| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > irinitoringc | Structured version Visualization version GIF version | ||
| Description: The ring of integers is an initial object in the category of unital rings (within a universe containing the ring of integers). Example 7.2 (6) of [Adamek] p. 101 , and example in [Lang] p. 58. (Contributed by AV, 3-Apr-2020.) |
| Ref | Expression |
|---|---|
| irinitoringc.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
| irinitoringc.z | ⊢ (𝜑 → ℤring ∈ 𝑈) |
| irinitoringc.c | ⊢ 𝐶 = (RingCat‘𝑈) |
| Ref | Expression |
|---|---|
| irinitoringc | ⊢ (𝜑 → ℤring ∈ (InitO‘𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zex 12622 | . . . . . 6 ⊢ ℤ ∈ V | |
| 2 | 1 | mptex 7243 | . . . . 5 ⊢ (𝑧 ∈ ℤ ↦ (𝑧(.g‘𝑟)(1r‘𝑟))) ∈ V |
| 3 | irinitoringc.c | . . . . . . . . 9 ⊢ 𝐶 = (RingCat‘𝑈) | |
| 4 | eqid 2737 | . . . . . . . . 9 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
| 5 | irinitoringc.u | . . . . . . . . 9 ⊢ (𝜑 → 𝑈 ∈ 𝑉) | |
| 6 | eqid 2737 | . . . . . . . . 9 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
| 7 | 3, 4, 5, 6 | ringchomfval 20651 | . . . . . . . 8 ⊢ (𝜑 → (Hom ‘𝐶) = ( RingHom ↾ ((Base‘𝐶) × (Base‘𝐶)))) |
| 8 | 7 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑟 ∈ (Base‘𝐶)) → (Hom ‘𝐶) = ( RingHom ↾ ((Base‘𝐶) × (Base‘𝐶)))) |
| 9 | 8 | oveqd 7448 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑟 ∈ (Base‘𝐶)) → (ℤring(Hom ‘𝐶)𝑟) = (ℤring( RingHom ↾ ((Base‘𝐶) × (Base‘𝐶)))𝑟)) |
| 10 | irinitoringc.z | . . . . . . . . . 10 ⊢ (𝜑 → ℤring ∈ 𝑈) | |
| 11 | id 22 | . . . . . . . . . . 11 ⊢ (ℤring ∈ 𝑈 → ℤring ∈ 𝑈) | |
| 12 | zringring 21460 | . . . . . . . . . . . 12 ⊢ ℤring ∈ Ring | |
| 13 | 12 | a1i 11 | . . . . . . . . . . 11 ⊢ (ℤring ∈ 𝑈 → ℤring ∈ Ring) |
| 14 | 11, 13 | elind 4200 | . . . . . . . . . 10 ⊢ (ℤring ∈ 𝑈 → ℤring ∈ (𝑈 ∩ Ring)) |
| 15 | 10, 14 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → ℤring ∈ (𝑈 ∩ Ring)) |
| 16 | 3, 4, 5 | ringcbas 20650 | . . . . . . . . 9 ⊢ (𝜑 → (Base‘𝐶) = (𝑈 ∩ Ring)) |
| 17 | 15, 16 | eleqtrrd 2844 | . . . . . . . 8 ⊢ (𝜑 → ℤring ∈ (Base‘𝐶)) |
