MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  initoid Structured version   Visualization version   GIF version

Theorem initoid 17963
Description: For an initial object, the identity arrow is the one and only morphism of the object to the object itself. (Contributed by AV, 6-Apr-2020.)
Hypotheses
Ref Expression
isinitoi.b 𝐵 = (Base‘𝐶)
isinitoi.h 𝐻 = (Hom ‘𝐶)
isinitoi.c (𝜑𝐶 ∈ Cat)
Assertion
Ref Expression
initoid ((𝜑𝑂 ∈ (InitO‘𝐶)) → (𝑂𝐻𝑂) = {((Id‘𝐶)‘𝑂)})

Proof of Theorem initoid
Dummy variables 𝑜 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isinitoi.b . . 3 𝐵 = (Base‘𝐶)
2 isinitoi.h . . 3 𝐻 = (Hom ‘𝐶)
3 isinitoi.c . . 3 (𝜑𝐶 ∈ Cat)
41, 2, 3isinitoi 17961 . 2 ((𝜑𝑂 ∈ (InitO‘𝐶)) → (𝑂𝐵 ∧ ∀𝑜𝐵 ∃! ∈ (𝑂𝐻𝑜)))
5 oveq2 7395 . . . . . . . 8 (𝑜 = 𝑂 → (𝑂𝐻𝑜) = (𝑂𝐻𝑂))
65eleq2d 2814 . . . . . . 7 (𝑜 = 𝑂 → ( ∈ (𝑂𝐻𝑜) ↔ ∈ (𝑂𝐻𝑂)))
76eubidv 2579 . . . . . 6 (𝑜 = 𝑂 → (∃! ∈ (𝑂𝐻𝑜) ↔ ∃! ∈ (𝑂𝐻𝑂)))
87rspcv 3584 . . . . 5 (𝑂𝐵 → (∀𝑜𝐵 ∃! ∈ (𝑂𝐻𝑜) → ∃! ∈ (𝑂𝐻𝑂)))
98adantl 481 . . . 4 (((𝜑𝑂 ∈ (InitO‘𝐶)) ∧ 𝑂𝐵) → (∀𝑜𝐵 ∃! ∈ (𝑂𝐻𝑜) → ∃! ∈ (𝑂𝐻𝑂)))
10 eusn 4694 . . . . 5 (∃! ∈ (𝑂𝐻𝑂) ↔ ∃(𝑂𝐻𝑂) = {})
11 eqid 2729 . . . . . . . . 9 (Id‘𝐶) = (Id‘𝐶)
123ad2antrr 726 . . . . . . . . 9 (((𝜑𝑂 ∈ (InitO‘𝐶)) ∧ 𝑂𝐵) → 𝐶 ∈ Cat)
13 simpr 484 . . . . . . . . 9 (((𝜑𝑂 ∈ (InitO‘𝐶)) ∧ 𝑂𝐵) → 𝑂𝐵)
141, 2, 11, 12, 13catidcl 17643 . . . . . . . 8 (((𝜑𝑂 ∈ (InitO‘𝐶)) ∧ 𝑂𝐵) → ((Id‘𝐶)‘𝑂) ∈ (𝑂𝐻𝑂))
15 fvex 6871 . . . . . . . . . . . . 13 ((Id‘𝐶)‘𝑂) ∈ V
1615elsn 4604 . . . . . . . . . . . 12 (((Id‘𝐶)‘𝑂) ∈ {} ↔ ((Id‘𝐶)‘𝑂) = )
17 eqcom 2736 . . . . . . . . . . . 12 (((Id‘𝐶)‘𝑂) = = ((Id‘𝐶)‘𝑂))
18 sneqbg 4807 . . . . . . . . . . . . . 14 ( ∈ V → ({} = {((Id‘𝐶)‘𝑂)} ↔ = ((Id‘𝐶)‘𝑂)))
