| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > irinitoringc | Structured version Visualization version GIF version | ||
| Description: The ring of integers is an initial object in the category of unital rings (within a universe containing the ring of integers). Example 7.2 (6) of [Adamek] p. 101 , and example in [Lang] p. 58. (Contributed by AV, 3-Apr-2020.) |
| Ref | Expression |
|---|---|
| irinitoringc.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
| irinitoringc.z | ⊢ (𝜑 → ℤring ∈ 𝑈) |
| irinitoringc.c | ⊢ 𝐶 = (RingCat‘𝑈) |
| Ref | Expression |
|---|---|
| irinitoringc | ⊢ (𝜑 → ℤring ∈ (InitO‘𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zex 12484 | . . . . . 6 ⊢ ℤ ∈ V | |
| 2 | 1 | mptex 7163 | . . . . 5 ⊢ (𝑧 ∈ ℤ ↦ (𝑧(.g‘𝑟)(1r‘𝑟))) ∈ V |
| 3 | irinitoringc.c | . . . . . . . . 9 ⊢ 𝐶 = (RingCat‘𝑈) | |
| 4 | eqid 2733 | . . . . . . . . 9 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
| 5 | irinitoringc.u | . . . . . . . . 9 ⊢ (𝜑 → 𝑈 ∈ 𝑉) | |
| 6 | eqid 2733 | . . . . . . . . 9 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
| 7 | 3, 4, 5, 6 | ringchomfval 20568 | . . . . . . . 8 ⊢ (𝜑 → (Hom ‘𝐶) = ( RingHom ↾ ((Base‘𝐶) × (Base‘𝐶)))) |
| 8 | 7 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑟 ∈ (Base‘𝐶)) → (Hom ‘𝐶) = ( RingHom ↾ ((Base‘𝐶) × (Base‘𝐶)))) |
| 9 | 8 | oveqd 7369 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑟 ∈ (Base‘𝐶)) → (ℤring(Hom ‘𝐶)𝑟) = (ℤring( RingHom ↾ ((Base‘𝐶) × (Base‘𝐶)))𝑟)) |
| 10 | irinitoringc.z | . . . . . . . . . 10 ⊢ (𝜑 → ℤring ∈ 𝑈) | |
| 11 | id 22 | . . . . . . . . . . 11 ⊢ (ℤring ∈ 𝑈 → ℤring ∈ 𝑈) | |
| 12 | zringring 21388 | . . . . . . . . . . . 12 ⊢ ℤring ∈ Ring | |
| 13 | 12 | a1i 11 | . . . . . . . . . . 11 ⊢ (ℤring ∈ 𝑈 → ℤring ∈ Ring) |
| 14 | 11, 13 | elind 4149 | . . . . . . . . . 10 ⊢ (ℤring ∈ 𝑈 → ℤring ∈ (𝑈 ∩ Ring)) |
| 15 | 10, 14 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → ℤring ∈ (𝑈 ∩ Ring)) |
| 16 | 3, 4, 5 | ringcbas 20567 | . . . . . . . . 9 ⊢ (𝜑 → (Base‘𝐶) = (𝑈 ∩ Ring)) |
| 17 | 15, 16 | eleqtrrd 2836 | . . . . . . . 8 ⊢ (𝜑 → ℤring ∈ (Base‘𝐶)) |
