MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  initoeu2lem1 Structured version   Visualization version   GIF version

Theorem initoeu2lem1 16931
Description: Lemma 1 for initoeu2 16933. (Contributed by AV, 9-Apr-2020.)
Hypotheses
Ref Expression
initoeu1.c (𝜑𝐶 ∈ Cat)
initoeu1.a (𝜑𝐴 ∈ (InitO‘𝐶))
initoeu2lem.x 𝑋 = (Base‘𝐶)
initoeu2lem.h 𝐻 = (Hom ‘𝐶)
initoeu2lem.i 𝐼 = (Iso‘𝐶)
initoeu2lem.o = (comp‘𝐶)
Assertion
Ref Expression
initoeu2lem1 ((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷))) → ((∃!𝑓 𝑓 ∈ (𝐴𝐻𝐷) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ 𝐺 ∈ (𝐵𝐻𝐷)) → 𝐺 = (𝐹(⟨𝐵, 𝐴 𝐷)𝐾)))
Distinct variable groups:   𝐴,𝑓   𝐵,𝑓   𝐶,𝑓   𝜑,𝑓   𝐷,𝑓   𝑓,𝐹   𝑓,𝐺   𝑓,𝐼   𝑓,𝐾   𝑓,𝐻   𝑓,𝑋   ,𝑓

Proof of Theorem initoeu2lem1
StepHypRef Expression
1 eusn 4420 . . . 4 (∃!𝑓 𝑓 ∈ (𝐴𝐻𝐷) ↔ ∃𝑓(𝐴𝐻𝐷) = {𝑓})
2 initoeu2lem.x . . . . . . . . . . . 12 𝑋 = (Base‘𝐶)
3 eqid 2765 . . . . . . . . . . . 12 (Inv‘𝐶) = (Inv‘𝐶)
4 initoeu1.c . . . . . . . . . . . . 13 (𝜑𝐶 ∈ Cat)
54ad2antrr 717 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) → 𝐶 ∈ Cat)
6 simpr2 1250 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) → 𝐵𝑋)
76adantr 472 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) → 𝐵𝑋)
8 simpr1 1248 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) → 𝐴𝑋)
98adantr 472 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) → 𝐴𝑋)
10 initoeu2lem.i . . . . . . . . . . . 12 𝐼 = (Iso‘𝐶)
112, 3, 5, 7, 9, 10invf 16695 . . . . . . . . . . 11 (((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) → (𝐵(Inv‘𝐶)𝐴):(𝐵𝐼𝐴)⟶(𝐴𝐼𝐵))
12 simpr 477 . . . . . . . . . . 11 (((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) → 𝐾 ∈ (𝐵𝐼𝐴))
1311, 12ffvelrnd 6550 . . . . . . . . . 10 (((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) → ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐼𝐵))
14 initoeu2lem.h . . . . . . . . . . . . . . . . . 18 𝐻 = (Hom ‘𝐶)
154adantr 472 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) → 𝐶 ∈ Cat)
162, 14, 10, 15, 8, 6isohom 16703 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) → (𝐴𝐼𝐵) ⊆ (𝐴𝐻𝐵))
1716adantr 472 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) → (𝐴𝐼𝐵) ⊆ (𝐴𝐻𝐵))
1817sselda 3761 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐼𝐵)) → ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐻𝐵))
19 initoeu2lem.o . . . . . . . . . . . . . . . . . 18 = (comp‘𝐶)
2015ad4antr 724 . . . . . . . . . . . . . . . . . 18 ((((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐼𝐵)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐻𝐵)) ∧ 𝐺 ∈ (𝐵𝐻𝐷)) → 𝐶 ∈ Cat)
218ad4antr 724 . . . . . . . . . . . . . . . . . 18 ((((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐼𝐵)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐻𝐵)) ∧ 𝐺 ∈ (𝐵𝐻𝐷)) → 𝐴𝑋)
226ad4antr 724 . . . . . . . . . . . . . . . . . 18 ((((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐼𝐵)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐻𝐵)) ∧ 𝐺 ∈ (𝐵𝐻𝐷)) → 𝐵𝑋)
