MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  initoeu2lem1 Structured version   Visualization version   GIF version

Theorem initoeu2lem1 17266
Description: Lemma 1 for initoeu2 17268. (Contributed by AV, 9-Apr-2020.)
Hypotheses
Ref Expression
initoeu1.c (𝜑𝐶 ∈ Cat)
initoeu1.a (𝜑𝐴 ∈ (InitO‘𝐶))
initoeu2lem.x 𝑋 = (Base‘𝐶)
initoeu2lem.h 𝐻 = (Hom ‘𝐶)
initoeu2lem.i 𝐼 = (Iso‘𝐶)
initoeu2lem.o = (comp‘𝐶)
Assertion
Ref Expression
initoeu2lem1 ((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷))) → ((∃!𝑓 𝑓 ∈ (𝐴𝐻𝐷) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ 𝐺 ∈ (𝐵𝐻𝐷)) → 𝐺 = (𝐹(⟨𝐵, 𝐴 𝐷)𝐾)))
Distinct variable groups:   𝐴,𝑓   𝐵,𝑓   𝐶,𝑓   𝜑,𝑓   𝐷,𝑓   𝑓,𝐹   𝑓,𝐺   𝑓,𝐼   𝑓,𝐾   𝑓,𝐻   𝑓,𝑋   ,𝑓

Proof of Theorem initoeu2lem1
StepHypRef Expression
1 eusn 4664 . . . 4 (∃!𝑓 𝑓 ∈ (𝐴𝐻𝐷) ↔ ∃𝑓(𝐴𝐻𝐷) = {𝑓})
2 initoeu2lem.x . . . . . . . . . . . 12 𝑋 = (Base‘𝐶)
3 eqid 2825 . . . . . . . . . . . 12 (Inv‘𝐶) = (Inv‘𝐶)
4 initoeu1.c . . . . . . . . . . . . 13 (𝜑𝐶 ∈ Cat)
54ad2antrr 722 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) → 𝐶 ∈ Cat)
6 simpr2 1189 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) → 𝐵𝑋)
76adantr 481 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) → 𝐵𝑋)
8 simpr1 1188 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) → 𝐴𝑋)
98adantr 481 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) → 𝐴𝑋)
10 initoeu2lem.i . . . . . . . . . . . 12 𝐼 = (Iso‘𝐶)
112, 3, 5, 7, 9, 10invf 17030 . . . . . . . . . . 11 (((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) → (𝐵(Inv‘𝐶)𝐴):(𝐵𝐼𝐴)⟶(𝐴𝐼𝐵))
12 simpr 485 . . . . . . . . . . 11 (((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) → 𝐾 ∈ (𝐵𝐼𝐴))
1311, 12ffvelrnd 6847 . . . . . . . . . 10 (((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) → ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐼𝐵))
14 initoeu2lem.h . . . . . . . . . . . . . . . . . 18 𝐻 = (Hom ‘𝐶)
154adantr 481 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) → 𝐶 ∈ Cat)
162, 14, 10, 15, 8, 6isohom 17038 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) → (𝐴𝐼𝐵) ⊆ (𝐴𝐻𝐵))
1716adantr 481 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) → (𝐴𝐼𝐵) ⊆ (𝐴𝐻𝐵))
1817sselda 3970 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐼𝐵)) → ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐻𝐵))
19 initoeu2lem.o . . . . . . . . . . . . . . . . . 18 = (comp‘𝐶)
2015ad4antr 728 . . . . . . . . . . . . . . . . . 18 ((((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐼𝐵)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐻𝐵)) ∧ 𝐺 ∈ (𝐵𝐻𝐷)) → 𝐶 ∈ Cat)
218ad4antr 728 . . . . . . . . . . . . . . . . . 18 ((((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐼𝐵)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐻𝐵)) ∧ 𝐺 ∈ (𝐵𝐻𝐷)) → 𝐴𝑋)
226ad4antr 728 . . . . . . . . . . . . . . . . . 18 ((((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐼𝐵)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐻𝐵)) ∧ 𝐺 ∈ (𝐵𝐻𝐷)) → 𝐵𝑋)
