Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > irinitoringc | Structured version Visualization version GIF version |
Description: The ring of integers is an initial object in the category of unital rings (within a universe containing the ring of integers). Example 7.2 (6) of [Adamek] p. 101 , and example in [Lang] p. 58. (Contributed by AV, 3-Apr-2020.) |
Ref | Expression |
---|---|
irinitoringc.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
irinitoringc.z | ⊢ (𝜑 → ℤring ∈ 𝑈) |
irinitoringc.c | ⊢ 𝐶 = (RingCat‘𝑈) |
Ref | Expression |
---|---|
irinitoringc | ⊢ (𝜑 → ℤring ∈ (InitO‘𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zex 12328 | . . . . . 6 ⊢ ℤ ∈ V | |
2 | 1 | mptex 7099 | . . . . 5 ⊢ (𝑧 ∈ ℤ ↦ (𝑧(.g‘𝑟)(1r‘𝑟))) ∈ V |
3 | irinitoringc.c | . . . . . . . . 9 ⊢ 𝐶 = (RingCat‘𝑈) | |
4 | eqid 2738 | . . . . . . . . 9 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
5 | irinitoringc.u | . . . . . . . . 9 ⊢ (𝜑 → 𝑈 ∈ 𝑉) | |
6 | eqid 2738 | . . . . . . . . 9 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
7 | 3, 4, 5, 6 | ringchomfval 45570 | . . . . . . . 8 ⊢ (𝜑 → (Hom ‘𝐶) = ( RingHom ↾ ((Base‘𝐶) × (Base‘𝐶)))) |
8 | 7 | adantr 481 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑟 ∈ (Base‘𝐶)) → (Hom ‘𝐶) = ( RingHom ↾ ((Base‘𝐶) × (Base‘𝐶)))) |
9 | 8 | oveqd 7292 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑟 ∈ (Base‘𝐶)) → (ℤring(Hom ‘𝐶)𝑟) = (ℤring( RingHom ↾ ((Base‘𝐶) × (Base‘𝐶)))𝑟)) |
10 | irinitoringc.z | . . . . . . . . . 10 ⊢ (𝜑 → ℤring ∈ 𝑈) | |
11 | id 22 | . . . . . . . . . . 11 ⊢ (ℤring ∈ 𝑈 → ℤring ∈ 𝑈) | |
12 | zringring 20673 | . . . . . . . . . . . 12 ⊢ ℤring ∈ Ring | |
13 | 12 | a1i 11 | . . . . . . . . . . 11 ⊢ (ℤring ∈ 𝑈 → ℤring ∈ Ring) |
14 | 11, 13 | elind 4128 | . . . . . . . . . 10 ⊢ (ℤring ∈ 𝑈 → ℤring ∈ (𝑈 ∩ Ring)) |
15 | 10, 14 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → ℤring ∈ (𝑈 ∩ Ring)) |
16 | 3, 4, 5 | ringcbas 45569 | . . . . . . . . 9 ⊢ (𝜑 → (Base‘𝐶) = (𝑈 ∩ Ring)) |
17 | 15, 16 | eleqtrrd 2842 | . . . . . . . 8 ⊢ (𝜑 → ℤring ∈ (Base‘𝐶)) |
18 | 17 | adantr 481 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑟 ∈ (Base‘𝐶)) → ℤring ∈ (Base‘𝐶)) |
19 | simpr 485 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑟 ∈ (Base‘𝐶)) → 𝑟 ∈ (Base‘𝐶)) | |
20 | 18, 19 | ovresd 7439 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑟 ∈ (Base‘𝐶)) → (ℤring( RingHom ↾ ((Base‘𝐶) × (Base‘𝐶)))𝑟) = (ℤring RingHom 𝑟)) |
21 | 16 | eleq2d 2824 | . . . . . . . . 9 ⊢ (𝜑 → (𝑟 ∈ (Base‘𝐶) ↔ 𝑟 ∈ (𝑈 ∩ Ring))) |
22 | elin 3903 | . . . . . . . . . 10 ⊢ (𝑟 ∈ (𝑈 ∩ Ring) ↔ (𝑟 ∈ 𝑈 ∧ 𝑟 ∈ Ring)) | |
23 | 22 | simprbi 497 | . . . . . . . . 9 ⊢ (𝑟 ∈ (𝑈 ∩ Ring) → 𝑟 ∈ Ring) |
24 | 21, 23 | syl6bi 252 | . . . . . . . 8 ⊢ (𝜑 → (𝑟 ∈ (Base‘𝐶) → 𝑟 ∈ Ring)) |
25 | 24 | imp 407 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑟 ∈ (Base‘𝐶)) → 𝑟 ∈ Ring) |
26 | eqid 2738 | . . . . . . . 8 ⊢ (.g‘𝑟) = (.g‘𝑟) | |
27 | eqid 2738 | . . . . . . . 8 ⊢ (𝑧 ∈ ℤ ↦ (𝑧(.g‘𝑟)(1r‘𝑟))) = (𝑧 ∈ ℤ ↦ (𝑧(.g‘𝑟)(1r‘𝑟))) | |
