MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  initoid Structured version   Visualization version   GIF version

Theorem initoid 18014
Description: For an initial object, the identity arrow is the one and only morphism of the object to the object itself. (Contributed by AV, 6-Apr-2020.)
Hypotheses
Ref Expression
isinitoi.b 𝐵 = (Base‘𝐶)
isinitoi.h 𝐻 = (Hom ‘𝐶)
isinitoi.c (𝜑𝐶 ∈ Cat)
Assertion
Ref Expression
initoid ((𝜑𝑂 ∈ (InitO‘𝐶)) → (𝑂𝐻𝑂) = {((Id‘𝐶)‘𝑂)})

Proof of Theorem initoid
Dummy variables 𝑜 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isinitoi.b . . 3 𝐵 = (Base‘𝐶)
2 isinitoi.h . . 3 𝐻 = (Hom ‘𝐶)
3 isinitoi.c . . 3 (𝜑𝐶 ∈ Cat)
41, 2, 3isinitoi 18012 . 2 ((𝜑𝑂 ∈ (InitO‘𝐶)) → (𝑂𝐵 ∧ ∀𝑜𝐵 ∃! ∈ (𝑂𝐻𝑜)))
5 oveq2 7413 . . . . . . . 8 (𝑜 = 𝑂 → (𝑂𝐻𝑜) = (𝑂𝐻𝑂))
65eleq2d 2820 . . . . . . 7 (𝑜 = 𝑂 → ( ∈ (𝑂𝐻𝑜) ↔ ∈ (𝑂𝐻𝑂)))
76eubidv 2585 . . . . . 6 (𝑜 = 𝑂 → (∃! ∈ (𝑂𝐻𝑜) ↔ ∃! ∈ (𝑂𝐻𝑂)))
87rspcv 3597 . . . . 5 (𝑂𝐵 → (∀𝑜𝐵 ∃! ∈ (𝑂𝐻𝑜) → ∃! ∈ (𝑂𝐻𝑂)))
98adantl 481 . . . 4 (((𝜑𝑂 ∈ (InitO‘𝐶)) ∧ 𝑂𝐵) → (∀𝑜𝐵 ∃! ∈ (𝑂𝐻𝑜) → ∃! ∈ (𝑂𝐻𝑂)))
10 eusn 4706 . . . . 5 (∃! ∈ (𝑂𝐻𝑂) ↔ ∃(𝑂𝐻𝑂) = {})
11 eqid 2735 . . . . . . . . 9 (Id‘𝐶) = (Id‘𝐶)
123ad2antrr 726 . . . . . . . . 9 (((𝜑𝑂 ∈ (InitO‘𝐶)) ∧ 𝑂𝐵) → 𝐶 ∈ Cat)
13 simpr 484 . . . . . . . . 9 (((𝜑𝑂 ∈ (InitO‘𝐶)) ∧ 𝑂𝐵) → 𝑂𝐵)
141, 2, 11, 12, 13catidcl 17694 . . . . . . . 8 (((𝜑𝑂 ∈ (InitO‘𝐶)) ∧ 𝑂𝐵) → ((Id‘𝐶)‘𝑂) ∈ (𝑂𝐻𝑂))
15 fvex 6889 . . . . . . . . . . . . 13 ((Id‘𝐶)‘𝑂) ∈ V
1615elsn 4616 . . . . . . . . . . . 12 (((Id‘𝐶)‘𝑂) ∈ {} ↔ ((Id‘𝐶)‘𝑂) = )
17 eqcom 2742 . . . . . . . . . . . 12 (((Id‘𝐶)‘𝑂) = = ((Id‘𝐶)‘𝑂))
18 sneqbg 4819 . . . . . . . . . . . . . 14 ( ∈ V → ({} = {((Id‘𝐶)‘𝑂)} ↔ = ((Id‘𝐶)‘𝑂)))