23 simpr3 1190 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) → 𝐷𝑋)
2423ad4antr 728 . . . . . . . . . . . . . . . . . 18 ((((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐼𝐵)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐻𝐵)) ∧ 𝐺 ∈ (𝐵𝐻𝐷)) → 𝐷𝑋)
25 simplr 765 . . . . . . . . . . . . . . . . . 18 ((((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐼𝐵)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐻𝐵)) ∧ 𝐺 ∈ (𝐵𝐻𝐷)) → ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐻𝐵))
26 simpr 485 . . . . . . . . . . . . . . . . . 18 ((((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐼𝐵)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐻𝐵)) ∧ 𝐺 ∈ (𝐵𝐻𝐷)) → 𝐺 ∈ (𝐵𝐻𝐷))
272, 14, 19, 20, 21, 22, 24, 25, 26catcocl 16948 . . . . . . . . . . . . . . . . 17 ((((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐼𝐵)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐻𝐵)) ∧ 𝐺 ∈ (𝐵𝐻𝐷)) → (𝐺(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) ∈ (𝐴𝐻𝐷))
2815ad2antrr 722 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐻𝐵)) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷)) → 𝐶 ∈ Cat)
298ad2antrr 722 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐻𝐵)) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷)) → 𝐴𝑋)
306ad2antrr 722 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐻𝐵)) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷)) → 𝐵𝑋)
3123ad2antrr 722 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐻𝐵)) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷)) → 𝐷𝑋)
32 simplr 765 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐻𝐵)) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷)) → ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐻𝐵))
33 simpr 485 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐻𝐵)) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷)) → (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷))
342, 14, 19, 28, 29, 30, 31, 32, 33catcocl 16948 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐻𝐵)) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷)) → ((𝐹(⟨𝐵, 𝐴 𝐷)𝐾)(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) ∈ (𝐴𝐻𝐷))
3534exp31 420 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) → (((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐻𝐵) → ((𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷) → ((𝐹(⟨𝐵, 𝐴 𝐷)𝐾)(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) ∈ (𝐴𝐻𝐷))))
3635ad2antrr 722 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐼𝐵)) → (((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐻𝐵) → ((𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷) → ((𝐹(⟨𝐵, 𝐴 𝐷)𝐾)(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) ∈ (𝐴𝐻𝐷))))
3736imp 407 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐼𝐵)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐻𝐵)) → ((𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷) → ((𝐹(⟨𝐵, 𝐴 𝐷)𝐾)(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) ∈ (𝐴𝐻𝐷)))
