| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > irinitoringc | Structured version Visualization version GIF version | ||
| Description: The ring of integers is an initial object in the category of unital rings (within a universe containing the ring of integers). Example 7.2 (6) of [Adamek] p. 101 , and example in [Lang] p. 58. (Contributed by AV, 3-Apr-2020.) |
| Ref | Expression |
|---|---|
| irinitoringc.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
| irinitoringc.z | ⊢ (𝜑 → ℤring ∈ 𝑈) |
| irinitoringc.c | ⊢ 𝐶 = (RingCat‘𝑈) |
| Ref | Expression |
|---|---|
| irinitoringc | ⊢ (𝜑 → ℤring ∈ (InitO‘𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zex 12595 | . . . . . 6 ⊢ ℤ ∈ V | |
| 2 | 1 | mptex 7214 | . . . . 5 ⊢ (𝑧 ∈ ℤ ↦ (𝑧(.g‘𝑟)(1r‘𝑟))) ∈ V |
| 3 | irinitoringc.c | . . . . . . . . 9 ⊢ 𝐶 = (RingCat‘𝑈) | |
| 4 | eqid 2735 | . . . . . . . . 9 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
| 5 | irinitoringc.u | . . . . . . . . 9 ⊢ (𝜑 → 𝑈 ∈ 𝑉) | |
| 6 | eqid 2735 | . . . . . . . . 9 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
| 7 | 3, 4, 5, 6 | ringchomfval 20609 | . . . . . . . 8 ⊢ (𝜑 → (Hom ‘𝐶) = ( RingHom ↾ ((Base‘𝐶) × (Base‘𝐶)))) |
| 8 | 7 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑟 ∈ (Base‘𝐶)) → (Hom ‘𝐶) = ( RingHom ↾ ((Base‘𝐶) × (Base‘𝐶)))) |
| 9 | 8 | oveqd 7420 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑟 ∈ (Base‘𝐶)) → (ℤring(Hom ‘𝐶)𝑟) = (ℤring( RingHom ↾ ((Base‘𝐶) × (Base‘𝐶)))𝑟)) |
| 10 | irinitoringc.z | . . . . . . . . . 10 ⊢ (𝜑 → ℤring ∈ 𝑈) | |
| 11 | id 22 | . . . . . . . . . . 11 ⊢ (ℤring ∈ 𝑈 → ℤring ∈ 𝑈) | |
| 12 | zringring 21408 | . . . . . . . . . . . 12 ⊢ ℤring ∈ Ring | |
| 13 | 12 | a1i 11 | . . . . . . . . . . 11 ⊢ (ℤring ∈ 𝑈 → ℤring ∈ Ring) |
| 14 | 11, 13 | elind 4175 | . . . . . . . . . 10 ⊢ (ℤring ∈ 𝑈 → ℤring ∈ (𝑈 ∩ Ring)) |
| 15 | 10, 14 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → ℤring ∈ (𝑈 ∩ Ring)) |
| 16 | 3, 4, 5 | ringcbas 20608 | . . . . . . . . 9 ⊢ (𝜑 → (Base‘𝐶) = (𝑈 ∩ Ring)) |
| 17 | 15, 16 | eleqtrrd 2837 | . . . . . . . 8 ⊢ (𝜑 → ℤring ∈ (Base‘𝐶)) |
| 18 | 17 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑟 ∈ (Base‘𝐶)) → ℤring ∈ (Base‘𝐶)) |
| 19 | simpr 484 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑟 ∈ (Base‘𝐶)) → 𝑟 ∈ (Base‘𝐶)) | |
