MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  initoid Structured version   Visualization version   GIF version

Theorem initoid 17951
Description: For an initial object, the identity arrow is the one and only morphism of the object to the object itself. (Contributed by AV, 6-Apr-2020.)
Hypotheses
Ref Expression
isinitoi.b 𝐡 = (Baseβ€˜πΆ)
isinitoi.h 𝐻 = (Hom β€˜πΆ)
isinitoi.c (πœ‘ β†’ 𝐢 ∈ Cat)
Assertion
Ref Expression
initoid ((πœ‘ ∧ 𝑂 ∈ (InitOβ€˜πΆ)) β†’ (𝑂𝐻𝑂) = {((Idβ€˜πΆ)β€˜π‘‚)})

Proof of Theorem initoid
Dummy variables β„Ž π‘œ are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isinitoi.b . . 3 𝐡 = (Baseβ€˜πΆ)
2 isinitoi.h . . 3 𝐻 = (Hom β€˜πΆ)
3 isinitoi.c . . 3 (πœ‘ β†’ 𝐢 ∈ Cat)
41, 2, 3isinitoi 17949 . 2 ((πœ‘ ∧ 𝑂 ∈ (InitOβ€˜πΆ)) β†’ (𝑂 ∈ 𝐡 ∧ βˆ€π‘œ ∈ 𝐡 βˆƒ!β„Ž β„Ž ∈ (π‘‚π»π‘œ)))
5 oveq2 7417 . . . . . . . 8 (π‘œ = 𝑂 β†’ (π‘‚π»π‘œ) = (𝑂𝐻𝑂))
65eleq2d 2820 . . . . . . 7 (π‘œ = 𝑂 β†’ (β„Ž ∈ (π‘‚π»π‘œ) ↔ β„Ž ∈ (𝑂𝐻𝑂)))
76eubidv 2581 . . . . . 6 (π‘œ = 𝑂 β†’ (βˆƒ!β„Ž β„Ž ∈ (π‘‚π»π‘œ) ↔ βˆƒ!β„Ž β„Ž ∈ (𝑂𝐻𝑂)))
87rspcv 3609 . . . . 5 (𝑂 ∈ 𝐡 β†’ (βˆ€π‘œ ∈ 𝐡 βˆƒ!β„Ž β„Ž ∈ (π‘‚π»π‘œ) β†’ βˆƒ!β„Ž β„Ž ∈ (𝑂𝐻𝑂)))
98adantl 483 . . . 4 (((πœ‘ ∧ 𝑂 ∈ (InitOβ€˜πΆ)) ∧ 𝑂 ∈ 𝐡) β†’ (βˆ€π‘œ ∈ 𝐡 βˆƒ!β„Ž β„Ž ∈ (π‘‚π»π‘œ) β†’ βˆƒ!β„Ž β„Ž ∈ (𝑂𝐻𝑂)))
10 eusn 4735 . . . . 5 (βˆƒ!β„Ž β„Ž ∈ (𝑂𝐻𝑂) ↔ βˆƒβ„Ž(𝑂𝐻𝑂) = {β„Ž})
11 eqid 2733 . . . . . . . . 9 (Idβ€˜πΆ) = (Idβ€˜πΆ)
123ad2antrr 725 . . . . . . . . 9 (((πœ‘ ∧ 𝑂 ∈ (InitOβ€˜πΆ)) ∧ 𝑂 ∈ 𝐡) β†’ 𝐢 ∈ Cat)
13 simpr 486 . . . . . . . . 9 (((πœ‘ ∧ 𝑂 ∈ (InitOβ€˜πΆ)) ∧ 𝑂 ∈ 𝐡) β†’ 𝑂 ∈ 𝐡)
141, 2, 11, 12, 13catidcl 17626 . . . . . . . 8 (((πœ‘ ∧ 𝑂 ∈ (InitOβ€˜πΆ)) ∧ 𝑂 ∈ 𝐡) β†’ ((Idβ€˜πΆ)β€˜π‘‚) ∈ (𝑂𝐻𝑂))
15 fvex 6905 . . . . . . . . . . . . 13 ((Idβ€˜πΆ)β€˜π‘‚) ∈ V
1615elsn 4644 . . . . . . . . . . . 12 (((Idβ€˜πΆ)β€˜π‘‚) ∈ {β„Ž} ↔ ((Idβ€˜πΆ)β€˜π‘‚) = β„Ž)
17 eqcom 2740 . . . . . . . . . . . 12 (((Idβ€˜πΆ)β€˜π‘‚) = β„Ž ↔ β„Ž = ((Idβ€˜πΆ)β€˜π‘‚))
18 sneqbg 4845 . . . . . . . . . . . . . 14 (β„Ž ∈ V β†’ ({β„Ž} = {((Idβ€˜πΆ)β€˜π‘‚)} ↔ β„Ž = ((Idβ€˜πΆ)β€˜π‘‚)))
1918bicomd 222 . . . . . . . . . . . . 13 (β„Ž ∈ V β†’ (β„Ž = ((Idβ€˜πΆ)β€˜π‘‚) ↔ {β„Ž} = {((Idβ€˜πΆ)β€˜π‘‚)}))
