| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > irinitoringc | Structured version Visualization version GIF version | ||
| Description: The ring of integers is an initial object in the category of unital rings (within a universe containing the ring of integers). Example 7.2 (6) of [Adamek] p. 101 , and example in [Lang] p. 58. (Contributed by AV, 3-Apr-2020.) |
| Ref | Expression |
|---|---|
| irinitoringc.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
| irinitoringc.z | ⊢ (𝜑 → ℤring ∈ 𝑈) |
| irinitoringc.c | ⊢ 𝐶 = (RingCat‘𝑈) |
| Ref | Expression |
|---|---|
| irinitoringc | ⊢ (𝜑 → ℤring ∈ (InitO‘𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zex 12545 | . . . . . 6 ⊢ ℤ ∈ V | |
| 2 | 1 | mptex 7200 | . . . . 5 ⊢ (𝑧 ∈ ℤ ↦ (𝑧(.g‘𝑟)(1r‘𝑟))) ∈ V |
| 3 | irinitoringc.c | . . . . . . . . 9 ⊢ 𝐶 = (RingCat‘𝑈) | |
| 4 | eqid 2730 | . . . . . . . . 9 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
| 5 | irinitoringc.u | . . . . . . . . 9 ⊢ (𝜑 → 𝑈 ∈ 𝑉) | |
| 6 | eqid 2730 | . . . . . . . . 9 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
| 7 | 3, 4, 5, 6 | ringchomfval 20567 | . . . . . . . 8 ⊢ (𝜑 → (Hom ‘𝐶) = ( RingHom ↾ ((Base‘𝐶) × (Base‘𝐶)))) |
| 8 | 7 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑟 ∈ (Base‘𝐶)) → (Hom ‘𝐶) = ( RingHom ↾ ((Base‘𝐶) × (Base‘𝐶)))) |
| 9 | 8 | oveqd 7407 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑟 ∈ (Base‘𝐶)) → (ℤring(Hom ‘𝐶)𝑟) = (ℤring( RingHom ↾ ((Base‘𝐶) × (Base‘𝐶)))𝑟)) |
| 10 | irinitoringc.z | . . . . . . . . . 10 ⊢ (𝜑 → ℤring ∈ 𝑈) | |
| 11 | id 22 | . . . . . . . . . . 11 ⊢ (ℤring ∈ 𝑈 → ℤring ∈ 𝑈) | |
| 12 | zringring 21366 | . . . . . . . . . . . 12 ⊢ ℤring ∈ Ring | |
| 13 | 12 | a1i 11 | . . . . . . . . . . 11 ⊢ (ℤring ∈ 𝑈 → ℤring ∈ Ring) |
| 14 | 11, 13 | elind 4166 | . . . . . . . . . 10 ⊢ (ℤring ∈ 𝑈 → ℤring ∈ (𝑈 ∩ Ring)) |
| 15 | 10, 14 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → ℤring ∈ (𝑈 ∩ Ring)) |
| 16 | 3, 4, 5 | ringcbas 20566 | . . . . . . . . 9 ⊢ (𝜑 → (Base‘𝐶) = (𝑈 ∩ Ring)) |
| 17 | 15, 16 | eleqtrrd 2832 | . . . . . . . 8 ⊢ (𝜑 → ℤring ∈ (Base‘𝐶)) |
| 18 | 17 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑟 ∈ (Base‘𝐶)) → ℤring ∈ (Base‘𝐶)) |
| 19 | simpr 484 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑟 ∈ (Base‘𝐶)) → 𝑟 ∈ (Base‘𝐶)) | |
| 20 | 18, 19 | ovresd 7559 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑟 ∈ (Base‘𝐶)) → (ℤring( RingHom ↾ ((Base‘𝐶) × (Base‘𝐶)))𝑟) = (ℤring RingHom 𝑟)) |
| 21 | 16 | eleq2d 2815 | . . . . . . . . 9 ⊢ (𝜑 → (𝑟 ∈ (Base‘𝐶) ↔ 𝑟 ∈ (𝑈 ∩ Ring))) |
| 22 | elin 3933 | . . . . . . . . . 10 ⊢ (𝑟 ∈ (𝑈 ∩ Ring) ↔ (𝑟 ∈ 𝑈 ∧ 𝑟 ∈ Ring)) | |
| 23 | 22 | simprbi 496 | . . . . . . . . 9 ⊢ (𝑟 ∈ (𝑈 ∩ Ring) → 𝑟 ∈ Ring) |
| 24 | 21, 23 | biimtrdi 253 | . . . . . . . 8 ⊢ (𝜑 → (𝑟 ∈ (Base‘𝐶) → 𝑟 ∈ Ring)) |
| 25 | 24 | imp 406 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑟 ∈ (Base‘𝐶)) → 𝑟 ∈ Ring) |
| 26 | eqid 2730 | . . . . . . . 8 ⊢ (.g‘𝑟) = (.g‘𝑟) | |
| 27 | eqid 2730 | . . . . . . . 8 ⊢ (𝑧 ∈ ℤ ↦ (𝑧(.g‘𝑟)(1r‘𝑟))) = (𝑧 ∈ ℤ ↦ (𝑧(.g‘𝑟)(1r‘𝑟))) | |
