MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  termoid Structured version   Visualization version   GIF version

Theorem termoid 17956
Description: For a terminal object, the identity arrow is the one and only morphism of the object to the object itself. (Contributed by AV, 18-Apr-2020.)
Hypotheses
Ref Expression
isinitoi.b 𝐡 = (Baseβ€˜πΆ)
isinitoi.h 𝐻 = (Hom β€˜πΆ)
isinitoi.c (πœ‘ β†’ 𝐢 ∈ Cat)
Assertion
Ref Expression
termoid ((πœ‘ ∧ 𝑂 ∈ (TermOβ€˜πΆ)) β†’ (𝑂𝐻𝑂) = {((Idβ€˜πΆ)β€˜π‘‚)})

Proof of Theorem termoid
Dummy variables β„Ž π‘œ are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isinitoi.b . . 3 𝐡 = (Baseβ€˜πΆ)
2 isinitoi.h . . 3 𝐻 = (Hom β€˜πΆ)
3 isinitoi.c . . 3 (πœ‘ β†’ 𝐢 ∈ Cat)
41, 2, 3istermoi 17954 . 2 ((πœ‘ ∧ 𝑂 ∈ (TermOβ€˜πΆ)) β†’ (𝑂 ∈ 𝐡 ∧ βˆ€π‘œ ∈ 𝐡 βˆƒ!β„Ž β„Ž ∈ (π‘œπ»π‘‚)))
5 oveq1 7418 . . . . . . . 8 (π‘œ = 𝑂 β†’ (π‘œπ»π‘‚) = (𝑂𝐻𝑂))
65eleq2d 2817 . . . . . . 7 (π‘œ = 𝑂 β†’ (β„Ž ∈ (π‘œπ»π‘‚) ↔ β„Ž ∈ (𝑂𝐻𝑂)))
76eubidv 2578 . . . . . 6 (π‘œ = 𝑂 β†’ (βˆƒ!β„Ž β„Ž ∈ (π‘œπ»π‘‚) ↔ βˆƒ!β„Ž β„Ž ∈ (𝑂𝐻𝑂)))
87rspcv 3607 . . . . 5 (𝑂 ∈ 𝐡 β†’ (βˆ€π‘œ ∈ 𝐡 βˆƒ!β„Ž β„Ž ∈ (π‘œπ»π‘‚) β†’ βˆƒ!β„Ž β„Ž ∈ (𝑂𝐻𝑂)))
98adantl 480 . . . 4 (((πœ‘ ∧ 𝑂 ∈ (TermOβ€˜πΆ)) ∧ 𝑂 ∈ 𝐡) β†’ (βˆ€π‘œ ∈ 𝐡 βˆƒ!β„Ž β„Ž ∈ (π‘œπ»π‘‚) β†’ βˆƒ!β„Ž β„Ž ∈ (𝑂𝐻𝑂)))
10 eusn 4733 . . . . 5 (βˆƒ!β„Ž β„Ž ∈ (𝑂𝐻𝑂) ↔ βˆƒβ„Ž(𝑂𝐻𝑂) = {β„Ž})
11 eqid 2730 . . . . . . . . 9 (Idβ€˜πΆ) = (Idβ€˜πΆ)
123ad2antrr 722 . . . . . . . . 9 (((πœ‘ ∧ 𝑂 ∈ (TermOβ€˜πΆ)) ∧ 𝑂 ∈ 𝐡) β†’ 𝐢 ∈ Cat)
13 simpr 483 . . . . . . . . 9 (((πœ‘ ∧ 𝑂 ∈ (TermOβ€˜πΆ)) ∧ 𝑂 ∈ 𝐡) β†’ 𝑂 ∈ 𝐡)
141, 2, 11, 12, 13catidcl 17630 . . . . . . . 8 (((πœ‘ ∧ 𝑂 ∈ (TermOβ€˜πΆ)) ∧ 𝑂 ∈ 𝐡) β†’ ((Idβ€˜πΆ)β€˜π‘‚) ∈ (𝑂𝐻𝑂))
15 fvex 6903 . . . . . . . . . . . . 13 ((Idβ€˜πΆ)β€˜π‘‚) ∈ V
1615elsn 4642 . . . . . . . . . . . 12 (((Idβ€˜πΆ)β€˜π‘‚) ∈ {β„Ž} ↔ ((Idβ€˜πΆ)β€˜π‘‚) = β„Ž)
17 eqcom 2737 . . . . . . . . . . . 12 (((Idβ€˜πΆ)β€˜π‘‚) = β„Ž ↔ β„Ž = ((Idβ€˜πΆ)β€˜π‘‚))
18 sneqbg 4843 . . . . . . . . . . . . . 14 (β„Ž ∈ V β†’ ({β„Ž} = {((Idβ€˜πΆ)β€˜π‘‚)} ↔ β„Ž = ((Idβ€˜πΆ)β€˜π‘‚)))
1918bicomd 222 . . . . . . . . . . . . 13 (β„Ž ∈ V β†’ (β„Ž = ((Idβ€˜πΆ)β€˜π‘‚) ↔ {β„Ž} = {((Idβ€˜πΆ)β€˜π‘‚)}))
