 . . . . . . . . . . . 12 (𝑥[Q]𝑦𝑥( ~Q ∩ ((N × N) × Q))𝑦)
44 brinxp2 5709 . . . . . . . . . . . 12 (𝑥( ~Q ∩ ((N × N) × Q))𝑦 ↔ ((𝑥 ∈ (N × N) ∧ 𝑦Q) ∧ 𝑥 ~Q 𝑦))
4543, 44bitri 275 . . . . . . . . . . 11 (𝑥[Q]𝑦 ↔ ((𝑥 ∈ (N × N) ∧ 𝑦Q) ∧ 𝑥 ~Q 𝑦))
4638, 39, 42, 45syl21anbrc 1345 . . . . . . . . . 10 (((𝑥 ∈ (N × N) ∧ 𝑦Q) ∧ 𝑦 ~Q 𝑥) → 𝑥[Q]𝑦)
4746ex 412 . . . . . . . . 9 ((𝑥 ∈ (N × N) ∧ 𝑦Q) → (𝑦 ~Q 𝑥𝑥[Q]𝑦))
4847reximdva 3146 . . . . . . . 8 (𝑥 ∈ (N × N) → (∃𝑦Q 𝑦 ~Q 𝑥 → ∃𝑦Q 𝑥[Q]𝑦))
49 rexex 3059 . . . . . . . 8 (∃𝑦Q 𝑥[Q]𝑦 → ∃𝑦 𝑥[Q]𝑦)
5037, 48, 49syl56 36 . . . . . . 7 (𝑥 ∈ (N × N) → (∃!𝑦Q 𝑦 ~Q 𝑥 → ∃𝑦 𝑥[Q]𝑦))
518, 50mpd 15 . . . . . 6 (𝑥 ∈ (N × N) → ∃𝑦 𝑥[Q]𝑦)
52 vex 3448 . . . . . . 7 𝑥 ∈ V
5352eldm 5854 . . . . . 6 (𝑥 ∈ dom [Q] ↔ ∃𝑦 𝑥[Q]𝑦)
5451, 53sylibr 234 . . . . 5 (𝑥 ∈ (N × N) → 𝑥 ∈ dom [Q])
5554ssriv 3947 . . . 4 (N × N) ⊆ dom [Q]
5636, 55eqssi 3960 . . 3 dom [Q] = (N × N)
57 df-fn 6502 . . 3 ([Q] Fn (N × N) ↔ (Fun [Q] ∧ dom [Q] = (N × N)))
5829, 56, 57mpbir2an 711 . 2 [Q] Fn (N × N)
593rnssi 5893 . . 3 ran [Q] ⊆ ran ((N × N) × Q)
60 rnxpss 6133 . . 3 ran ((N × N) × Q) ⊆ Q
6159, 60sstri 3953 . 2 ran [Q] ⊆ Q
62 df-f 6503 . 2 ([Q]:(N × N)⟶Q ↔ ([Q] Fn (N × N) ∧ ran [Q] ⊆ Q))
6358, 61, 62mpbir2an 711 1 [Q]:(N × N)⟶Q
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1538   = wceq 1540  wex 1779  wcel 2109  ∃*wmo 2531  ∃!weu 2561  wne 2925  wrex 3053  ∃!wreu 3349  Vcvv 3444  cin 3910  wss 3911  c0 4292   class class class wbr 5102   × cxp 5629  dom cdm 5631  ran crn 5632  Rel wrel 5636  Fun wfun 6493   Fn wfn 6494  wf 6495   Er wer 8645  Ncnpi 10773   ~Q ceq 10780  Qcnq 10781  1Qc1q 10782  [Q]cerq 10783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-oadd 8415  df-omul 8416  df-er 8648  df-ni 10801  df-mi 10803  df-lti 10804  df-enq 10840  df-nq 10841  df-erq 10842  df-1nq 10845
This theorem is referenced by:  nqercl  10860  nqerrel  10861  nqerid  10862  addnqf  10877  mulnqf  10878  adderpq  10885  mulerpq  10886  lterpq  10899
  Copyright terms: Public domain W3C validator