28 | eqid 2738 | . . . . . . . 8 ⊢ (1r‘𝑟) = (1r‘𝑟) | |
29 | 26, 27, 28 | mulgrhm2 20700 | . . . . . . 7 ⊢ (𝑟 ∈ Ring → (ℤring RingHom 𝑟) = {(𝑧 ∈ ℤ ↦ (𝑧(.g‘𝑟)(1r‘𝑟)))}) |
30 | 25, 29 | syl 17 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑟 ∈ (Base‘𝐶)) → (ℤring RingHom 𝑟) = {(𝑧 ∈ ℤ ↦ (𝑧(.g‘𝑟)(1r‘𝑟)))}) |
31 | 9, 20, 30 | 3eqtrd 2782 | . . . . 5 ⊢ ((𝜑 ∧ 𝑟 ∈ (Base‘𝐶)) → (ℤring(Hom ‘𝐶)𝑟) = {(𝑧 ∈ ℤ ↦ (𝑧(.g‘𝑟)(1r‘𝑟)))}) |
32 | sneq 4571 | . . . . . . 7 ⊢ (𝑓 = (𝑧 ∈ ℤ ↦ (𝑧(.g‘𝑟)(1r‘𝑟))) → {𝑓} = {(𝑧 ∈ ℤ ↦ (𝑧(.g‘𝑟)(1r‘𝑟)))}) | |
33 | 32 | eqeq2d 2749 | . . . . . 6 ⊢ (𝑓 = (𝑧 ∈ ℤ ↦ (𝑧(.g‘𝑟)(1r‘𝑟))) → ((ℤring(Hom ‘𝐶)𝑟) = {𝑓} ↔ (ℤring(Hom ‘𝐶)𝑟) = {(𝑧 ∈ ℤ ↦ (𝑧(.g‘𝑟)(1r‘𝑟)))})) |
34 | 33 | spcegv 3536 | . . . . 5 ⊢ ((𝑧 ∈ ℤ ↦ (𝑧(.g‘𝑟)(1r‘𝑟))) ∈ V → ((ℤring(Hom ‘𝐶)𝑟) = {(𝑧 ∈ ℤ ↦ (𝑧(.g‘𝑟)(1r‘𝑟)))} → ∃𝑓(ℤring(Hom ‘𝐶)𝑟) = {𝑓})) |
35 | 2, 31, 34 | mpsyl 68 | . . . 4 ⊢ ((𝜑 ∧ 𝑟 ∈ (Base‘𝐶)) → ∃𝑓(ℤring(Hom ‘𝐶)𝑟) = {𝑓}) |
36 | eusn 4666 | . . . 4 ⊢ (∃!𝑓 𝑓 ∈ (ℤring(Hom ‘𝐶)𝑟) ↔ ∃𝑓(ℤring(Hom ‘𝐶)𝑟) = {𝑓}) | |
37 | 35, 36 | sylibr 233 | . . 3 ⊢ ((𝜑 ∧ 𝑟 ∈ (Base‘𝐶)) → ∃!𝑓 𝑓 ∈ (ℤring(Hom ‘𝐶)𝑟)) |
38 | 37 | ralrimiva 3103 | . 2 ⊢ (𝜑 → ∀𝑟 ∈ (Base‘𝐶)∃!𝑓 𝑓 ∈ (ℤring(Hom ‘𝐶)𝑟)) |
39 | 3 | ringccat 45582 | . . . 4 ⊢ (𝑈 ∈ 𝑉 → 𝐶 ∈ Cat) |
40 | 5, 39 | syl 17 | . . 3 ⊢ (𝜑 → 𝐶 ∈ Cat) |
41 | 12 | a1i 11 | . . . . 5 ⊢ (𝜑 → ℤring ∈ Ring) |
42 | 10, 41 | elind 4128 | . . . 4 ⊢ (𝜑 → ℤring ∈ (𝑈 ∩ Ring)) |
43 | 42, 16 | eleqtrrd 2842 | . . 3 ⊢ (𝜑 → ℤring ∈ (Base‘𝐶)) |
44 | 4, 6, 40, 43 | isinito 17711 | . 2 ⊢ (𝜑 → (ℤring ∈ (InitO‘𝐶) ↔ ∀𝑟 ∈ (Base‘𝐶)∃!𝑓 𝑓 ∈ (ℤring(Hom ‘𝐶)𝑟))) |
45 | 38, 44 | mpbird 256 | 1 ⊢ (𝜑 → ℤring ∈ (InitO‘𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∃wex 1782 ∈ wcel 2106 ∃!weu 2568 ∀wral 3064 Vcvv 3432 ∩ cin 3886 {csn 4561 ↦ cmpt 5157 × cxp 5587 ↾ cres 5591 ‘cfv 6433 (class class class)co 7275 ℤcz 12319 Basecbs 16912 Hom chom 16973 Catccat 17373 InitOcinito 17696 .gcmg 18700 1rcur 19737 Ringcrg 19783 RingHom crh 19956 ℤringczring 20670 RingCatcringc 45561 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-addf 10950 ax-mulf 10951 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-tp 4566 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-map 8617 df-pm 8618 df-ixp 8686 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-9 12043 df-n0 12234 df-z 12320 df-dec 12438 df-uz 12583 df-fz 13240 df-seq 13722 df-struct 16848 df-sets 16865 df-slot 16883 df-ndx 16895 df-base 16913 df-ress 16942 df-plusg 16975 df-mulr 16976 df-starv 16977 df-tset 16981 df-ple 16982 df-ds 16984 df-unif 16985 df-hom 16986 df-cco 16987 df-0g 17152 df-cat 17377 df-cid 17378 df-homf 17379 df-ssc 17522 df-resc 17523 df-subc 17524 df-inito 17699 df-estrc 17839 df-mgm 18326 df-sgrp 18375 df-mnd 18386 df-mhm 18430 df-grp 18580 df-minusg 18581 df-mulg 18701 df-subg 18752 df-ghm 18832 df-cmn 19388 df-mgp 19721 df-ur 19738 df-ring 19785 df-cring 19786 df-rnghom 19959 df-subrg 20022 df-cnfld 20598 df-zring 20671 df-ringc 45563 |
This theorem is referenced by: nzerooringczr 45630 |
Copyright terms: Public domain | W3C validator |