| 18 | 17 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑟 ∈ (Base‘𝐶)) → ℤring ∈ (Base‘𝐶)) |
| 19 | simpr 484 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑟 ∈ (Base‘𝐶)) → 𝑟 ∈ (Base‘𝐶)) | |
| 20 | 18, 19 | ovresd 7600 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑟 ∈ (Base‘𝐶)) → (ℤring( RingHom ↾ ((Base‘𝐶) × (Base‘𝐶)))𝑟) = (ℤring RingHom 𝑟)) |
| 21 | 16 | eleq2d 2827 | . . . . . . . . 9 ⊢ (𝜑 → (𝑟 ∈ (Base‘𝐶) ↔ 𝑟 ∈ (𝑈 ∩ Ring))) |
| 22 | elin 3967 | . . . . . . . . . 10 ⊢ (𝑟 ∈ (𝑈 ∩ Ring) ↔ (𝑟 ∈ 𝑈 ∧ 𝑟 ∈ Ring)) | |
| 23 | 22 | simprbi 496 | . . . . . . . . 9 ⊢ (𝑟 ∈ (𝑈 ∩ Ring) → 𝑟 ∈ Ring) |
| 24 | 21, 23 | biimtrdi 253 | . . . . . . . 8 ⊢ (𝜑 → (𝑟 ∈ (Base‘𝐶) → 𝑟 ∈ Ring)) |
| 25 | 24 | imp 406 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑟 ∈ (Base‘𝐶)) → 𝑟 ∈ Ring) |
| 26 | eqid 2737 | . . . . . . . 8 ⊢ (.g‘𝑟) = (.g‘𝑟) | |
| 27 | eqid 2737 | . . . . . . . 8 ⊢ (𝑧 ∈ ℤ ↦ (𝑧(.g‘𝑟)(1r‘𝑟))) = (𝑧 ∈ ℤ ↦ (𝑧(.g‘𝑟)(1r‘𝑟))) | |
| 28 | eqid 2737 | . . . . . . . 8 ⊢ (1r‘𝑟) = (1r‘𝑟) | |
| 29 | 26, 27, 28 | mulgrhm2 21489 | . . . . . . 7 ⊢ (𝑟 ∈ Ring → (ℤring RingHom 𝑟) = {(𝑧 ∈ ℤ ↦ (𝑧(.g‘𝑟)(1r‘𝑟)))}) |
| 30 | 25, 29 | syl 17 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑟 ∈ (Base‘𝐶)) → (ℤring RingHom 𝑟) = {(𝑧 ∈ ℤ ↦ (𝑧(.g‘𝑟)(1r‘𝑟)))}) |
| 31 | 9, 20, 30 | 3eqtrd 2781 | . . . . 5 ⊢ ((𝜑 ∧ 𝑟 ∈ (Base‘𝐶)) → (ℤring(Hom ‘𝐶)𝑟) = {(𝑧 ∈ ℤ ↦ (𝑧(.g‘𝑟)(1r‘𝑟)))}) |
| 32 | sneq 4636 | . . . . . . 7 ⊢ (𝑓 = (𝑧 ∈ ℤ ↦ (𝑧(.g‘𝑟)(1r‘𝑟))) → {𝑓} = {(𝑧 ∈ ℤ ↦ (𝑧(.g‘𝑟)(1r‘𝑟)))}) | |
| 33 | 32 | eqeq2d 2748 | . . . . . 6 ⊢ (𝑓 = (𝑧 ∈ ℤ ↦ (𝑧(.g‘𝑟)(1r‘𝑟))) → ((ℤring(Hom ‘𝐶)𝑟) = {𝑓} ↔ (ℤring(Hom ‘𝐶)𝑟) = {(𝑧 ∈ ℤ ↦ (𝑧(.g‘𝑟)(1r‘𝑟)))})) |
| 34 | 33 | spcegv 3597 | . . . . 5 ⊢ ((𝑧 ∈ ℤ ↦ (𝑧(.g‘𝑟)(1r‘𝑟))) ∈ V → ((ℤring(Hom ‘𝐶)𝑟) = {(𝑧 ∈ ℤ ↦ (𝑧(.g‘𝑟)(1r‘𝑟)))} → ∃𝑓(ℤring(Hom ‘𝐶)𝑟) = {𝑓})) |
| 35 | 2, 31, 34 | mpsyl 68 | . . . 4 ⊢ ((𝜑 ∧ 𝑟 ∈ (Base‘𝐶)) → ∃𝑓(ℤring(Hom ‘𝐶)𝑟) = {𝑓}) |
| 36 | eusn 4730 | . . . 4 ⊢ (∃!𝑓 𝑓 ∈ (ℤring(Hom ‘𝐶)𝑟) ↔ ∃𝑓(ℤring(Hom ‘𝐶)𝑟) = {𝑓}) | |
| 37 | 35, 36 | sylibr 234 | . . 3 ⊢ ((𝜑 ∧ 𝑟 ∈ (Base‘𝐶)) → ∃!𝑓 𝑓 ∈ (ℤring(Hom ‘𝐶)𝑟)) |