1918bicomd 223 . . . . . . . . . . . . 13 ( ∈ V → ( = ((Id‘𝐶)‘𝑂) ↔ {} = {((Id‘𝐶)‘𝑂)}))
2019elv 3452 . . . . . . . . . . . 12 ( = ((Id‘𝐶)‘𝑂) ↔ {} = {((Id‘𝐶)‘𝑂)})
2116, 17, 203bitri 297 . . . . . . . . . . 11 (((Id‘𝐶)‘𝑂) ∈ {} ↔ {} = {((Id‘𝐶)‘𝑂)})
2221biimpi 216 . . . . . . . . . 10 (((Id‘𝐶)‘𝑂) ∈ {} → {} = {((Id‘𝐶)‘𝑂)})
2322a1i 11 . . . . . . . . 9 ((𝑂𝐻𝑂) = {} → (((Id‘𝐶)‘𝑂) ∈ {} → {} = {((Id‘𝐶)‘𝑂)}))
24 eleq2 2817 . . . . . . . . 9 ((𝑂𝐻𝑂) = {} → (((Id‘𝐶)‘𝑂) ∈ (𝑂𝐻𝑂) ↔ ((Id‘𝐶)‘𝑂) ∈ {}))
25 eqeq1 2733 . . . . . . . . 9 ((𝑂𝐻𝑂) = {} → ((𝑂𝐻𝑂) = {((Id‘𝐶)‘𝑂)} ↔ {} = {((Id‘𝐶)‘𝑂)}))
2623, 24, 253imtr4d 294 . . . . . . . 8 ((𝑂𝐻𝑂) = {} → (((Id‘𝐶)‘𝑂) ∈ (𝑂𝐻𝑂) → (𝑂𝐻𝑂) = {((Id‘𝐶)‘𝑂)}))
2714, 26syl5 34 . . . . . . 7 ((𝑂𝐻𝑂) = {} → (((𝜑𝑂 ∈ (InitO‘𝐶)) ∧ 𝑂𝐵) → (𝑂𝐻𝑂) = {((Id‘𝐶)‘𝑂)}))
2827exlimiv 1930 . . . . . 6 (∃(𝑂𝐻𝑂) = {} → (((𝜑𝑂 ∈ (InitO‘𝐶)) ∧ 𝑂𝐵) → (𝑂𝐻𝑂) = {((Id‘𝐶)‘𝑂)}))
2928com12 32 . . . . 5 (((𝜑𝑂 ∈ (InitO‘𝐶)) ∧ 𝑂𝐵) → (∃(𝑂𝐻𝑂) = {} → (𝑂𝐻𝑂) = {((Id‘𝐶)‘𝑂)}))
3010, 29biimtrid 242 . . . 4 (((𝜑𝑂 ∈ (InitO‘𝐶)) ∧ 𝑂𝐵) → (∃! ∈ (𝑂𝐻𝑂) → (𝑂𝐻𝑂) = {((Id‘𝐶)‘𝑂)}))
319, 30syld 47 . . 3 (((𝜑𝑂 ∈ (InitO‘𝐶)) ∧ 𝑂𝐵) → (∀𝑜𝐵 ∃! ∈ (𝑂𝐻𝑜) → (𝑂𝐻𝑂) = {((Id‘𝐶)‘𝑂)}))
3231expimpd 453 . 2 ((𝜑𝑂 ∈ (InitO‘𝐶)) → ((𝑂𝐵 ∧ ∀𝑜𝐵 ∃! ∈ (𝑂𝐻𝑜)) → (𝑂𝐻𝑂) = {((Id‘𝐶)‘𝑂)}))
334, 32mpd 15 1 ((𝜑𝑂 ∈ (InitO‘𝐶)) → (𝑂𝐻𝑂) = {((Id‘𝐶)‘𝑂)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  ∃!weu 2561  wral 3044  Vcvv 3447  {csn 4589  cfv 6511  (class class class)co 7387  Basecbs 17179  Hom chom 17231  Catccat 17625  Idccid 17626  InitOcinito 17943
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-cat 17629  df-cid 17630  df-inito 17946
This theorem is referenced by:  2initoinv  17972
  Copyright terms: Public domain W3C validator