38 eleq2 2905 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐴𝐻𝐷) = {𝑓} → (((𝐹(⟨𝐵, 𝐴 𝐷)𝐾)(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) ∈ (𝐴𝐻𝐷) ↔ ((𝐹(⟨𝐵, 𝐴 𝐷)𝐾)(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) ∈ {𝑓}))
3938adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐼𝐵)) ∧ (𝐴𝐻𝐷) = {𝑓}) → (((𝐹(⟨𝐵, 𝐴 𝐷)𝐾)(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) ∈ (𝐴𝐻𝐷) ↔ ((𝐹(⟨𝐵, 𝐴 𝐷)𝐾)(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) ∈ {𝑓}))
40 ovex 7184 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐹(⟨𝐵, 𝐴 𝐷)𝐾)(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) ∈ V
41 elsng 4577 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝐹(⟨𝐵, 𝐴 𝐷)𝐾)(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) ∈ V → (((𝐹(⟨𝐵, 𝐴 𝐷)𝐾)(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) ∈ {𝑓} ↔ ((𝐹(⟨𝐵, 𝐴 𝐷)𝐾)(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) = 𝑓))
4240, 41mp1i 13 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐼𝐵)) ∧ (𝐴𝐻𝐷) = {𝑓}) → (((𝐹(⟨𝐵, 𝐴 𝐷)𝐾)(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) ∈ {𝑓} ↔ ((𝐹(⟨𝐵, 𝐴 𝐷)𝐾)(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) = 𝑓))
4339, 42bitrd 280 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐼𝐵)) ∧ (𝐴𝐻𝐷) = {𝑓}) → (((𝐹(⟨𝐵, 𝐴 𝐷)𝐾)(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) ∈ (𝐴𝐻𝐷) ↔ ((𝐹(⟨𝐵, 𝐴 𝐷)𝐾)(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) = 𝑓))
44 eleq2 2905 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝐴𝐻𝐷) = {𝑓} → ((𝐺(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) ∈ (𝐴𝐻𝐷) ↔ (𝐺(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) ∈ {𝑓}))
45 ovex 7184 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝐺(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) ∈ V
46 elsng 4577 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝐺(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) ∈ V → ((𝐺(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) ∈ {𝑓} ↔ (𝐺(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) = 𝑓))
4745, 46mp1i 13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝐴𝐻𝐷) = {𝑓} → ((𝐺(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) ∈ {𝑓} ↔ (𝐺(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) = 𝑓))
4844, 47bitrd 280 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝐴𝐻𝐷) = {𝑓} → ((𝐺(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) ∈ (𝐴𝐻𝐷) ↔ (𝐺(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) = 𝑓))
4948adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐼𝐵)) ∧ (𝐴𝐻𝐷) = {𝑓}) → ((𝐺(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) ∈ (𝐴𝐻𝐷) ↔ (𝐺(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) = 𝑓))