2019elv 3478 . . . . . . . . . . . 12 (β„Ž = ((Idβ€˜πΆ)β€˜π‘‚) ↔ {β„Ž} = {((Idβ€˜πΆ)β€˜π‘‚)})
2116, 17, 203bitri 296 . . . . . . . . . . 11 (((Idβ€˜πΆ)β€˜π‘‚) ∈ {β„Ž} ↔ {β„Ž} = {((Idβ€˜πΆ)β€˜π‘‚)})
2221biimpi 215 . . . . . . . . . 10 (((Idβ€˜πΆ)β€˜π‘‚) ∈ {β„Ž} β†’ {β„Ž} = {((Idβ€˜πΆ)β€˜π‘‚)})
2322a1i 11 . . . . . . . . 9 ((𝑂𝐻𝑂) = {β„Ž} β†’ (((Idβ€˜πΆ)β€˜π‘‚) ∈ {β„Ž} β†’ {β„Ž} = {((Idβ€˜πΆ)β€˜π‘‚)}))
24 eleq2 2820 . . . . . . . . 9 ((𝑂𝐻𝑂) = {β„Ž} β†’ (((Idβ€˜πΆ)β€˜π‘‚) ∈ (𝑂𝐻𝑂) ↔ ((Idβ€˜πΆ)β€˜π‘‚) ∈ {β„Ž}))
25 eqeq1 2734 . . . . . . . . 9 ((𝑂𝐻𝑂) = {β„Ž} β†’ ((𝑂𝐻𝑂) = {((Idβ€˜πΆ)β€˜π‘‚)} ↔ {β„Ž} = {((Idβ€˜πΆ)β€˜π‘‚)}))
2623, 24, 253imtr4d 293 . . . . . . . 8 ((𝑂𝐻𝑂) = {β„Ž} β†’ (((Idβ€˜πΆ)β€˜π‘‚) ∈ (𝑂𝐻𝑂) β†’ (𝑂𝐻𝑂) = {((Idβ€˜πΆ)β€˜π‘‚)}))
2714, 26syl5 34 . . . . . . 7 ((𝑂𝐻𝑂) = {β„Ž} β†’ (((πœ‘ ∧ 𝑂 ∈ (TermOβ€˜πΆ)) ∧ 𝑂 ∈ 𝐡) β†’ (𝑂𝐻𝑂) = {((Idβ€˜πΆ)β€˜π‘‚)}))
2827exlimiv 1931 . . . . . 6 (βˆƒβ„Ž(𝑂𝐻𝑂) = {β„Ž} β†’ (((πœ‘ ∧ 𝑂 ∈ (TermOβ€˜πΆ)) ∧ 𝑂 ∈ 𝐡) β†’ (𝑂𝐻𝑂) = {((Idβ€˜πΆ)β€˜π‘‚)}))
2928com12 32 . . . . 5 (((πœ‘ ∧ 𝑂 ∈ (TermOβ€˜πΆ)) ∧ 𝑂 ∈ 𝐡) β†’ (βˆƒβ„Ž(𝑂𝐻𝑂) = {β„Ž} β†’ (𝑂𝐻𝑂) = {((Idβ€˜πΆ)β€˜π‘‚)}))
3010, 29biimtrid 241 . . . 4 (((πœ‘ ∧ 𝑂 ∈ (TermOβ€˜πΆ)) ∧ 𝑂 ∈ 𝐡) β†’ (βˆƒ!β„Ž β„Ž ∈ (𝑂𝐻𝑂) β†’ (𝑂𝐻𝑂) = {((Idβ€˜πΆ)β€˜π‘‚)}))
319, 30syld 47 . . 3 (((πœ‘ ∧ 𝑂 ∈ (TermOβ€˜πΆ)) ∧ 𝑂 ∈ 𝐡) β†’ (βˆ€π‘œ ∈ 𝐡 βˆƒ!β„Ž β„Ž ∈ (π‘œπ»π‘‚) β†’ (𝑂𝐻𝑂) = {((Idβ€˜πΆ)β€˜π‘‚)}))
3231expimpd 452 . 2 ((πœ‘ ∧ 𝑂 ∈ (TermOβ€˜πΆ)) β†’ ((𝑂 ∈ 𝐡 ∧ βˆ€π‘œ ∈ 𝐡 βˆƒ!β„Ž β„Ž ∈ (π‘œπ»π‘‚)) β†’ (𝑂𝐻𝑂) = {((Idβ€˜πΆ)β€˜π‘‚)}))
334, 32mpd 15 1 ((πœ‘ ∧ 𝑂 ∈ (TermOβ€˜πΆ)) β†’ (𝑂𝐻𝑂) = {((Idβ€˜πΆ)β€˜π‘‚)})
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 394   = wceq 1539  βˆƒwex 1779   ∈ wcel 2104  βˆƒ!weu 2560  βˆ€wral 3059  Vcvv 3472  {csn 4627  β€˜cfv 6542  (class class class)co 7411  Basecbs 17148  Hom chom 17212  Catccat 17612  Idccid 17613  TermOctermo 17936
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7367  df-ov 7414  df-cat 17616  df-cid 17617  df-termo 17939
This theorem is referenced by:  2termoinv  17971
  Copyright terms: Public domain W3C validator