2019elv 3481 . . . . . . . . . . . 12 (β„Ž = ((Idβ€˜πΆ)β€˜π‘‚) ↔ {β„Ž} = {((Idβ€˜πΆ)β€˜π‘‚)})
2116, 17, 203bitri 297 . . . . . . . . . . 11 (((Idβ€˜πΆ)β€˜π‘‚) ∈ {β„Ž} ↔ {β„Ž} = {((Idβ€˜πΆ)β€˜π‘‚)})
2221biimpi 215 . . . . . . . . . 10 (((Idβ€˜πΆ)β€˜π‘‚) ∈ {β„Ž} β†’ {β„Ž} = {((Idβ€˜πΆ)β€˜π‘‚)})
2322a1i 11 . . . . . . . . 9 ((𝑂𝐻𝑂) = {β„Ž} β†’ (((Idβ€˜πΆ)β€˜π‘‚) ∈ {β„Ž} β†’ {β„Ž} = {((Idβ€˜πΆ)β€˜π‘‚)}))
24 eleq2 2823 . . . . . . . . 9 ((𝑂𝐻𝑂) = {β„Ž} β†’ (((Idβ€˜πΆ)β€˜π‘‚) ∈ (𝑂𝐻𝑂) ↔ ((Idβ€˜πΆ)β€˜π‘‚) ∈ {β„Ž}))
25 eqeq1 2737 . . . . . . . . 9 ((𝑂𝐻𝑂) = {β„Ž} β†’ ((𝑂𝐻𝑂) = {((Idβ€˜πΆ)β€˜π‘‚)} ↔ {β„Ž} = {((Idβ€˜πΆ)β€˜π‘‚)}))
2623, 24, 253imtr4d 294 . . . . . . . 8 ((𝑂𝐻𝑂) = {β„Ž} β†’ (((Idβ€˜πΆ)β€˜π‘‚) ∈ (𝑂𝐻𝑂) β†’ (𝑂𝐻𝑂) = {((Idβ€˜πΆ)β€˜π‘‚)}))
2714, 26syl5 34 . . . . . . 7 ((𝑂𝐻𝑂) = {β„Ž} β†’ (((πœ‘ ∧ 𝑂 ∈ (InitOβ€˜πΆ)) ∧ 𝑂 ∈ 𝐡) β†’ (𝑂𝐻𝑂) = {((Idβ€˜πΆ)β€˜π‘‚)}))
2827exlimiv 1934 . . . . . 6 (βˆƒβ„Ž(𝑂𝐻𝑂) = {β„Ž} β†’ (((πœ‘ ∧ 𝑂 ∈ (InitOβ€˜πΆ)) ∧ 𝑂 ∈ 𝐡) β†’ (𝑂𝐻𝑂) = {((Idβ€˜πΆ)β€˜π‘‚)}))
2928com12 32 . . . . 5 (((πœ‘ ∧ 𝑂 ∈ (InitOβ€˜πΆ)) ∧ 𝑂 ∈ 𝐡) β†’ (βˆƒβ„Ž(𝑂𝐻𝑂) = {β„Ž} β†’ (𝑂𝐻𝑂) = {((Idβ€˜πΆ)β€˜π‘‚)}))
3010, 29biimtrid 241 . . . 4 (((πœ‘ ∧ 𝑂 ∈ (InitOβ€˜πΆ)) ∧ 𝑂 ∈ 𝐡) β†’ (βˆƒ!β„Ž β„Ž ∈ (𝑂𝐻𝑂) β†’ (𝑂𝐻𝑂) = {((Idβ€˜πΆ)β€˜π‘‚)}))
319, 30syld 47 . . 3 (((πœ‘ ∧ 𝑂 ∈ (InitOβ€˜πΆ)) ∧ 𝑂 ∈ 𝐡) β†’ (βˆ€π‘œ ∈ 𝐡 βˆƒ!β„Ž β„Ž ∈ (π‘‚π»π‘œ) β†’ (𝑂𝐻𝑂) = {((Idβ€˜πΆ)β€˜π‘‚)}))
3231expimpd 455 . 2 ((πœ‘ ∧ 𝑂 ∈ (InitOβ€˜πΆ)) β†’ ((𝑂 ∈ 𝐡 ∧ βˆ€π‘œ ∈ 𝐡 βˆƒ!β„Ž β„Ž ∈ (π‘‚π»π‘œ)) β†’ (𝑂𝐻𝑂) = {((Idβ€˜πΆ)β€˜π‘‚)}))
334, 32mpd 15 1 ((πœ‘ ∧ 𝑂 ∈ (InitOβ€˜πΆ)) β†’ (𝑂𝐻𝑂) = {((Idβ€˜πΆ)β€˜π‘‚)})
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 397   = wceq 1542  βˆƒwex 1782   ∈ wcel 2107  βˆƒ!weu 2563  βˆ€wral 3062  Vcvv 3475  {csn 4629  β€˜cfv 6544  (class class class)co 7409  Basecbs 17144  Hom chom 17208  Catccat 17608  Idccid 17609  InitOcinito 17931
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-cat 17612  df-cid 17613  df-inito 17934
This theorem is referenced by:  2initoinv  17960
  Copyright terms: Public domain W3C validator