50 eqeq2 2837 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑓 = (𝐺(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) → (((𝐹(⟨𝐵, 𝐴 𝐷)𝐾)(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) = 𝑓 ↔ ((𝐹(⟨𝐵, 𝐴 𝐷)𝐾)(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) = (𝐺(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾))))
5150eqcoms 2833 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝐺(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) = 𝑓 → (((𝐹(⟨𝐵, 𝐴 𝐷)𝐾)(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) = 𝑓 ↔ ((𝐹(⟨𝐵, 𝐴 𝐷)𝐾)(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) = (𝐺(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾))))
5251adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐼𝐵)) ∧ (𝐺(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) = 𝑓) → (((𝐹(⟨𝐵, 𝐴 𝐷)𝐾)(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) = 𝑓 ↔ ((𝐹(⟨𝐵, 𝐴 𝐷)𝐾)(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) = (𝐺(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾))))
53 simp-4l 779 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐼𝐵)) ∧ ((𝐹(⟨𝐵, 𝐴 𝐷)𝐾)(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) = (𝐺(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾))) ∧ (𝐺 ∈ (𝐵𝐻𝐷) ∧ 𝐹 ∈ (𝐴𝐻𝐷))) → (𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)))
54 simp-4r 780 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐼𝐵)) ∧ ((𝐹(⟨𝐵, 𝐴 𝐷)𝐾)(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) = (𝐺(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾))) ∧ (𝐺 ∈ (𝐵𝐻𝐷) ∧ 𝐹 ∈ (𝐴𝐻𝐷))) → 𝐾 ∈ (𝐵𝐼𝐴))
55 simprr 769 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐼𝐵)) ∧ ((𝐹(⟨𝐵, 𝐴 𝐷)𝐾)(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) = (𝐺(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾))) ∧ (𝐺 ∈ (𝐵𝐻𝐷) ∧ 𝐹 ∈ (𝐴𝐻𝐷))) → 𝐹 ∈ (𝐴𝐻𝐷))
56 simprl 767 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐼𝐵)) ∧ ((𝐹(⟨𝐵, 𝐴 𝐷)𝐾)(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) = (𝐺(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾))) ∧ (𝐺 ∈ (𝐵𝐻𝐷) ∧ 𝐹 ∈ (𝐴𝐻𝐷))) → 𝐺 ∈ (𝐵𝐻𝐷))
57 simplr 765 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐼𝐵)) ∧ ((𝐹(⟨𝐵, 𝐴 𝐷)𝐾)(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) = (𝐺(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾))) ∧ (𝐺 ∈ (𝐵𝐻𝐷) ∧ 𝐹 ∈ (𝐴𝐻𝐷))) → ((𝐹(⟨𝐵, 𝐴 𝐷)𝐾)(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) = (𝐺(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)))
58 initoeu1.a . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝜑𝐴 ∈ (InitO‘𝐶))
594, 58, 2, 14, 10, 19initoeu2lem0 17265 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ 𝐺 ∈ (𝐵𝐻𝐷)) ∧ ((𝐹(⟨𝐵, 𝐴 𝐷)𝐾)(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) = (𝐺(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾))) → 𝐺 = (𝐹(⟨𝐵, 𝐴 𝐷)𝐾))
6053, 54, 55, 56, 57, 59syl131anc 1377 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐼𝐵)) ∧ ((𝐹(⟨𝐵, 𝐴 𝐷)𝐾)(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) = (𝐺(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾))) ∧ (𝐺 ∈ (𝐵𝐻𝐷) ∧ 𝐹 ∈ (𝐴𝐻𝐷))) → 𝐺 = (𝐹(⟨𝐵, 𝐴 𝐷)𝐾))
