MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  initoid Structured version   Visualization version   GIF version

Theorem initoid 17970
Description: For an initial object, the identity arrow is the one and only morphism of the object to the object itself. (Contributed by AV, 6-Apr-2020.)
Hypotheses
Ref Expression
isinitoi.b 𝐵 = (Base‘𝐶)
isinitoi.h 𝐻 = (Hom ‘𝐶)
isinitoi.c (𝜑𝐶 ∈ Cat)
Assertion
Ref Expression
initoid ((𝜑𝑂 ∈ (InitO‘𝐶)) → (𝑂𝐻𝑂) = {((Id‘𝐶)‘𝑂)})

Proof of Theorem initoid
Dummy variables 𝑜 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isinitoi.b . . 3 𝐵 = (Base‘𝐶)
2 isinitoi.h . . 3 𝐻 = (Hom ‘𝐶)
3 isinitoi.c . . 3 (𝜑𝐶 ∈ Cat)
41, 2, 3isinitoi 17968 . 2 ((𝜑𝑂 ∈ (InitO‘𝐶)) → (𝑂𝐵 ∧ ∀𝑜𝐵 ∃! ∈ (𝑂𝐻𝑜)))
5 oveq2 7398 . . . . . . . 8 (𝑜 = 𝑂 → (𝑂𝐻𝑜) = (𝑂𝐻𝑂))
65eleq2d 2815 . . . . . . 7 (𝑜 = 𝑂 → ( ∈ (𝑂𝐻𝑜) ↔ ∈ (𝑂𝐻𝑂)))
76eubidv 2580 . . . . . 6 (𝑜 = 𝑂 → (∃! ∈ (𝑂𝐻𝑜) ↔ ∃! ∈ (𝑂𝐻𝑂)))
87rspcv 3587 . . . . 5 (𝑂𝐵 → (∀𝑜𝐵 ∃! ∈ (𝑂𝐻𝑜) → ∃! ∈ (𝑂𝐻𝑂)))
98adantl 481 . . . 4 (((𝜑𝑂 ∈ (InitO‘𝐶)) ∧ 𝑂𝐵) → (∀𝑜𝐵 ∃! ∈ (𝑂𝐻𝑜) → ∃! ∈ (𝑂𝐻𝑂)))
10 eusn 4697 . . . . 5 (∃! ∈ (𝑂𝐻𝑂) ↔ ∃(𝑂𝐻𝑂) = {})
11 eqid 2730 . . . . . . . . 9 (Id‘𝐶) = (Id‘𝐶)
123ad2antrr 726 . . . . . . . . 9 (((𝜑𝑂 ∈ (InitO‘𝐶)) ∧ 𝑂𝐵) → 𝐶 ∈ Cat)
13 simpr 484 . . . . . . . . 9 (((𝜑𝑂 ∈ (InitO‘𝐶)) ∧ 𝑂𝐵) → 𝑂𝐵)
141, 2, 11, 12, 13catidcl 17650 . . . . . . . 8 (((𝜑𝑂 ∈ (InitO‘𝐶)) ∧ 𝑂𝐵) → ((Id‘𝐶)‘𝑂) ∈ (𝑂𝐻𝑂))
15 fvex 6874 . . . . . . . . . . . . 13 ((Id‘𝐶)‘𝑂) ∈ V
1615elsn 4607 . . . . . . . . . . . 12 (((Id‘𝐶)‘𝑂) ∈ {} ↔ ((Id‘𝐶)‘𝑂) = )
17 eqcom 2737 . . . . . . . . . . . 12 (((Id‘𝐶)‘𝑂) = = ((Id‘𝐶)‘𝑂))
18 sneqbg 4810 . . . . . . . . . . . . . 14 ( ∈ V → ({} = {((Id‘𝐶)‘𝑂)} ↔ = ((Id‘𝐶)‘𝑂)))