1918bicomd 223 . . . . . . . . . . . . 13 ( ∈ V → ( = ((Id‘𝐶)‘𝑂) ↔ {} = {((Id‘𝐶)‘𝑂)}))
2019elv 3464 . . . . . . . . . . . 12 ( = ((Id‘𝐶)‘𝑂) ↔ {} = {((Id‘𝐶)‘𝑂)})
2116, 17, 203bitri 297 . . . . . . . . . . 11 (((Id‘𝐶)‘𝑂) ∈ {} ↔ {} = {((Id‘𝐶)‘𝑂)})
2221biimpi 216 . . . . . . . . . 10 (((Id‘𝐶)‘𝑂) ∈ {} → {} = {((Id‘𝐶)‘𝑂)})
2322a1i 11 . . . . . . . . 9 ((𝑂𝐻𝑂) = {} → (((Id‘𝐶)‘𝑂) ∈ {} → {} = {((Id‘𝐶)‘𝑂)}))
24 eleq2 2823 . . . . . . . . 9 ((𝑂𝐻𝑂) = {} → (((Id‘𝐶)‘𝑂) ∈ (𝑂𝐻𝑂) ↔ ((Id‘𝐶)‘𝑂) ∈ {}))
25 eqeq1 2739 . . . . . . . . 9 ((𝑂𝐻𝑂) = {} → ((𝑂𝐻𝑂) = {((Id‘𝐶)‘𝑂)} ↔ {} = {((Id‘𝐶)‘𝑂)}))
2623, 24, 253imtr4d 294 . . . . . . . 8 ((𝑂𝐻𝑂) = {} → (((Id‘𝐶)‘𝑂) ∈ (𝑂𝐻𝑂) → (𝑂𝐻𝑂) = {((Id‘𝐶)‘𝑂)}))
2714, 26syl5 34 . . . . . . 7 ((𝑂𝐻𝑂) = {} → (((𝜑𝑂 ∈ (InitO‘𝐶)) ∧ 𝑂𝐵) → (𝑂𝐻𝑂) = {((Id‘𝐶)‘𝑂)}))
2827exlimiv 1930 . . . . . 6 (∃(𝑂𝐻𝑂) = {} → (((𝜑𝑂 ∈ (InitO‘𝐶)) ∧ 𝑂𝐵) → (𝑂𝐻𝑂) = {((Id‘𝐶)‘𝑂)}))
2928com12 32 . . . . 5 (((𝜑𝑂 ∈ (InitO‘𝐶)) ∧ 𝑂𝐵) → (∃(𝑂𝐻𝑂) = {} → (𝑂𝐻𝑂) = {((Id‘𝐶)‘𝑂)}))
3010, 29biimtrid 242 . . . 4 (((𝜑𝑂 ∈ (InitO‘𝐶)) ∧ 𝑂𝐵) → (∃! ∈ (𝑂𝐻𝑂) → (𝑂𝐻𝑂) = {((Id‘𝐶)‘𝑂)}))
319, 30syld 47 . . 3 (((𝜑𝑂 ∈ (InitO‘𝐶)) ∧ 𝑂𝐵) → (∀𝑜𝐵 ∃! ∈ (𝑂𝐻𝑜) → (𝑂𝐻𝑂) = {((Id‘𝐶)‘𝑂)}))
3231expimpd 453 . 2 ((𝜑𝑂 ∈ (InitO‘𝐶)) → ((𝑂𝐵 ∧ ∀𝑜𝐵 ∃! ∈ (𝑂𝐻𝑜)) → (𝑂𝐻𝑂) = {((Id‘𝐶)‘𝑂)}))
334, 32mpd 15 1 ((𝜑𝑂 ∈ (InitO‘𝐶)) → (𝑂𝐻𝑂) = {((Id‘𝐶)‘𝑂)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2108  ∃!weu 2567  wral 3051  Vcvv 3459  {csn 4601  cfv 6531  (class class class)co 7405  Basecbs 17228  Hom chom 17282  Catccat 17676  Idccid 17677  InitOcinito 17994
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-cat 17680  df-cid 17681  df-inito 17997
This theorem is referenced by:  2initoinv  18023
  Copyright terms: Public domain W3C validator