6160exp43 437 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐼𝐵)) → (((𝐹(⟨𝐵, 𝐴 𝐷)𝐾)(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) = (𝐺(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) → (𝐺 ∈ (𝐵𝐻𝐷) → (𝐹 ∈ (𝐴𝐻𝐷) → 𝐺 = (𝐹(⟨𝐵, 𝐴 𝐷)𝐾)))))
6261adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐼𝐵)) ∧ (𝐺(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) = 𝑓) → (((𝐹(⟨𝐵, 𝐴 𝐷)𝐾)(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) = (𝐺(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) → (𝐺 ∈ (𝐵𝐻𝐷) → (𝐹 ∈ (𝐴𝐻𝐷) → 𝐺 = (𝐹(⟨𝐵, 𝐴 𝐷)𝐾)))))
6352, 62sylbid 241 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐼𝐵)) ∧ (𝐺(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) = 𝑓) → (((𝐹(⟨𝐵, 𝐴 𝐷)𝐾)(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) = 𝑓 → (𝐺 ∈ (𝐵𝐻𝐷) → (𝐹 ∈ (𝐴𝐻𝐷) → 𝐺 = (𝐹(⟨𝐵, 𝐴 𝐷)𝐾)))))
6463ex 413 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐼𝐵)) → ((𝐺(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) = 𝑓 → (((𝐹(⟨𝐵, 𝐴 𝐷)𝐾)(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) = 𝑓 → (𝐺 ∈ (𝐵𝐻𝐷) → (𝐹 ∈ (𝐴𝐻𝐷) → 𝐺 = (𝐹(⟨𝐵, 𝐴 𝐷)𝐾))))))
6564adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐼𝐵)) ∧ (𝐴𝐻𝐷) = {𝑓}) → ((𝐺(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) = 𝑓 → (((𝐹(⟨𝐵, 𝐴 𝐷)𝐾)(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) = 𝑓 → (𝐺 ∈ (𝐵𝐻𝐷) → (𝐹 ∈ (𝐴𝐻𝐷) → 𝐺 = (𝐹(⟨𝐵, 𝐴 𝐷)𝐾))))))
6649, 65sylbid 241 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐼𝐵)) ∧ (𝐴𝐻𝐷) = {𝑓}) → ((𝐺(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) ∈ (𝐴𝐻𝐷) → (((𝐹(⟨𝐵, 𝐴 𝐷)𝐾)(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) = 𝑓 → (𝐺 ∈ (𝐵𝐻𝐷) → (𝐹 ∈ (𝐴𝐻𝐷) → 𝐺 = (𝐹(⟨𝐵, 𝐴 𝐷)𝐾))))))
6766com23 86 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐼𝐵)) ∧ (𝐴𝐻𝐷) = {𝑓}) → (((𝐹(⟨𝐵, 𝐴 𝐷)𝐾)(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) = 𝑓 → ((𝐺(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) ∈ (𝐴𝐻𝐷) → (𝐺 ∈ (𝐵𝐻𝐷) → (𝐹 ∈ (𝐴𝐻𝐷) → 𝐺 = (𝐹(⟨𝐵, 𝐴 𝐷)𝐾))))))
6843, 67sylbid 241 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐼𝐵)) ∧ (𝐴𝐻𝐷) = {𝑓}) → (((𝐹(⟨𝐵, 𝐴 𝐷)𝐾)(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) ∈ (𝐴𝐻𝐷) → ((𝐺(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) ∈ (𝐴𝐻𝐷) → (𝐺 ∈ (𝐵𝐻𝐷) → (𝐹 ∈ (𝐴𝐻𝐷) → 𝐺 = (𝐹(⟨𝐵, 𝐴 𝐷)𝐾))))))
6968com23 86 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐼𝐵)) ∧ (𝐴𝐻𝐷) = {𝑓}) → ((𝐺(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) ∈ (𝐴𝐻𝐷) → (((𝐹(⟨𝐵, 𝐴 𝐷)𝐾)(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) ∈ (𝐴𝐻𝐷) → (𝐺 ∈ (𝐵𝐻𝐷) → (𝐹 ∈ (𝐴𝐻𝐷) → 𝐺 = (𝐹(⟨𝐵, 𝐴 𝐷)𝐾))))))
7069ex 413 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐼𝐵)) → ((𝐴𝐻𝐷) = {𝑓} → ((𝐺(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) ∈ (𝐴𝐻𝐷) → (((𝐹(⟨𝐵, 𝐴 𝐷)𝐾)(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) ∈ (𝐴𝐻𝐷) → (𝐺 ∈ (𝐵𝐻𝐷) → (𝐹 ∈ (𝐴𝐻𝐷) → 𝐺 = (𝐹(⟨𝐵, 𝐴 𝐷)𝐾)))))))
