![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mosubop | Structured version Visualization version GIF version |
Description: "At most one" remains true inside ordered pair quantification. (Contributed by NM, 28-May-1995.) |
Ref | Expression |
---|---|
mosubop.1 | ⊢ ∃*𝑥𝜑 |
Ref | Expression |
---|---|
mosubop | ⊢ ∃*𝑥∃𝑦∃𝑧(𝐴 = 〈𝑦, 𝑧〉 ∧ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mosubop.1 | . . 3 ⊢ ∃*𝑥𝜑 | |
2 | 1 | gen2 1794 | . 2 ⊢ ∀𝑦∀𝑧∃*𝑥𝜑 |
3 | mosubopt 5529 | . 2 ⊢ (∀𝑦∀𝑧∃*𝑥𝜑 → ∃*𝑥∃𝑦∃𝑧(𝐴 = 〈𝑦, 𝑧〉 ∧ 𝜑)) | |
4 | 2, 3 | ax-mp 5 | 1 ⊢ ∃*𝑥∃𝑦∃𝑧(𝐴 = 〈𝑦, 𝑧〉 ∧ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 ∀wal 1535 = wceq 1537 ∃wex 1777 ∃*wmo 2541 〈cop 4654 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 |
This theorem is referenced by: ov3 7613 ov6g 7614 oprabex3 8018 axaddf 11214 axmulf 11215 |
Copyright terms: Public domain | W3C validator |