| 18 | 17 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑟 ∈ (Base‘𝐶)) → ℤring ∈ (Base‘𝐶)) |
| 19 | simpr 484 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑟 ∈ (Base‘𝐶)) → 𝑟 ∈ (Base‘𝐶)) | |
| 20 | 18, 19 | ovresd 7519 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑟 ∈ (Base‘𝐶)) → (ℤring( RingHom ↾ ((Base‘𝐶) × (Base‘𝐶)))𝑟) = (ℤring RingHom 𝑟)) |
| 21 | 16 | eleq2d 2819 | . . . . . . . . 9 ⊢ (𝜑 → (𝑟 ∈ (Base‘𝐶) ↔ 𝑟 ∈ (𝑈 ∩ Ring))) |
| 22 | elin 3914 | . . . . . . . . . 10 ⊢ (𝑟 ∈ (𝑈 ∩ Ring) ↔ (𝑟 ∈ 𝑈 ∧ 𝑟 ∈ Ring)) | |
| 23 | 22 | simprbi 496 | . . . . . . . . 9 ⊢ (𝑟 ∈ (𝑈 ∩ Ring) → 𝑟 ∈ Ring) |
| 24 | 21, 23 | biimtrdi 253 | . . . . . . . 8 ⊢ (𝜑 → (𝑟 ∈ (Base‘𝐶) → 𝑟 ∈ Ring)) |
| 25 | 24 | imp 406 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑟 ∈ (Base‘𝐶)) → 𝑟 ∈ Ring) |
| 26 | eqid 2733 | . . . . . . . 8 ⊢ (.g‘𝑟) = (.g‘𝑟) | |
| 27 | eqid 2733 | . . . . . . . 8 ⊢ (𝑧 ∈ ℤ ↦ (𝑧(.g‘𝑟)(1r‘𝑟))) = (𝑧 ∈ ℤ ↦ (𝑧(.g‘𝑟)(1r‘𝑟))) | |
| 28 | eqid 2733 | . . . . . . . 8 ⊢ (1r‘𝑟) = (1r‘𝑟) | |
| 29 | 26, 27, 28 | mulgrhm2 21417 | . . . . . . 7 ⊢ (𝑟 ∈ Ring → (ℤring RingHom 𝑟) = {(𝑧 ∈ ℤ ↦ (𝑧(.g‘𝑟)(1r‘𝑟)))}) |
| 30 | 25, 29 | syl 17 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑟 ∈ (Base‘𝐶)) → (ℤring RingHom 𝑟) = {(𝑧 ∈ ℤ ↦ (𝑧(.g‘𝑟)(1r‘𝑟)))}) |
| 31 | 9, 20, 30 | 3eqtrd 2772 | . . . . 5 ⊢ ((𝜑 ∧ 𝑟 ∈ (Base‘𝐶)) → (ℤring(Hom ‘𝐶)𝑟) = {(𝑧 ∈ ℤ ↦ (𝑧(.g‘𝑟)(1r‘𝑟)))}) |
| 32 | sneq 4585 | . . . . . . 7 ⊢ (𝑓 = (𝑧 ∈ ℤ ↦ (𝑧(.g‘𝑟)(1r‘𝑟))) → {𝑓} = {(𝑧 ∈ ℤ ↦ (𝑧(.g‘𝑟)(1r‘𝑟)))}) | |
| 33 | 32 | eqeq2d 2744 | . . . . . 6 ⊢ (𝑓 = (𝑧 ∈ ℤ ↦ (𝑧(.g‘𝑟)(1r‘𝑟))) → ((ℤring(Hom ‘𝐶)𝑟) = {𝑓} ↔ (ℤring(Hom ‘𝐶)𝑟) = {(𝑧 ∈ ℤ ↦ (𝑧(.g‘𝑟)(1r‘𝑟)))})) |
| 34 | 33 | spcegv 3548 | . . . . 5 ⊢ ((𝑧 ∈ ℤ ↦ (𝑧(.g‘𝑟)(1r‘𝑟))) ∈ V → ((ℤring(Hom ‘𝐶)𝑟) = {(𝑧 ∈ ℤ ↦ (𝑧(.g‘𝑟)(1r‘𝑟)))} → ∃𝑓(ℤring(Hom ‘𝐶)𝑟) = {𝑓})) |
| 35 | 2, 31, 34 | mpsyl 68 | . . . 4 ⊢ ((𝜑 ∧ 𝑟 ∈ (Base‘𝐶)) → ∃𝑓(ℤring(Hom ‘𝐶)𝑟) = {𝑓}) |
| 36 | eusn 4682 | . . . 4 ⊢ (∃!𝑓 𝑓 ∈ (ℤring(Hom ‘𝐶)𝑟) ↔ ∃𝑓(ℤring(Hom ‘𝐶)𝑟) = {𝑓}) | |
| 37 | 35, 36 | sylibr 234 | . . 3 ⊢ ((𝜑 ∧ 𝑟 ∈ (Base‘𝐶)) → ∃!𝑓 𝑓 ∈ (ℤring(Hom ‘𝐶)𝑟)) |