1918bicomd 223 . . . . . . . . . . . . 13 ( ∈ V → ( = ((Id‘𝐶)‘𝑂) ↔ {} = {((Id‘𝐶)‘𝑂)}))
2019elv 3455 . . . . . . . . . . . 12 ( = ((Id‘𝐶)‘𝑂) ↔ {} = {((Id‘𝐶)‘𝑂)})
2116, 17, 203bitri 297 . . . . . . . . . . 11 (((Id‘𝐶)‘𝑂) ∈ {} ↔ {} = {((Id‘𝐶)‘𝑂)})
2221biimpi 216 . . . . . . . . . 10 (((Id‘𝐶)‘𝑂) ∈ {} → {} = {((Id‘𝐶)‘𝑂)})
2322a1i 11 . . . . . . . . 9 ((𝑂𝐻𝑂) = {} → (((Id‘𝐶)‘𝑂) ∈ {} → {} = {((Id‘𝐶)‘𝑂)}))
24 eleq2 2818 . . . . . . . . 9 ((𝑂𝐻𝑂) = {} → (((Id‘𝐶)‘𝑂) ∈ (𝑂𝐻𝑂) ↔ ((Id‘𝐶)‘𝑂) ∈ {}))
25 eqeq1 2734 . . . . . . . . 9 ((𝑂𝐻𝑂) = {} → ((𝑂𝐻𝑂) = {((Id‘𝐶)‘𝑂)} ↔ {} = {((Id‘𝐶)‘𝑂)}))
2623, 24, 253imtr4d 294 . . . . . . . 8 ((𝑂𝐻𝑂) = {} → (((Id‘𝐶)‘𝑂) ∈ (𝑂𝐻𝑂) → (𝑂𝐻𝑂) = {((Id‘𝐶)‘𝑂)}))
2714, 26syl5 34 . . . . . . 7 ((𝑂𝐻𝑂) = {} → (((𝜑𝑂 ∈ (InitO‘𝐶)) ∧ 𝑂𝐵) → (𝑂𝐻𝑂) = {((Id‘𝐶)‘𝑂)}))
2827exlimiv 1930 . . . . . 6 (∃(𝑂𝐻𝑂) = {} → (((𝜑𝑂 ∈ (InitO‘𝐶)) ∧ 𝑂𝐵) → (𝑂𝐻𝑂) = {((Id‘𝐶)‘𝑂)}))
2928com12 32 . . . . 5 (((𝜑𝑂 ∈ (InitO‘𝐶)) ∧ 𝑂𝐵) → (∃(𝑂𝐻𝑂) = {} → (𝑂𝐻𝑂) = {((Id‘𝐶)‘𝑂)}))
3010, 29biimtrid 242 . . . 4 (((𝜑𝑂 ∈ (InitO‘𝐶)) ∧ 𝑂𝐵) → (∃! ∈ (𝑂𝐻𝑂) → (𝑂𝐻𝑂) = {((Id‘𝐶)‘𝑂)}))
319, 30syld 47 . . 3 (((𝜑𝑂 ∈ (InitO‘𝐶)) ∧ 𝑂𝐵) → (∀𝑜𝐵 ∃! ∈ (𝑂𝐻𝑜) → (𝑂𝐻𝑂) = {((Id‘𝐶)‘𝑂)}))
3231expimpd 453 . 2 ((𝜑𝑂 ∈ (InitO‘𝐶)) → ((𝑂𝐵 ∧ ∀𝑜𝐵 ∃! ∈ (𝑂𝐻𝑜)) → (𝑂𝐻𝑂) = {((Id‘𝐶)‘𝑂)}))
334, 32mpd 15 1 ((𝜑𝑂 ∈ (InitO‘𝐶)) → (𝑂𝐻𝑂) = {((Id‘𝐶)‘𝑂)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  ∃!weu 2562  wral 3045  Vcvv 3450  {csn 4592  cfv 6514  (class class class)co 7390  Basecbs 17186  Hom chom 17238  Catccat 17632  Idccid 17633  InitOcinito 17950
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-cat 17636  df-cid 17637  df-inito 17953
This theorem is referenced by:  2initoinv  17979
  Copyright terms: Public domain W3C validator