23 simpr3 1252 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) → 𝐷𝑋)
2423ad4antr 724 . . . . . . . . . . . . . . . . . 18 ((((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐼𝐵)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐻𝐵)) ∧ 𝐺 ∈ (𝐵𝐻𝐷)) → 𝐷𝑋)
25 simplr 785 . . . . . . . . . . . . . . . . . 18 ((((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐼𝐵)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐻𝐵)) ∧ 𝐺 ∈ (𝐵𝐻𝐷)) → ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐻𝐵))
26 simpr 477 . . . . . . . . . . . . . . . . . 18 ((((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐼𝐵)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐻𝐵)) ∧ 𝐺 ∈ (𝐵𝐻𝐷)) → 𝐺 ∈ (𝐵𝐻𝐷))
272, 14, 19, 20, 21, 22, 24, 25, 26catcocl 16613 . . . . . . . . . . . . . . . . 17 ((((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐼𝐵)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐻𝐵)) ∧ 𝐺 ∈ (𝐵𝐻𝐷)) → (𝐺(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) ∈ (𝐴𝐻𝐷))
2815ad2antrr 717 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐻𝐵)) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷)) → 𝐶 ∈ Cat)
298ad2antrr 717 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐻𝐵)) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷)) → 𝐴𝑋)
306ad2antrr 717 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐻𝐵)) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷)) → 𝐵𝑋)
3123ad2antrr 717 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐻𝐵)) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷)) → 𝐷𝑋)
32 simplr 785 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐻𝐵)) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷)) → ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐻𝐵))
33 simpr 477 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐻𝐵)) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷)) → (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷))
342, 14, 19, 28, 29, 30, 31, 32, 33catcocl 16613 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐻𝐵)) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷)) → ((𝐹(⟨𝐵, 𝐴 𝐷)𝐾)(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) ∈ (𝐴𝐻𝐷))
3534exp31 410 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) → (((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐻𝐵) → ((𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷) → ((𝐹(⟨𝐵, 𝐴 𝐷)𝐾)(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) ∈ (𝐴𝐻𝐷))))
3635ad2antrr 717 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐼𝐵)) → (((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐻𝐵) → ((𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷) → ((𝐹(⟨𝐵, 𝐴 𝐷)𝐾)(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) ∈ (𝐴𝐻𝐷))))