| 38 | 37 | ralrimiva 3125 | . 2 ⊢ (𝜑 → ∀𝑟 ∈ (Base‘𝐶)∃!𝑓 𝑓 ∈ (ℤring(Hom ‘𝐶)𝑟)) |
| 39 | 3 | ringccat 20580 | . . . 4 ⊢ (𝑈 ∈ 𝑉 → 𝐶 ∈ Cat) |
| 40 | 5, 39 | syl 17 | . . 3 ⊢ (𝜑 → 𝐶 ∈ Cat) |
| 41 | 12 | a1i 11 | . . . . 5 ⊢ (𝜑 → ℤring ∈ Ring) |
| 42 | 10, 41 | elind 4149 | . . . 4 ⊢ (𝜑 → ℤring ∈ (𝑈 ∩ Ring)) |
| 43 | 42, 16 | eleqtrrd 2836 | . . 3 ⊢ (𝜑 → ℤring ∈ (Base‘𝐶)) |
| 44 | 4, 6, 40, 43 | isinito 17905 | . 2 ⊢ (𝜑 → (ℤring ∈ (InitO‘𝐶) ↔ ∀𝑟 ∈ (Base‘𝐶)∃!𝑓 𝑓 ∈ (ℤring(Hom ‘𝐶)𝑟))) |
| 45 | 38, 44 | mpbird 257 | 1 ⊢ (𝜑 → ℤring ∈ (InitO‘𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∃wex 1780 ∈ wcel 2113 ∃!weu 2565 ∀wral 3048 Vcvv 3437 ∩ cin 3897 {csn 4575 ↦ cmpt 5174 × cxp 5617 ↾ cres 5621 ‘cfv 6486 (class class class)co 7352 ℤcz 12475 Basecbs 17122 Hom chom 17174 Catccat 17572 InitOcinito 17890 .gcmg 18982 1rcur 20101 Ringcrg 20153 RingHom crh 20389 RingCatcringc 20562 ℤringczring 21385 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 ax-addf 11092 ax-mulf 11093 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-tp 4580 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-er 8628 df-map 8758 df-pm 8759 df-ixp 8828 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-nn 12133 df-2 12195 df-3 12196 df-4 12197 df-5 12198 df-6 12199 df-7 12200 df-8 12201 df-9 12202 df-n0 12389 df-z 12476 df-dec 12595 df-uz 12739 df-fz 13410 df-seq 13911 df-struct 17060 df-sets 17077 df-slot 17095 df-ndx 17107 df-base 17123 df-ress 17144 df-plusg 17176 df-mulr 17177 df-starv 17178 df-tset 17182 df-ple 17183 df-ds 17185 df-unif 17186 df-hom 17187 df-cco 17188 df-0g 17347 df-cat 17576 df-cid 17577 df-homf 17578 df-ssc 17719 df-resc 17720 df-subc 17721 df-inito 17893 df-estrc 18031 df-mgm 18550 df-sgrp 18629 df-mnd 18645 df-mhm 18693 df-grp 18851 df-minusg 18852 df-mulg 18983 df-subg 19038 df-ghm 19127 df-cmn 19696 df-abl 19697 df-mgp 20061 df-rng 20073 df-ur 20102 df-ring 20155 df-cring 20156 df-rhm 20392 df-subrng 20463 df-subrg 20487 df-ringc 20563 df-cnfld 21294 df-zring 21386 |
| This theorem is referenced by: nzerooringczr 21419 |
| Copyright terms: Public domain | W3C validator |