7170com24 95 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐼𝐵)) → (((𝐹(⟨𝐵, 𝐴 𝐷)𝐾)(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) ∈ (𝐴𝐻𝐷) → ((𝐺(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) ∈ (𝐴𝐻𝐷) → ((𝐴𝐻𝐷) = {𝑓} → (𝐺 ∈ (𝐵𝐻𝐷) → (𝐹 ∈ (𝐴𝐻𝐷) → 𝐺 = (𝐹(⟨𝐵, 𝐴 𝐷)𝐾)))))))
7271adantr 481 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐼𝐵)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐻𝐵)) → (((𝐹(⟨𝐵, 𝐴 𝐷)𝐾)(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) ∈ (𝐴𝐻𝐷) → ((𝐺(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) ∈ (𝐴𝐻𝐷) → ((𝐴𝐻𝐷) = {𝑓} → (𝐺 ∈ (𝐵𝐻𝐷) → (𝐹 ∈ (𝐴𝐻𝐷) → 𝐺 = (𝐹(⟨𝐵, 𝐴 𝐷)𝐾)))))))
7337, 72syld 47 . . . . . . . . . . . . . . . . . . 19 (((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐼𝐵)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐻𝐵)) → ((𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷) → ((𝐺(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) ∈ (𝐴𝐻𝐷) → ((𝐴𝐻𝐷) = {𝑓} → (𝐺 ∈ (𝐵𝐻𝐷) → (𝐹 ∈ (𝐴𝐻𝐷) → 𝐺 = (𝐹(⟨𝐵, 𝐴 𝐷)𝐾)))))))
7473com25 99 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐼𝐵)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐻𝐵)) → (𝐺 ∈ (𝐵𝐻𝐷) → ((𝐺(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) ∈ (𝐴𝐻𝐷) → ((𝐴𝐻𝐷) = {𝑓} → ((𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷) → (𝐹 ∈ (𝐴𝐻𝐷) → 𝐺 = (𝐹(⟨𝐵, 𝐴 𝐷)𝐾)))))))
7574imp 407 . . . . . . . . . . . . . . . . 17 ((((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐼𝐵)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐻𝐵)) ∧ 𝐺 ∈ (𝐵𝐻𝐷)) → ((𝐺(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) ∈ (𝐴𝐻𝐷) → ((𝐴𝐻𝐷) = {𝑓} → ((𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷) → (𝐹 ∈ (𝐴𝐻𝐷) → 𝐺 = (𝐹(⟨𝐵, 𝐴 𝐷)𝐾))))))
7627, 75mpd 15 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐼𝐵)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐻𝐵)) ∧ 𝐺 ∈ (𝐵𝐻𝐷)) → ((𝐴𝐻𝐷) = {𝑓} → ((𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷) → (𝐹 ∈ (𝐴𝐻𝐷) → 𝐺 = (𝐹(⟨𝐵, 𝐴 𝐷)𝐾)))))
7776ex 413 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐼𝐵)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐻𝐵)) → (𝐺 ∈ (𝐵𝐻𝐷) → ((𝐴𝐻𝐷) = {𝑓} → ((𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷) → (𝐹 ∈ (𝐴𝐻𝐷) → 𝐺 = (𝐹(⟨𝐵, 𝐴 𝐷)𝐾))))))
7818, 77mpdan 683 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐼𝐵)) → (𝐺 ∈ (𝐵𝐻𝐷) → ((𝐴𝐻𝐷) = {𝑓} → ((𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷) → (𝐹 ∈ (𝐴𝐻𝐷) → 𝐺 = (𝐹(⟨𝐵, 𝐴 𝐷)𝐾))))))
7978com15 101 . . . . . . . . . . . . 13 (𝐹 ∈ (𝐴𝐻𝐷) → (𝐺 ∈ (𝐵𝐻𝐷) → ((𝐴𝐻𝐷) = {𝑓} → ((𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷) → ((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐼𝐵)) → 𝐺 = (𝐹(⟨𝐵, 𝐴 𝐷)𝐾))))))
8079imp 407 . . . . . . . . . . . 12 ((𝐹 ∈ (𝐴𝐻𝐷) ∧ 𝐺 ∈ (𝐵𝐻𝐷)) → ((𝐴𝐻𝐷) = {𝑓} → ((𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷) → ((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐼𝐵)) → 𝐺 = (𝐹(⟨𝐵, 𝐴 𝐷)𝐾)))))
8180impcom 408 . . . . . . . . . . 11 (((𝐴𝐻𝐷) = {𝑓} ∧ (𝐹 ∈ (𝐴𝐻𝐷) ∧ 𝐺 ∈ (𝐵𝐻𝐷))) → ((𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷) → ((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐼𝐵)) → 𝐺 = (𝐹(⟨𝐵, 𝐴 𝐷)𝐾))))