| 20 | 18, 19 | ovresd 7572 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑟 ∈ (Base‘𝐶)) → (ℤring( RingHom ↾ ((Base‘𝐶) × (Base‘𝐶)))𝑟) = (ℤring RingHom 𝑟)) |
| 21 | 16 | eleq2d 2820 | . . . . . . . . 9 ⊢ (𝜑 → (𝑟 ∈ (Base‘𝐶) ↔ 𝑟 ∈ (𝑈 ∩ Ring))) |
| 22 | elin 3942 | . . . . . . . . . 10 ⊢ (𝑟 ∈ (𝑈 ∩ Ring) ↔ (𝑟 ∈ 𝑈 ∧ 𝑟 ∈ Ring)) | |
| 23 | 22 | simprbi 496 | . . . . . . . . 9 ⊢ (𝑟 ∈ (𝑈 ∩ Ring) → 𝑟 ∈ Ring) |
| 24 | 21, 23 | biimtrdi 253 | . . . . . . . 8 ⊢ (𝜑 → (𝑟 ∈ (Base‘𝐶) → 𝑟 ∈ Ring)) |
| 25 | 24 | imp 406 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑟 ∈ (Base‘𝐶)) → 𝑟 ∈ Ring) |
| 26 | eqid 2735 | . . . . . . . 8 ⊢ (.g‘𝑟) = (.g‘𝑟) | |
| 27 | eqid 2735 | . . . . . . . 8 ⊢ (𝑧 ∈ ℤ ↦ (𝑧(.g‘𝑟)(1r‘𝑟))) = (𝑧 ∈ ℤ ↦ (𝑧(.g‘𝑟)(1r‘𝑟))) | |
| 28 | eqid 2735 | . . . . . . . 8 ⊢ (1r‘𝑟) = (1r‘𝑟) | |
| 29 | 26, 27, 28 | mulgrhm2 21437 | . . . . . . 7 ⊢ (𝑟 ∈ Ring → (ℤring RingHom 𝑟) = {(𝑧 ∈ ℤ ↦ (𝑧(.g‘𝑟)(1r‘𝑟)))}) |
| 30 | 25, 29 | syl 17 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑟 ∈ (Base‘𝐶)) → (ℤring RingHom 𝑟) = {(𝑧 ∈ ℤ ↦ (𝑧(.g‘𝑟)(1r‘𝑟)))}) |
| 31 | 9, 20, 30 | 3eqtrd 2774 | . . . . 5 ⊢ ((𝜑 ∧ 𝑟 ∈ (Base‘𝐶)) → (ℤring(Hom ‘𝐶)𝑟) = {(𝑧 ∈ ℤ ↦ (𝑧(.g‘𝑟)(1r‘𝑟)))}) |
| 32 | sneq 4611 | . . . . . . 7 ⊢ (𝑓 = (𝑧 ∈ ℤ ↦ (𝑧(.g‘𝑟)(1r‘𝑟))) → {𝑓} = {(𝑧 ∈ ℤ ↦ (𝑧(.g‘𝑟)(1r‘𝑟)))}) | |
| 33 | 32 | eqeq2d 2746 | . . . . . 6 ⊢ (𝑓 = (𝑧 ∈ ℤ ↦ (𝑧(.g‘𝑟)(1r‘𝑟))) → ((ℤring(Hom ‘𝐶)𝑟) = {𝑓} ↔ (ℤring(Hom ‘𝐶)𝑟) = {(𝑧 ∈ ℤ ↦ (𝑧(.g‘𝑟)(1r‘𝑟)))})) |
| 34 | 33 | spcegv 3576 | . . . . 5 ⊢ ((𝑧 ∈ ℤ ↦ (𝑧(.g‘𝑟)(1r‘𝑟))) ∈ V → ((ℤring(Hom ‘𝐶)𝑟) = {(𝑧 ∈ ℤ ↦ (𝑧(.g‘𝑟)(1r‘𝑟)))} → ∃𝑓(ℤring(Hom ‘𝐶)𝑟) = {𝑓})) |
| 35 | 2, 31, 34 | mpsyl 68 | . . . 4 ⊢ ((𝜑 ∧ 𝑟 ∈ (Base‘𝐶)) → ∃𝑓(ℤring(Hom ‘𝐶)𝑟) = {𝑓}) |
| 36 | eusn 4706 | . . . 4 ⊢ (∃!𝑓 𝑓 ∈ (ℤring(Hom ‘𝐶)𝑟) ↔ ∃𝑓(ℤring(Hom ‘𝐶)𝑟) = {𝑓}) | |
| 37 | 35, 36 | sylibr 234 | . . 3 ⊢ ((𝜑 ∧ 𝑟 ∈ (Base‘𝐶)) → ∃!𝑓 𝑓 ∈ (ℤring(Hom ‘𝐶)𝑟)) |
| 38 | 37 | ralrimiva 3132 | . 2 ⊢ (𝜑 → ∀𝑟 ∈ (Base‘𝐶)∃!𝑓 𝑓 ∈ (ℤring(Hom ‘𝐶)𝑟)) |
| 39 | 3 | ringccat 20621 | . . . 4 ⊢ (𝑈 ∈ 𝑉 → 𝐶 ∈ Cat) |
| 40 | 5, 39 | syl 17 | . . 3 ⊢ (𝜑 → 𝐶 ∈ Cat) |
| 41 | 12 | a1i 11 | . . . . 5 ⊢ (𝜑 → ℤring ∈ Ring) |
| 42 | 10, 41 | elind 4175 | . . . 4 ⊢ (𝜑 → ℤring ∈ (𝑈 ∩ Ring)) |
| 43 | 42, 16 | eleqtrrd 2837 | . . 3 ⊢ (𝜑 → ℤring ∈ (Base‘𝐶)) |