| 28 | eqid 2730 | . . . . . . . 8 ⊢ (1r‘𝑟) = (1r‘𝑟) | |
| 29 | 26, 27, 28 | mulgrhm2 21395 | . . . . . . 7 ⊢ (𝑟 ∈ Ring → (ℤring RingHom 𝑟) = {(𝑧 ∈ ℤ ↦ (𝑧(.g‘𝑟)(1r‘𝑟)))}) |
| 30 | 25, 29 | syl 17 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑟 ∈ (Base‘𝐶)) → (ℤring RingHom 𝑟) = {(𝑧 ∈ ℤ ↦ (𝑧(.g‘𝑟)(1r‘𝑟)))}) |
| 31 | 9, 20, 30 | 3eqtrd 2769 | . . . . 5 ⊢ ((𝜑 ∧ 𝑟 ∈ (Base‘𝐶)) → (ℤring(Hom ‘𝐶)𝑟) = {(𝑧 ∈ ℤ ↦ (𝑧(.g‘𝑟)(1r‘𝑟)))}) |
| 32 | sneq 4602 | . . . . . . 7 ⊢ (𝑓 = (𝑧 ∈ ℤ ↦ (𝑧(.g‘𝑟)(1r‘𝑟))) → {𝑓} = {(𝑧 ∈ ℤ ↦ (𝑧(.g‘𝑟)(1r‘𝑟)))}) | |
| 33 | 32 | eqeq2d 2741 | . . . . . 6 ⊢ (𝑓 = (𝑧 ∈ ℤ ↦ (𝑧(.g‘𝑟)(1r‘𝑟))) → ((ℤring(Hom ‘𝐶)𝑟) = {𝑓} ↔ (ℤring(Hom ‘𝐶)𝑟) = {(𝑧 ∈ ℤ ↦ (𝑧(.g‘𝑟)(1r‘𝑟)))})) |
| 34 | 33 | spcegv 3566 | . . . . 5 ⊢ ((𝑧 ∈ ℤ ↦ (𝑧(.g‘𝑟)(1r‘𝑟))) ∈ V → ((ℤring(Hom ‘𝐶)𝑟) = {(𝑧 ∈ ℤ ↦ (𝑧(.g‘𝑟)(1r‘𝑟)))} → ∃𝑓(ℤring(Hom ‘𝐶)𝑟) = {𝑓})) |
| 35 | 2, 31, 34 | mpsyl 68 | . . . 4 ⊢ ((𝜑 ∧ 𝑟 ∈ (Base‘𝐶)) → ∃𝑓(ℤring(Hom ‘𝐶)𝑟) = {𝑓}) |
| 36 | eusn 4697 | . . . 4 ⊢ (∃!𝑓 𝑓 ∈ (ℤring(Hom ‘𝐶)𝑟) ↔ ∃𝑓(ℤring(Hom ‘𝐶)𝑟) = {𝑓}) | |
| 37 | 35, 36 | sylibr 234 | . . 3 ⊢ ((𝜑 ∧ 𝑟 ∈ (Base‘𝐶)) → ∃!𝑓 𝑓 ∈ (ℤring(Hom ‘𝐶)𝑟)) |
| 38 | 37 | ralrimiva 3126 | . 2 ⊢ (𝜑 → ∀𝑟 ∈ (Base‘𝐶)∃!𝑓 𝑓 ∈ (ℤring(Hom ‘𝐶)𝑟)) |
| 39 | 3 | ringccat 20579 | . . . 4 ⊢ (𝑈 ∈ 𝑉 → 𝐶 ∈ Cat) |
| 40 | 5, 39 | syl 17 | . . 3 ⊢ (𝜑 → 𝐶 ∈ Cat) |
| 41 | 12 | a1i 11 | . . . . 5 ⊢ (𝜑 → ℤring ∈ Ring) |
| 42 | 10, 41 | elind 4166 | . . . 4 ⊢ (𝜑 → ℤring ∈ (𝑈 ∩ Ring)) |
| 43 | 42, 16 | eleqtrrd 2832 | . . 3 ⊢ (𝜑 → ℤring ∈ (Base‘𝐶)) |
| 44 | 4, 6, 40, 43 | isinito 17965 | . 2 ⊢ (𝜑 → (ℤring ∈ (InitO‘𝐶) ↔ ∀𝑟 ∈ (Base‘𝐶)∃!𝑓 𝑓 ∈ (ℤring(Hom ‘𝐶)𝑟))) |
| 45 | 38, 44 | mpbird 257 | 1 ⊢ (𝜑 → ℤring ∈ (InitO‘𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ∃!weu 2562 ∀wral 3045 Vcvv 3450 ∩ cin 3916 {csn 4592 ↦ cmpt 5191 × cxp 5639 ↾ cres 5643 ‘cfv 6514 (class class class)co 7390 ℤcz 12536 Basecbs 17186 Hom chom 17238 Catccat 17632 InitOcinito 17950 .gcmg 19006 1rcur 20097 Ringcrg 20149 RingHom crh 20385 RingCatcringc 20561 ℤringczring 21363 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-addf 11154 ax-mulf 11155 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-er 8674 df-map 8804 df-pm 8805 df-ixp 8874 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-z 12537 df-dec 12657 df-uz 12801 df-fz 13476 df-seq 13974 df-struct 17124 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-ress 17208 df-plusg 17240 df-mulr 17241 df-starv 17242 df-tset 17246 df-ple 17247 df-ds 17249 df-unif 17250 df-hom 17251 df-cco 17252 df-0g 17411 df-cat 17636 df-cid 17637 df-homf 17638 df-ssc 17779 df-resc 17780 df-subc 17781 df-inito 17953 df-estrc 18091 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-mhm 18717 df-grp 18875 df-minusg 18876 df-mulg 19007 df-subg 19062 df-ghm 19152 df-cmn 19719 df-abl 19720 df-mgp 20057 df-rng 20069 df-ur 20098 df-ring 20151 df-cring 20152 df-rhm 20388 df-subrng 20462 df-subrg 20486 df-ringc 20562 df-cnfld 21272 df-zring 21364 |
| This theorem is referenced by: nzerooringczr 21397 |
| Copyright terms: Public domain | W3C validator |