Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  irinitoringc Structured version   Visualization version   GIF version

Theorem irinitoringc 44414
Description: The ring of integers is an initial object in the category of unital rings (within a universe containing the ring of integers). Example 7.2 (6) of [Adamek] p. 101 , and example in [Lang] p. 58. (Contributed by AV, 3-Apr-2020.)
Hypotheses
Ref Expression
irinitoringc.u (𝜑𝑈𝑉)
irinitoringc.z (𝜑 → ℤring𝑈)
irinitoringc.c 𝐶 = (RingCat‘𝑈)
Assertion
Ref Expression
irinitoringc (𝜑 → ℤring ∈ (InitO‘𝐶))

Proof of Theorem irinitoringc
Dummy variables 𝑓 𝑟 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zex 11984 . . . . . 6 ℤ ∈ V
21mptex 6979 . . . . 5 (𝑧 ∈ ℤ ↦ (𝑧(.g𝑟)(1r𝑟))) ∈ V
3 irinitoringc.c . . . . . . . . 9 𝐶 = (RingCat‘𝑈)
4 eqid 2820 . . . . . . . . 9 (Base‘𝐶) = (Base‘𝐶)
5 irinitoringc.u . . . . . . . . 9 (𝜑𝑈𝑉)
6 eqid 2820 . . . . . . . . 9 (Hom ‘𝐶) = (Hom ‘𝐶)
73, 4, 5, 6ringchomfval 44357 . . . . . . . 8 (𝜑 → (Hom ‘𝐶) = ( RingHom ↾ ((Base‘𝐶) × (Base‘𝐶))))
87adantr 483 . . . . . . 7 ((𝜑𝑟 ∈ (Base‘𝐶)) → (Hom ‘𝐶) = ( RingHom ↾ ((Base‘𝐶) × (Base‘𝐶))))
98oveqd 7166 . . . . . 6 ((𝜑𝑟 ∈ (Base‘𝐶)) → (ℤring(Hom ‘𝐶)𝑟) = (ℤring( RingHom ↾ ((Base‘𝐶) × (Base‘𝐶)))𝑟))
10 irinitoringc.z . . . . . . . . . 10 (𝜑 → ℤring𝑈)
11 id 22 . . . . . . . . . . 11 (ℤring𝑈 → ℤring𝑈)
12 zringring 20615 . . . . . . . . . . . 12 ring ∈ Ring
1312a1i 11 . . . . . . . . . . 11 (ℤring𝑈 → ℤring ∈ Ring)
1411, 13elind 4164 . . . . . . . . . 10 (ℤring𝑈 → ℤring ∈ (𝑈 ∩ Ring))
1510, 14syl 17 . . . . . . . . 9 (𝜑 → ℤring ∈ (𝑈 ∩ Ring))
163, 4, 5ringcbas 44356 . . . . . . . . 9 (𝜑 → (Base‘𝐶) = (𝑈 ∩ Ring))
1715, 16eleqtrrd 2915 . . . . . . . 8 (𝜑 → ℤring ∈ (Base‘𝐶))
1817adantr 483 . . . . . . 7 ((𝜑𝑟 ∈ (Base‘𝐶)) → ℤring ∈ (Base‘𝐶))
19 simpr 487 . . . . . . 7 ((𝜑𝑟 ∈ (Base‘𝐶)) → 𝑟 ∈ (Base‘𝐶))
2018, 19ovresd 7308 . . . . . 6 ((𝜑𝑟 ∈ (Base‘𝐶)) → (ℤring( RingHom ↾ ((Base‘𝐶) × (Base‘𝐶)))𝑟) = (ℤring RingHom 𝑟))
2116eleq2d 2897 . . . . . . . . 9 (𝜑 → (𝑟 ∈ (Base‘𝐶) ↔ 𝑟 ∈ (𝑈 ∩ Ring)))
22 elin 4162 . . . . . . . . . 10 (𝑟 ∈ (𝑈 ∩ Ring) ↔ (𝑟𝑈𝑟 ∈ Ring))
2322simprbi 499 . . . . . . . . 9 (𝑟 ∈ (𝑈 ∩ Ring) → 𝑟 ∈ Ring)
2421, 23syl6bi 255 . . . . . . . 8 (𝜑 → (𝑟 ∈ (Base‘𝐶) → 𝑟 ∈ Ring))
2524imp 409 . . . . . . 7 ((𝜑𝑟 ∈ (Base‘𝐶)) → 𝑟 ∈ Ring)
26 eqid 2820 . . . . . . . 8 (.g𝑟) = (.g𝑟)
27 eqid 2820 . . . . . . . 8 (𝑧 ∈ ℤ ↦ (𝑧(.g𝑟)(1r𝑟))) = (𝑧 ∈ ℤ ↦ (𝑧(.g𝑟)(1r𝑟)))
28 eqid 2820 . . . . . . . 8 (1r𝑟) = (1r𝑟)
2926, 27, 28mulgrhm2 20641 . . . . . . 7 (𝑟 ∈ Ring → (ℤring RingHom 𝑟) = {(𝑧 ∈ ℤ ↦ (𝑧(.g𝑟)(1r𝑟)))})
3025, 29syl 17 . . . . . 6 ((𝜑𝑟 ∈ (Base‘𝐶)) → (ℤring RingHom 𝑟) = {(𝑧 ∈ ℤ ↦ (𝑧(.g𝑟)(1r𝑟)))})
319, 20, 303eqtrd 2859 . . . . 5 ((𝜑𝑟 ∈ (Base‘𝐶)) → (ℤring(Hom ‘𝐶)𝑟) = {(𝑧 ∈ ℤ ↦ (𝑧(.g𝑟)(1r𝑟)))})
32 sneq 4570 . . . . . . 7 (𝑓 = (𝑧 ∈ ℤ ↦ (𝑧(.g𝑟)(1r𝑟))) → {𝑓} = {(𝑧 ∈ ℤ ↦ (𝑧(.g𝑟)(1r𝑟)))})
3332eqeq2d 2831 . . . . . 6 (𝑓 = (𝑧 ∈ ℤ ↦ (𝑧(.g𝑟)(1r𝑟))) → ((ℤring(Hom ‘𝐶)𝑟) = {𝑓} ↔ (ℤring(Hom ‘𝐶)𝑟) = {(𝑧 ∈ ℤ ↦ (𝑧(.g𝑟)(1r𝑟)))}))