| 44 | 4, 6, 40, 43 | isinito 18007 | . 2 ⊢ (𝜑 → (ℤring ∈ (InitO‘𝐶) ↔ ∀𝑟 ∈ (Base‘𝐶)∃!𝑓 𝑓 ∈ (ℤring(Hom ‘𝐶)𝑟))) |
| 45 | 38, 44 | mpbird 257 | 1 ⊢ (𝜑 → ℤring ∈ (InitO‘𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2108 ∃!weu 2567 ∀wral 3051 Vcvv 3459 ∩ cin 3925 {csn 4601 ↦ cmpt 5201 × cxp 5652 ↾ cres 5656 ‘cfv 6530 (class class class)co 7403 ℤcz 12586 Basecbs 17226 Hom chom 17280 Catccat 17674 InitOcinito 17992 .gcmg 19048 1rcur 20139 Ringcrg 20191 RingHom crh 20427 RingCatcringc 20603 ℤringczring 21405 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-cnex 11183 ax-resscn 11184 ax-1cn 11185 ax-icn 11186 ax-addcl 11187 ax-addrcl 11188 ax-mulcl 11189 ax-mulrcl 11190 ax-mulcom 11191 ax-addass 11192 ax-mulass 11193 ax-distr 11194 ax-i2m1 11195 ax-1ne0 11196 ax-1rid 11197 ax-rnegex 11198 ax-rrecex 11199 ax-cnre 11200 ax-pre-lttri 11201 ax-pre-lttrn 11202 ax-pre-ltadd 11203 ax-pre-mulgt0 11204 ax-addf 11206 ax-mulf 11207 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-riota 7360 df-ov 7406 df-oprab 7407 df-mpo 7408 df-om 7860 df-1st 7986 df-2nd 7987 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-1o 8478 df-er 8717 df-map 8840 df-pm 8841 df-ixp 8910 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-pnf 11269 df-mnf 11270 df-xr 11271 df-ltxr 11272 df-le 11273 df-sub 11466 df-neg 11467 df-nn 12239 df-2 12301 df-3 12302 df-4 12303 df-5 12304 df-6 12305 df-7 12306 df-8 12307 df-9 12308 df-n0 12500 df-z 12587 df-dec 12707 df-uz 12851 df-fz 13523 df-seq 14018 df-struct 17164 df-sets 17181 df-slot 17199 df-ndx 17211 df-base 17227 df-ress 17250 df-plusg 17282 df-mulr 17283 df-starv 17284 df-tset 17288 df-ple 17289 df-ds 17291 df-unif 17292 df-hom 17293 df-cco 17294 df-0g 17453 df-cat 17678 df-cid 17679 df-homf 17680 df-ssc 17821 df-resc 17822 df-subc 17823 df-inito 17995 df-estrc 18133 df-mgm 18616 df-sgrp 18695 df-mnd 18711 df-mhm 18759 df-grp 18917 df-minusg 18918 df-mulg 19049 df-subg 19104 df-ghm 19194 df-cmn 19761 df-abl 19762 df-mgp 20099 df-rng 20111 df-ur 20140 df-ring 20193 df-cring 20194 df-rhm 20430 df-subrng 20504 df-subrg 20528 df-ringc 20604 df-cnfld 21314 df-zring 21406 |
| This theorem is referenced by: nzerooringczr 21439 |
| Copyright terms: Public domain | W3C validator |