8281com13 88 . . . . . . . . . 10 ((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐼𝐵)) → ((𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷) → (((𝐴𝐻𝐷) = {𝑓} ∧ (𝐹 ∈ (𝐴𝐻𝐷) ∧ 𝐺 ∈ (𝐵𝐻𝐷))) → 𝐺 = (𝐹(⟨𝐵, 𝐴 𝐷)𝐾))))
8313, 82mpdan 683 . . . . . . . . 9 (((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) → ((𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷) → (((𝐴𝐻𝐷) = {𝑓} ∧ (𝐹 ∈ (𝐴𝐻𝐷) ∧ 𝐺 ∈ (𝐵𝐻𝐷))) → 𝐺 = (𝐹(⟨𝐵, 𝐴 𝐷)𝐾))))
8483expimpd 454 . . . . . . . 8 ((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) → ((𝐾 ∈ (𝐵𝐼𝐴) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷)) → (((𝐴𝐻𝐷) = {𝑓} ∧ (𝐹 ∈ (𝐴𝐻𝐷) ∧ 𝐺 ∈ (𝐵𝐻𝐷))) → 𝐺 = (𝐹(⟨𝐵, 𝐴 𝐷)𝐾))))
85843impia 1111 . . . . . . 7 ((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷))) → (((𝐴𝐻𝐷) = {𝑓} ∧ (𝐹 ∈ (𝐴𝐻𝐷) ∧ 𝐺 ∈ (𝐵𝐻𝐷))) → 𝐺 = (𝐹(⟨𝐵, 𝐴 𝐷)𝐾)))
8685com12 32 . . . . . 6 (((𝐴𝐻𝐷) = {𝑓} ∧ (𝐹 ∈ (𝐴𝐻𝐷) ∧ 𝐺 ∈ (𝐵𝐻𝐷))) → ((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷))) → 𝐺 = (𝐹(⟨𝐵, 𝐴 𝐷)𝐾)))
8786ex 413 . . . . 5 ((𝐴𝐻𝐷) = {𝑓} → ((𝐹 ∈ (𝐴𝐻𝐷) ∧ 𝐺 ∈ (𝐵𝐻𝐷)) → ((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷))) → 𝐺 = (𝐹(⟨𝐵, 𝐴 𝐷)𝐾))))
8887exlimiv 1924 . . . 4 (∃𝑓(𝐴𝐻𝐷) = {𝑓} → ((𝐹 ∈ (𝐴𝐻𝐷) ∧ 𝐺 ∈ (𝐵𝐻𝐷)) → ((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷))) → 𝐺 = (𝐹(⟨𝐵, 𝐴 𝐷)𝐾))))
891, 88sylbi 218 . . 3 (∃!𝑓 𝑓 ∈ (𝐴𝐻𝐷) → ((𝐹 ∈ (𝐴𝐻𝐷) ∧ 𝐺 ∈ (𝐵𝐻𝐷)) → ((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷))) → 𝐺 = (𝐹(⟨𝐵, 𝐴 𝐷)𝐾))))
90893impib 1110 . 2 ((∃!𝑓 𝑓 ∈ (𝐴𝐻𝐷) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ 𝐺 ∈ (𝐵𝐻𝐷)) → ((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷))) → 𝐺 = (𝐹(⟨𝐵, 𝐴 𝐷)𝐾)))
9190com12 32 1 ((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷))) → ((∃!𝑓 𝑓 ∈ (𝐴𝐻𝐷) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ 𝐺 ∈ (𝐵𝐻𝐷)) → 𝐺 = (𝐹(⟨𝐵, 𝐴 𝐷)𝐾)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1081   = wceq 1530  wex 1773  wcel 2107  ∃!weu 2650  Vcvv 3499  wss 3939  {csn 4563  cop 4569  cfv 6351  (class class class)co 7151  Basecbs 16475  Hom chom 16568  compcco 16569  Catccat 16927  Invcinv 17007  Isociso 17008  InitOcinito 17240
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2797  ax-rep 5186  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2619  df-eu 2651  df-clab 2804  df-cleq 2818  df-clel 2897  df-nfc 2967  df-ne 3021  df-ral 3147  df-rex 3148  df-reu 3149  df-rmo 3150  df-rab 3151  df-v 3501  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-op 4570  df-uni 4837  df-iun 4918  df-br 5063  df-opab 5125  df-mpt 5143  df-id 5458  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-f1 6356  df-fo 6357  df-f1o 6358  df-fv 6359  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-1st 7683  df-2nd 7684  df-cat 16931  df-cid 16932  df-sect 17009  df-inv 17010  df-iso 17011
This theorem is referenced by:  initoeu2lem2  17267
  Copyright terms: Public domain W3C validator