![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mosubop | Structured version Visualization version GIF version |
Description: "At most one" remains true inside ordered pair quantification. (Contributed by NM, 28-May-1995.) |
Ref | Expression |
---|---|
mosubop.1 | ⊢ ∃*𝑥𝜑 |
Ref | Expression |
---|---|
mosubop | ⊢ ∃*𝑥∃𝑦∃𝑧(𝐴 = 〈𝑦, 𝑧〉 ∧ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mosubop.1 | . . 3 ⊢ ∃*𝑥𝜑 | |
2 | 1 | gen2 1797 | . 2 ⊢ ∀𝑦∀𝑧∃*𝑥𝜑 |
3 | mosubopt 5510 | . 2 ⊢ (∀𝑦∀𝑧∃*𝑥𝜑 → ∃*𝑥∃𝑦∃𝑧(𝐴 = 〈𝑦, 𝑧〉 ∧ 𝜑)) | |
4 | 2, 3 | ax-mp 5 | 1 ⊢ ∃*𝑥∃𝑦∃𝑧(𝐴 = 〈𝑦, 𝑧〉 ∧ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 ∀wal 1538 = wceq 1540 ∃wex 1780 ∃*wmo 2531 〈cop 4634 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-rab 3432 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 |
This theorem is referenced by: ov3 7574 ov6g 7575 oprabex3 7968 axaddf 11146 axmulf 11147 |
Copyright terms: Public domain | W3C validator |