3736imp 395 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐼𝐵)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐻𝐵)) → ((𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷) → ((𝐹(⟨𝐵, 𝐴 𝐷)𝐾)(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) ∈ (𝐴𝐻𝐷)))
38 eleq2 2833 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐴𝐻𝐷) = {𝑓} → (((𝐹(⟨𝐵, 𝐴 𝐷)𝐾)(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) ∈ (𝐴𝐻𝐷) ↔ ((𝐹(⟨𝐵, 𝐴 𝐷)𝐾)(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) ∈ {𝑓}))
3938adantl 473 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐼𝐵)) ∧ (𝐴𝐻𝐷) = {𝑓}) → (((𝐹(⟨𝐵, 𝐴 𝐷)𝐾)(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) ∈ (𝐴𝐻𝐷) ↔ ((𝐹(⟨𝐵, 𝐴 𝐷)𝐾)(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) ∈ {𝑓}))
40 ovex 6874 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐹(⟨𝐵, 𝐴 𝐷)𝐾)(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) ∈ V
41 elsng 4348 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝐹(⟨𝐵, 𝐴 𝐷)𝐾)(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) ∈ V → (((𝐹(⟨𝐵, 𝐴 𝐷)𝐾)(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) ∈ {𝑓} ↔ ((𝐹(⟨𝐵, 𝐴 𝐷)𝐾)(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) = 𝑓))
4240, 41mp1i 13 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐼𝐵)) ∧ (𝐴𝐻𝐷) = {𝑓}) → (((𝐹(⟨𝐵, 𝐴 𝐷)𝐾)(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) ∈ {𝑓} ↔ ((𝐹(⟨𝐵, 𝐴 𝐷)𝐾)(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) = 𝑓))
4339, 42bitrd 270 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐼𝐵)) ∧ (𝐴𝐻𝐷) = {𝑓}) → (((𝐹(⟨𝐵, 𝐴 𝐷)𝐾)(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) ∈ (𝐴𝐻𝐷) ↔ ((𝐹(⟨𝐵, 𝐴 𝐷)𝐾)(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) = 𝑓))
44 eleq2 2833 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝐴𝐻𝐷) = {𝑓} → ((𝐺(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) ∈ (𝐴𝐻𝐷) ↔ (𝐺(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) ∈ {𝑓}))
45 ovex 6874 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝐺(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) ∈ V
46 elsng 4348 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝐺(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) ∈ V → ((𝐺(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) ∈ {𝑓} ↔ (𝐺(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) = 𝑓))
4745, 46mp1i 13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝐴𝐻𝐷) = {𝑓} → ((𝐺(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) ∈ {𝑓} ↔ (𝐺(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) = 𝑓))
4844, 47bitrd 270 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝐴𝐻𝐷) = {𝑓} → ((𝐺(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) ∈ (𝐴𝐻𝐷) ↔ (𝐺(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) = 𝑓))
4948adantl 473 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐼𝐵)) ∧ (𝐴𝐻𝐷) = {𝑓}) → ((𝐺(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) ∈ (𝐴𝐻𝐷) ↔ (𝐺(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) = 𝑓))
