MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eusv2 Structured version   Visualization version   GIF version

Theorem eusv2 5414
Description: Two ways to express single-valuedness of a class expression 𝐴(𝑥). (Contributed by NM, 15-Oct-2010.) (Proof shortened by Mario Carneiro, 18-Nov-2016.)
Hypothesis
Ref Expression
eusv2.1 𝐴 ∈ V
Assertion
Ref Expression
eusv2 (∃!𝑦𝑥 𝑦 = 𝐴 ↔ ∃!𝑦𝑥 𝑦 = 𝐴)
Distinct variable groups:   𝑥,𝑦   𝑦,𝐴
Allowed substitution hint:   𝐴(𝑥)

Proof of Theorem eusv2
StepHypRef Expression
1 eusv2.1 . . 3 𝐴 ∈ V
21eusv2nf 5413 . 2 (∃!𝑦𝑥 𝑦 = 𝐴𝑥𝐴)
3 eusvnfb 5411 . . 3 (∃!𝑦𝑥 𝑦 = 𝐴 ↔ (𝑥𝐴𝐴 ∈ V))
41, 3mpbiran2 709 . 2 (∃!𝑦𝑥 𝑦 = 𝐴𝑥𝐴)
52, 4bitr4i 278 1 (∃!𝑦𝑥 𝑦 = 𝐴 ↔ ∃!𝑦𝑥 𝑦 = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wal 1535   = wceq 1537  wex 1777  wcel 2108  ∃!weu 2571  wnfc 2893  Vcvv 3488
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rex 3077  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-sn 4649  df-pr 4651  df-uni 4932
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator