| Step | Hyp | Ref
| Expression |
| 1 | | isinitoi.b |
. . 3
⊢ 𝐵 = (Base‘𝐶) |
| 2 | | isinitoi.h |
. . 3
⊢ 𝐻 = (Hom ‘𝐶) |
| 3 | | isinitoi.c |
. . 3
⊢ (𝜑 → 𝐶 ∈ Cat) |
| 4 | 1, 2, 3 | isinitoi 18044 |
. 2
⊢ ((𝜑 ∧ 𝑂 ∈ (InitO‘𝐶)) → (𝑂 ∈ 𝐵 ∧ ∀𝑜 ∈ 𝐵 ∃!ℎ ℎ ∈ (𝑂𝐻𝑜))) |
| 5 | | oveq2 7439 |
. . . . . . . 8
⊢ (𝑜 = 𝑂 → (𝑂𝐻𝑜) = (𝑂𝐻𝑂)) |
| 6 | 5 | eleq2d 2827 |
. . . . . . 7
⊢ (𝑜 = 𝑂 → (ℎ ∈ (𝑂𝐻𝑜) ↔ ℎ ∈ (𝑂𝐻𝑂))) |
| 7 | 6 | eubidv 2586 |
. . . . . 6
⊢ (𝑜 = 𝑂 → (∃!ℎ ℎ ∈ (𝑂𝐻𝑜) ↔ ∃!ℎ ℎ ∈ (𝑂𝐻𝑂))) |
| 8 | 7 | rspcv 3618 |
. . . . 5
⊢ (𝑂 ∈ 𝐵 → (∀𝑜 ∈ 𝐵 ∃!ℎ ℎ ∈ (𝑂𝐻𝑜) → ∃!ℎ ℎ ∈ (𝑂𝐻𝑂))) |
| 9 | 8 | adantl 481 |
. . . 4
⊢ (((𝜑 ∧ 𝑂 ∈ (InitO‘𝐶)) ∧ 𝑂 ∈ 𝐵) → (∀𝑜 ∈ 𝐵 ∃!ℎ ℎ ∈ (𝑂𝐻𝑜) → ∃!ℎ ℎ ∈ (𝑂𝐻𝑂))) |
| 10 | | eusn 4730 |
. . . . 5
⊢
(∃!ℎ ℎ ∈ (𝑂𝐻𝑂) ↔ ∃ℎ(𝑂𝐻𝑂) = {ℎ}) |
| 11 | | eqid 2737 |
. . . . . . . . 9
⊢
(Id‘𝐶) =
(Id‘𝐶) |
| 12 | 3 | ad2antrr 726 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑂 ∈ (InitO‘𝐶)) ∧ 𝑂 ∈ 𝐵) → 𝐶 ∈ Cat) |
| 13 | | simpr 484 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑂 ∈ (InitO‘𝐶)) ∧ 𝑂 ∈ 𝐵) → 𝑂 ∈ 𝐵) |
| 14 | 1, 2, 11, 12, 13 | catidcl 17725 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑂 ∈ (InitO‘𝐶)) ∧ 𝑂 ∈ 𝐵) → ((Id‘𝐶)‘𝑂) ∈ (𝑂𝐻𝑂)) |
| 15 | | fvex 6919 |
. . . . . . . . . . . . 13
⊢
((Id‘𝐶)‘𝑂) ∈ V |
| 16 | 15 | elsn 4641 |
. . . . . . . . . . . 12
⊢
(((Id‘𝐶)‘𝑂) ∈ {ℎ} ↔ ((Id‘𝐶)‘𝑂) = ℎ) |
| 17 | | eqcom 2744 |
. . . . . . . . . . . 12
⊢
(((Id‘𝐶)‘𝑂) = ℎ ↔ ℎ = ((Id‘𝐶)‘𝑂)) |
| 18 | | sneqbg 4843 |
. . . . . . . . . . . . . 14
⊢ (ℎ ∈ V → ({ℎ} = {((Id‘𝐶)‘𝑂)} ↔ ℎ = ((Id‘𝐶)‘𝑂))) |
| 19 | 18 | bicomd 223 |
. . . . . . . . . . . . 13
⊢ (ℎ ∈ V → (ℎ = ((Id‘𝐶)‘𝑂) ↔ {ℎ} = {((Id‘𝐶)‘𝑂)})) |
| 20 | 19 | elv 3485 |
. . . . . . . . . . . 12
⊢ (ℎ = ((Id‘𝐶)‘𝑂) ↔ {ℎ} = {((Id‘𝐶)‘𝑂)}) |
| 21 | 16, 17, 20 | 3bitri 297 |
. . . . . . . . . . 11
⊢
(((Id‘𝐶)‘𝑂) ∈ {ℎ} ↔ {ℎ} = {((Id‘𝐶)‘𝑂)}) |
| 22 | 21 | biimpi 216 |
. . . . . . . . . 10
⊢
(((Id‘𝐶)‘𝑂) ∈ {ℎ} → {ℎ} = {((Id‘𝐶)‘𝑂)}) |
| 23 | 22 | a1i 11 |
. . . . . . . . 9
⊢ ((𝑂𝐻𝑂) = {ℎ} → (((Id‘𝐶)‘𝑂) ∈ {ℎ} → {ℎ} = {((Id‘𝐶)‘𝑂)})) |
| 24 | | eleq2 2830 |
. . . . . . . . 9
⊢ ((𝑂𝐻𝑂) = {ℎ} → (((Id‘𝐶)‘𝑂) ∈ (𝑂𝐻𝑂) ↔ ((Id‘𝐶)‘𝑂) ∈ {ℎ})) |
| 25 | | eqeq1 2741 |
. . . . . . . . 9
⊢ ((𝑂𝐻𝑂) = {ℎ} → ((𝑂𝐻𝑂) = {((Id‘𝐶)‘𝑂)} ↔ {ℎ} = {((Id‘𝐶)‘𝑂)})) |
| 26 | 23, 24, 25 | 3imtr4d 294 |
. . . . . . . 8
⊢ ((𝑂𝐻𝑂) = {ℎ} → (((Id‘𝐶)‘𝑂) ∈ (𝑂𝐻𝑂) → (𝑂𝐻𝑂) = {((Id‘𝐶)‘𝑂)})) |
| 27 | 14, 26 | syl5 34 |
. . . . . . 7
⊢ ((𝑂𝐻𝑂) = {ℎ} → (((𝜑 ∧ 𝑂 ∈ (InitO‘𝐶)) ∧ 𝑂 ∈ 𝐵) → (𝑂𝐻𝑂) = {((Id‘𝐶)‘𝑂)})) |
| 28 | 27 | exlimiv 1930 |
. . . . . 6
⊢
(∃ℎ(𝑂𝐻𝑂) = {ℎ} → (((𝜑 ∧ 𝑂 ∈ (InitO‘𝐶)) ∧ 𝑂 ∈ 𝐵) → (𝑂𝐻𝑂) = {((Id‘𝐶)‘𝑂)})) |
| 29 | 28 | com12 32 |
. . . . 5
⊢ (((𝜑 ∧ 𝑂 ∈ (InitO‘𝐶)) ∧ 𝑂 ∈ 𝐵) → (∃ℎ(𝑂𝐻𝑂) = {ℎ} → (𝑂𝐻𝑂) = {((Id‘𝐶)‘𝑂)})) |
| 30 | 10, 29 | biimtrid 242 |
. . . 4
⊢ (((𝜑 ∧ 𝑂 ∈ (InitO‘𝐶)) ∧ 𝑂 ∈ 𝐵) → (∃!ℎ ℎ ∈ (𝑂𝐻𝑂) → (𝑂𝐻𝑂) = {((Id‘𝐶)‘𝑂)})) |
| 31 | 9, 30 | syld 47 |
. . 3
⊢ (((𝜑 ∧ 𝑂 ∈ (InitO‘𝐶)) ∧ 𝑂 ∈ 𝐵) → (∀𝑜 ∈ 𝐵 ∃!ℎ ℎ ∈ (𝑂𝐻𝑜) → (𝑂𝐻𝑂) = {((Id‘𝐶)‘𝑂)})) |
| 32 | 31 | expimpd 453 |
. 2
⊢ ((𝜑 ∧ 𝑂 ∈ (InitO‘𝐶)) → ((𝑂 ∈ 𝐵 ∧ ∀𝑜 ∈ 𝐵 ∃!ℎ ℎ ∈ (𝑂𝐻𝑜)) → (𝑂𝐻𝑂) = {((Id‘𝐶)‘𝑂)})) |
| 33 | 4, 32 | mpd 15 |
1
⊢ ((𝜑 ∧ 𝑂 ∈ (InitO‘𝐶)) → (𝑂𝐻𝑂) = {((Id‘𝐶)‘𝑂)}) |