50 eqeq2 2776 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑓 = (𝐺(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) → (((𝐹(⟨𝐵, 𝐴 𝐷)𝐾)(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) = 𝑓 ↔ ((𝐹(⟨𝐵, 𝐴 𝐷)𝐾)(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) = (𝐺(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾))))
5150eqcoms 2773 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝐺(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) = 𝑓 → (((𝐹(⟨𝐵, 𝐴 𝐷)𝐾)(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) = 𝑓 ↔ ((𝐹(⟨𝐵, 𝐴 𝐷)𝐾)(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) = (𝐺(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾))))
5251adantl 473 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐼𝐵)) ∧ (𝐺(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) = 𝑓) → (((𝐹(⟨𝐵, 𝐴 𝐷)𝐾)(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) = 𝑓 ↔ ((𝐹(⟨𝐵, 𝐴 𝐷)𝐾)(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) = (𝐺(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾))))
53 simp-4l 801 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐼𝐵)) ∧ ((𝐹(⟨𝐵, 𝐴 𝐷)𝐾)(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) = (𝐺(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾))) ∧ (𝐺 ∈ (𝐵𝐻𝐷) ∧ 𝐹 ∈ (𝐴𝐻𝐷))) → (𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)))
54 simp-4r 803 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐼𝐵)) ∧ ((𝐹(⟨𝐵, 𝐴 𝐷)𝐾)(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) = (𝐺(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾))) ∧ (𝐺 ∈ (𝐵𝐻𝐷) ∧ 𝐹 ∈ (𝐴𝐻𝐷))) → 𝐾 ∈ (𝐵𝐼𝐴))
55 simprr 789 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐼𝐵)) ∧ ((𝐹(⟨𝐵, 𝐴 𝐷)𝐾)(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) = (𝐺(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾))) ∧ (𝐺 ∈ (𝐵𝐻𝐷) ∧ 𝐹 ∈ (𝐴𝐻𝐷))) → 𝐹 ∈ (𝐴𝐻𝐷))
56 simprl 787 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐼𝐵)) ∧ ((𝐹(⟨𝐵, 𝐴 𝐷)𝐾)(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) = (𝐺(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾))) ∧ (𝐺 ∈ (𝐵𝐻𝐷) ∧ 𝐹 ∈ (𝐴𝐻𝐷))) → 𝐺 ∈ (𝐵𝐻𝐷))
57 simplr 785 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐼𝐵)) ∧ ((𝐹(⟨𝐵, 𝐴 𝐷)𝐾)(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) = (𝐺(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾))) ∧ (𝐺 ∈ (𝐵𝐻𝐷) ∧ 𝐹 ∈ (𝐴𝐻𝐷))) → ((𝐹(⟨𝐵, 𝐴 𝐷)𝐾)(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) = (𝐺(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)))
58 initoeu1.a . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝜑𝐴 ∈ (InitO‘𝐶))
594, 58, 2, 14, 10, 19initoeu2lem0 16930 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ 𝐺 ∈ (𝐵𝐻𝐷)) ∧ ((𝐹(⟨𝐵, 𝐴 𝐷)𝐾)(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) = (𝐺(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾))) → 𝐺 = (𝐹(⟨𝐵, 𝐴 𝐷)𝐾))
