| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mosubop | Structured version Visualization version GIF version | ||
| Description: "At most one" remains true inside ordered pair quantification. (Contributed by NM, 28-May-1995.) |
| Ref | Expression |
|---|---|
| mosubop.1 | ⊢ ∃*𝑥𝜑 |
| Ref | Expression |
|---|---|
| mosubop | ⊢ ∃*𝑥∃𝑦∃𝑧(𝐴 = 〈𝑦, 𝑧〉 ∧ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mosubop.1 | . . 3 ⊢ ∃*𝑥𝜑 | |
| 2 | 1 | gen2 1796 | . 2 ⊢ ∀𝑦∀𝑧∃*𝑥𝜑 |
| 3 | mosubopt 5490 | . 2 ⊢ (∀𝑦∀𝑧∃*𝑥𝜑 → ∃*𝑥∃𝑦∃𝑧(𝐴 = 〈𝑦, 𝑧〉 ∧ 𝜑)) | |
| 4 | 2, 3 | ax-mp 5 | 1 ⊢ ∃*𝑥∃𝑦∃𝑧(𝐴 = 〈𝑦, 𝑧〉 ∧ 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∀wal 1538 = wceq 1540 ∃wex 1779 ∃*wmo 2538 〈cop 4612 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 |
| This theorem is referenced by: ov3 7575 ov6g 7576 oprabex3 7981 axaddf 11164 axmulf 11165 |
| Copyright terms: Public domain | W3C validator |