3433spcegv 3594 . . . . 5 ((𝑧 ∈ ℤ ↦ (𝑧(.g𝑟)(1r𝑟))) ∈ V → ((ℤring(Hom ‘𝐶)𝑟) = {(𝑧 ∈ ℤ ↦ (𝑧(.g𝑟)(1r𝑟)))} → ∃𝑓(ℤring(Hom ‘𝐶)𝑟) = {𝑓}))
352, 31, 34mpsyl 68 . . . 4 ((𝜑𝑟 ∈ (Base‘𝐶)) → ∃𝑓(ℤring(Hom ‘𝐶)𝑟) = {𝑓})
36 eusn 4659 . . . 4 (∃!𝑓 𝑓 ∈ (ℤring(Hom ‘𝐶)𝑟) ↔ ∃𝑓(ℤring(Hom ‘𝐶)𝑟) = {𝑓})
3735, 36sylibr 236 . . 3 ((𝜑𝑟 ∈ (Base‘𝐶)) → ∃!𝑓 𝑓 ∈ (ℤring(Hom ‘𝐶)𝑟))
3837ralrimiva 3181 . 2 (𝜑 → ∀𝑟 ∈ (Base‘𝐶)∃!𝑓 𝑓 ∈ (ℤring(Hom ‘𝐶)𝑟))
393ringccat 44369 . . . 4 (𝑈𝑉𝐶 ∈ Cat)
405, 39syl 17 . . 3 (𝜑𝐶 ∈ Cat)
4112a1i 11 . . . . 5 (𝜑 → ℤring ∈ Ring)
4210, 41elind 4164 . . . 4 (𝜑 → ℤring ∈ (𝑈 ∩ Ring))
4342, 16eleqtrrd 2915 . . 3 (𝜑 → ℤring ∈ (Base‘𝐶))
444, 6, 40, 43isinito 17255 . 2 (𝜑 → (ℤring ∈ (InitO‘𝐶) ↔ ∀𝑟 ∈ (Base‘𝐶)∃!𝑓 𝑓 ∈ (ℤring(Hom ‘𝐶)𝑟)))
4538, 44mpbird 259 1 (𝜑 → ℤring ∈ (InitO‘𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1536  wex 1779  wcel 2113  ∃!weu 2652  wral 3137  Vcvv 3491  cin 3928  {csn 4560  cmpt 5139   × cxp 5546  cres 5550  cfv 6348  (class class class)co 7149  cz 11975  Basecbs 16478  Hom chom 16571  Catccat 16930  InitOcinito 17243  .gcmg 18219  1rcur 19246  Ringcrg 19292   RingHom crh 19459  ringzring 20612  RingCatcringc 44348
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2792  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5323  ax-un 7454  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607  ax-addf 10609  ax-mulf 10610
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1539  df-fal 1549  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2892  df-nfc 2962  df-ne 3016  df-nel 3123  df-ral 3142  df-rex 3143  df-reu 3144  df-rmo 3145  df-rab 3146  df-v 3493  df-sbc 3769  df-csb 3877  df-dif 3932  df-un 3934  df-in 3936  df-ss 3945  df-pss 3947  df-nul 4285  df-if 4461  df-pw 4534  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4870  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7107  df-ov 7152  df-oprab 7153  df-mpo 7154  df-om 7574  df-1st 7682  df-2nd 7683  df-wrecs 7940  df-recs 8001  df-rdg 8039  df-1o 8095  df-oadd 8099  df-er 8282  df-map 8401  df-pm 8402  df-ixp 8455  df-en 8503  df-dom 8504  df-sdom 8505  df-fin 8506  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-nn 11632  df-2 11694  df-3 11695  df-4 11696  df-5 11697  df-6 11698  df-7 11699  df-8 11700  df-9 11701  df-n0 11892  df-z 11976  df-dec 12093  df-uz 12238  df-fz 12890  df-seq 13367  df-struct 16480  df-ndx 16481  df-slot 16482  df-base 16484  df-sets 16485  df-ress 16486  df-plusg 16573  df-mulr 16574  df-starv 16575  df-tset 16579  df-ple 16580  df-ds 16582  df-unif 16583  df-hom 16584  df-cco 16585  df-0g 16710  df-cat 16934  df-cid 16935  df-homf 16936  df-ssc 17075  df-resc 17076  df-subc 17077  df-inito 17246  df-estrc 17368  df-mgm 17847  df-sgrp 17896  df-mnd 17907  df-mhm 17951  df-grp 18101  df-minusg 18102  df-mulg 18220  df-subg 18271  df-ghm 18351  df-cmn 18903  df-mgp 19235  df-ur 19247  df-ring 19294  df-cring 19295  df-rnghom 19462  df-subrg 19528  df-cnfld 20541  df-zring 20613  df-ringc 44350
This theorem is referenced by:  nzerooringczr  44417
  Copyright terms: Public domain W3C validator