6053, 54, 55, 56, 57, 59syl131anc 1502 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐼𝐵)) ∧ ((𝐹(⟨𝐵, 𝐴 𝐷)𝐾)(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) = (𝐺(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾))) ∧ (𝐺 ∈ (𝐵𝐻𝐷) ∧ 𝐹 ∈ (𝐴𝐻𝐷))) → 𝐺 = (𝐹(⟨𝐵, 𝐴 𝐷)𝐾))
6160exp43 427 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐼𝐵)) → (((𝐹(⟨𝐵, 𝐴 𝐷)𝐾)(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) = (𝐺(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) → (𝐺 ∈ (𝐵𝐻𝐷) → (𝐹 ∈ (𝐴𝐻𝐷) → 𝐺 = (𝐹(⟨𝐵, 𝐴 𝐷)𝐾)))))
6261adantr 472 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐼𝐵)) ∧ (𝐺(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) = 𝑓) → (((𝐹(⟨𝐵, 𝐴 𝐷)𝐾)(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) = (𝐺(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) → (𝐺 ∈ (𝐵𝐻𝐷) → (𝐹 ∈ (𝐴𝐻𝐷) → 𝐺 = (𝐹(⟨𝐵, 𝐴 𝐷)𝐾)))))
6352, 62sylbid 231 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐼𝐵)) ∧ (𝐺(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) = 𝑓) → (((𝐹(⟨𝐵, 𝐴 𝐷)𝐾)(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) = 𝑓 → (𝐺 ∈ (𝐵𝐻𝐷) → (𝐹 ∈ (𝐴𝐻𝐷) → 𝐺 = (𝐹(⟨𝐵, 𝐴 𝐷)𝐾)))))
6463ex 401 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐼𝐵)) → ((𝐺(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) = 𝑓 → (((𝐹(⟨𝐵, 𝐴 𝐷)𝐾)(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) = 𝑓 → (𝐺 ∈ (𝐵𝐻𝐷) → (𝐹 ∈ (𝐴𝐻𝐷) → 𝐺 = (𝐹(⟨𝐵, 𝐴 𝐷)𝐾))))))
6564adantr 472 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐼𝐵)) ∧ (𝐴𝐻𝐷) = {𝑓}) → ((𝐺(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) = 𝑓 → (((𝐹(⟨𝐵, 𝐴 𝐷)𝐾)(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) = 𝑓 → (𝐺 ∈ (𝐵𝐻𝐷) → (𝐹 ∈ (𝐴𝐻𝐷) → 𝐺 = (𝐹(⟨𝐵, 𝐴 𝐷)𝐾))))))
6649, 65sylbid 231 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐼𝐵)) ∧ (𝐴𝐻𝐷) = {𝑓}) → ((𝐺(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) ∈ (𝐴𝐻𝐷) → (((𝐹(⟨𝐵, 𝐴 𝐷)𝐾)(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) = 𝑓 → (𝐺 ∈ (𝐵𝐻𝐷) → (𝐹 ∈ (𝐴𝐻𝐷) → 𝐺 = (𝐹(⟨𝐵, 𝐴 𝐷)𝐾))))))
6766com23 86 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐼𝐵)) ∧ (𝐴𝐻𝐷) = {𝑓}) → (((𝐹(⟨𝐵, 𝐴 𝐷)𝐾)(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) = 𝑓 → ((𝐺(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) ∈ (𝐴𝐻𝐷) → (𝐺 ∈ (𝐵𝐻𝐷) → (𝐹 ∈ (𝐴𝐻𝐷) → 𝐺 = (𝐹(⟨𝐵, 𝐴 𝐷)𝐾))))))
6843, 67sylbid 231 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐼𝐵)) ∧ (𝐴𝐻𝐷) = {𝑓}) → (((𝐹(⟨𝐵, 𝐴 𝐷)𝐾)(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) ∈ (𝐴𝐻𝐷) → ((𝐺(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) ∈ (𝐴𝐻𝐷) → (𝐺 ∈ (𝐵𝐻𝐷) → (𝐹 ∈ (𝐴𝐻𝐷) → 𝐺 = (𝐹(⟨𝐵, 𝐴 𝐷)𝐾))))))
6968com23 86 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐼𝐵)) ∧ (𝐴𝐻𝐷) = {𝑓}) → ((𝐺(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) ∈ (𝐴𝐻𝐷) → (((𝐹(⟨𝐵, 𝐴 𝐷)𝐾)(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) ∈ (𝐴𝐻𝐷) → (𝐺 ∈ (𝐵𝐻𝐷) → (𝐹 ∈ (𝐴𝐻𝐷) → 𝐺 = (𝐹(⟨𝐵, 𝐴 𝐷)𝐾))))))
7069ex 401 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐼𝐵)) → ((𝐴𝐻𝐷) = {𝑓} → ((𝐺(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) ∈ (𝐴𝐻𝐷) → (((𝐹(⟨𝐵, 𝐴 𝐷)𝐾)(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) ∈ (𝐴𝐻𝐷) → (𝐺 ∈ (𝐵𝐻𝐷) → (𝐹 ∈ (𝐴𝐻𝐷) → 𝐺 = (𝐹(⟨𝐵, 𝐴 𝐷)𝐾)))))))