| 38 | 37 | ralrimiva 3146 | . 2 ⊢ (𝜑 → ∀𝑟 ∈ (Base‘𝐶)∃!𝑓 𝑓 ∈ (ℤring(Hom ‘𝐶)𝑟)) |
| 39 | 3 | ringccat 20663 | . . . 4 ⊢ (𝑈 ∈ 𝑉 → 𝐶 ∈ Cat) |
| 40 | 5, 39 | syl 17 | . . 3 ⊢ (𝜑 → 𝐶 ∈ Cat) |
| 41 | 12 | a1i 11 | . . . . 5 ⊢ (𝜑 → ℤring ∈ Ring) |
| 42 | 10, 41 | elind 4200 | . . . 4 ⊢ (𝜑 → ℤring ∈ (𝑈 ∩ Ring)) |
| 43 | 42, 16 | eleqtrrd 2844 | . . 3 ⊢ (𝜑 → ℤring ∈ (Base‘𝐶)) |
| 44 | 4, 6, 40, 43 | isinito 18041 | . 2 ⊢ (𝜑 → (ℤring ∈ (InitO‘𝐶) ↔ ∀𝑟 ∈ (Base‘𝐶)∃!𝑓 𝑓 ∈ (ℤring(Hom ‘𝐶)𝑟))) |
| 45 | 38, 44 | mpbird 257 | 1 ⊢ (𝜑 → ℤring ∈ (InitO‘𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2108 ∃!weu 2568 ∀wral 3061 Vcvv 3480 ∩ cin 3950 {csn 4626 ↦ cmpt 5225 × cxp 5683 ↾ cres 5687 ‘cfv 6561 (class class class)co 7431 ℤcz 12613 Basecbs 17247 Hom chom 17308 Catccat 17707 InitOcinito 18026 .gcmg 19085 1rcur 20178 Ringcrg 20230 RingHom crh 20469 RingCatcringc 20645 ℤringczring 21457 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 ax-addf 11234 ax-mulf 11235 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-tp 4631 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-er 8745 df-map 8868 df-pm 8869 df-ixp 8938 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-nn 12267 df-2 12329 df-3 12330 df-4 12331 df-5 12332 df-6 12333 df-7 12334 df-8 12335 df-9 12336 df-n0 12527 df-z 12614 df-dec 12734 df-uz 12879 df-fz 13548 df-seq 14043 df-struct 17184 df-sets 17201 df-slot 17219 df-ndx 17231 df-base 17248 df-ress 17275 df-plusg 17310 df-mulr 17311 df-starv 17312 df-tset 17316 df-ple 17317 df-ds 17319 df-unif 17320 df-hom 17321 df-cco 17322 df-0g 17486 df-cat 17711 df-cid 17712 df-homf 17713 df-ssc 17854 df-resc 17855 df-subc 17856 df-inito 18029 df-estrc 18167 df-mgm 18653 df-sgrp 18732 df-mnd 18748 df-mhm 18796 df-grp 18954 df-minusg 18955 df-mulg 19086 df-subg 19141 df-ghm 19231 df-cmn 19800 df-abl 19801 df-mgp 20138 df-rng 20150 df-ur 20179 df-ring 20232 df-cring 20233 df-rhm 20472 df-subrng 20546 df-subrg 20570 df-ringc 20646 df-cnfld 21365 df-zring 21458 |
| This theorem is referenced by: nzerooringczr 21491 |
| Copyright terms: Public domain | W3C validator |