MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mosubop Structured version   Visualization version   GIF version

Theorem mosubop 5419
Description: "At most one" remains true inside ordered pair quantification. (Contributed by NM, 28-May-1995.)
Hypothesis
Ref Expression
mosubop.1 ∃*𝑥𝜑
Assertion
Ref Expression
mosubop ∃*𝑥𝑦𝑧(𝐴 = ⟨𝑦, 𝑧⟩ ∧ 𝜑)
Distinct variable group:   𝑥,𝑦,𝑧,𝐴
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)

Proof of Theorem mosubop
StepHypRef Expression
1 mosubop.1 . . 3 ∃*𝑥𝜑
21gen2 1800 . 2 𝑦𝑧∃*𝑥𝜑
3 mosubopt 5418 . 2 (∀𝑦𝑧∃*𝑥𝜑 → ∃*𝑥𝑦𝑧(𝐴 = ⟨𝑦, 𝑧⟩ ∧ 𝜑))
42, 3ax-mp 5 1 ∃*𝑥𝑦𝑧(𝐴 = ⟨𝑦, 𝑧⟩ ∧ 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wa 395  wal 1537   = wceq 1539  wex 1783  ∃*wmo 2538  cop 4564
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565
This theorem is referenced by:  ov3  7413  ov6g  7414  oprabex3  7793  axaddf  10832  axmulf  10833
  Copyright terms: Public domain W3C validator