7170com24 95 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐼𝐵)) → (((𝐹(⟨𝐵, 𝐴 𝐷)𝐾)(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) ∈ (𝐴𝐻𝐷) → ((𝐺(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) ∈ (𝐴𝐻𝐷) → ((𝐴𝐻𝐷) = {𝑓} → (𝐺 ∈ (𝐵𝐻𝐷) → (𝐹 ∈ (𝐴𝐻𝐷) → 𝐺 = (𝐹(⟨𝐵, 𝐴 𝐷)𝐾)))))))
7271adantr 472 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐼𝐵)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐻𝐵)) → (((𝐹(⟨𝐵, 𝐴 𝐷)𝐾)(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) ∈ (𝐴𝐻𝐷) → ((𝐺(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) ∈ (𝐴𝐻𝐷) → ((𝐴𝐻𝐷) = {𝑓} → (𝐺 ∈ (𝐵𝐻𝐷) → (𝐹 ∈ (𝐴𝐻𝐷) → 𝐺 = (𝐹(⟨𝐵, 𝐴 𝐷)𝐾)))))))
7337, 72syld 47 . . . . . . . . . . . . . . . . . . 19 (((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐼𝐵)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐻𝐵)) → ((𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷) → ((𝐺(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) ∈ (𝐴𝐻𝐷) → ((𝐴𝐻𝐷) = {𝑓} → (𝐺 ∈ (𝐵𝐻𝐷) → (𝐹 ∈ (𝐴𝐻𝐷) → 𝐺 = (𝐹(⟨𝐵, 𝐴 𝐷)𝐾)))))))
7473com25 99 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐼𝐵)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐻𝐵)) → (𝐺 ∈ (𝐵𝐻𝐷) → ((𝐺(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) ∈ (𝐴𝐻𝐷) → ((𝐴𝐻𝐷) = {𝑓} → ((𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷) → (𝐹 ∈ (𝐴𝐻𝐷) → 𝐺 = (𝐹(⟨𝐵, 𝐴 𝐷)𝐾)))))))
7574imp 395 . . . . . . . . . . . . . . . . 17 ((((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐼𝐵)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐻𝐵)) ∧ 𝐺 ∈ (𝐵𝐻𝐷)) → ((𝐺(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) ∈ (𝐴𝐻𝐷) → ((𝐴𝐻𝐷) = {𝑓} → ((𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷) → (𝐹 ∈ (𝐴𝐻𝐷) → 𝐺 = (𝐹(⟨𝐵, 𝐴 𝐷)𝐾))))))
7627, 75mpd 15 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐼𝐵)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐻𝐵)) ∧ 𝐺 ∈ (𝐵𝐻𝐷)) → ((𝐴𝐻𝐷) = {𝑓} → ((𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷) → (𝐹 ∈ (𝐴𝐻𝐷) → 𝐺 = (𝐹(⟨𝐵, 𝐴 𝐷)𝐾)))))
7776ex 401 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐼𝐵)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐻𝐵)) → (𝐺 ∈ (𝐵𝐻𝐷) → ((𝐴𝐻𝐷) = {𝑓} → ((𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷) → (𝐹 ∈ (𝐴𝐻𝐷) → 𝐺 = (𝐹(⟨𝐵, 𝐴 𝐷)𝐾))))))
7818, 77mpdan 678 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐼𝐵)) → (𝐺 ∈ (𝐵𝐻𝐷) → ((𝐴𝐻𝐷) = {𝑓} → ((𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷) → (𝐹 ∈ (𝐴𝐻𝐷) → 𝐺 = (𝐹(⟨𝐵, 𝐴 𝐷)𝐾))))))
7978com15 101 . . . . . . . . . . . . 13 (𝐹 ∈ (𝐴𝐻𝐷) → (𝐺 ∈ (𝐵𝐻𝐷) → ((𝐴𝐻𝐷) = {𝑓} → ((𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷) → ((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐼𝐵)) → 𝐺 = (𝐹(⟨𝐵, 𝐴 𝐷)𝐾))))))
8079imp 395 . . . . . . . . . . . 12 ((𝐹 ∈ (𝐴𝐻𝐷) ∧ 𝐺 ∈ (𝐵𝐻𝐷)) → ((𝐴𝐻𝐷) = {𝑓} → ((𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷) → ((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐼𝐵)) → 𝐺 = (𝐹(⟨𝐵, 𝐴 𝐷)𝐾)))))
8180impcom 396 . . . . . . . . . . 11 (((𝐴𝐻𝐷) = {𝑓} ∧ (𝐹 ∈ (𝐴𝐻𝐷) ∧ 𝐺 ∈ (𝐵𝐻𝐷))) → ((𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷) → ((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐼𝐵)) → 𝐺 = (𝐹(⟨𝐵, 𝐴 𝐷)𝐾))))
8281com13 88 . . . . . . . . . 10 ((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐼𝐵)) → ((𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷) → (((𝐴𝐻𝐷) = {𝑓} ∧ (𝐹 ∈ (𝐴𝐻𝐷) ∧ 𝐺 ∈ (𝐵𝐻𝐷))) → 𝐺 = (𝐹(⟨𝐵, 𝐴 𝐷)𝐾))))
8313, 82mpdan 678 . . . . . . . . 9 (((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) → ((𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷) → (((𝐴𝐻𝐷) = {𝑓} ∧ (𝐹 ∈ (𝐴𝐻𝐷) ∧ 𝐺 ∈ (𝐵𝐻𝐷))) → 𝐺 = (𝐹(⟨𝐵, 𝐴 𝐷)𝐾))))
8483expimpd 445 . . . . . . . 8 ((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) → ((𝐾 ∈ (𝐵𝐼𝐴) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷)) → (((𝐴𝐻𝐷) = {𝑓} ∧ (𝐹 ∈ (𝐴𝐻𝐷) ∧ 𝐺 ∈ (𝐵𝐻𝐷))) → 𝐺 = (𝐹(⟨𝐵, 𝐴 𝐷)𝐾))))
85843impia 1145 . . . . . . 7 ((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷))) → (((𝐴𝐻𝐷) = {𝑓} ∧ (𝐹 ∈ (𝐴𝐻𝐷) ∧ 𝐺 ∈ (𝐵𝐻𝐷))) → 𝐺 = (𝐹(⟨𝐵, 𝐴 𝐷)𝐾)))
8685com12 32 . . . . . 6 (((𝐴𝐻𝐷) = {𝑓} ∧ (𝐹 ∈ (𝐴𝐻𝐷) ∧ 𝐺 ∈ (𝐵𝐻𝐷))) → ((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷))) → 𝐺 = (𝐹(⟨𝐵, 𝐴 𝐷)𝐾)))
8786ex 401 . . . . 5 ((𝐴𝐻𝐷) = {𝑓} → ((𝐹 ∈ (𝐴𝐻𝐷) ∧ 𝐺 ∈ (𝐵𝐻𝐷)) → ((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷))) → 𝐺 = (𝐹(⟨𝐵, 𝐴 𝐷)𝐾))))
8887exlimiv 2025 . . . 4 (∃𝑓(𝐴𝐻𝐷) = {𝑓} → ((𝐹 ∈ (𝐴𝐻𝐷) ∧ 𝐺 ∈ (𝐵𝐻𝐷)) → ((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷))) → 𝐺 = (𝐹(⟨𝐵, 𝐴 𝐷)𝐾))))
891, 88sylbi 208 . . 3 (∃!𝑓 𝑓 ∈ (𝐴𝐻𝐷) → ((𝐹 ∈ (𝐴𝐻𝐷) ∧ 𝐺 ∈ (𝐵𝐻𝐷)) → ((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷))) → 𝐺 = (𝐹(⟨𝐵, 𝐴 𝐷)𝐾))))
90893impib 1144 . 2 ((∃!𝑓 𝑓 ∈ (𝐴𝐻𝐷) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ 𝐺 ∈ (𝐵𝐻𝐷)) → ((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷))) → 𝐺 = (𝐹(⟨𝐵, 𝐴 𝐷)𝐾)))
9190com12 32 1 ((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷))) → ((∃!𝑓 𝑓 ∈ (𝐴𝐻𝐷) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ 𝐺 ∈ (𝐵𝐻𝐷)) → 𝐺 = (𝐹(⟨𝐵, 𝐴 𝐷)𝐾)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384  w3a 1107   = wceq 1652  wex 1874  wcel 2155  ∃!weu 2581  Vcvv 3350  wss 3732  {csn 4334  cop 4340  cfv 6068  (class class class)co 6842  Basecbs 16132  Hom chom 16227  compcco 16228  Catccat 16592  Invcinv 16672  Isociso 16673  InitOcinito 16905
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4930  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-op 4341  df-uni 4595  df-iun 4678  df-br 4810  df-opab 4872  df-mpt 4889  df-id 5185  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-1st 7366  df-2nd 7367  df-cat 16596  df-cid 16597  df-sect 16674  df-inv 16675  df-iso 16676
This theorem is referenced by:  initoeu2lem2  16932
  Copyright terms: Public domain W3C validator