| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eusv2 | Structured version Visualization version GIF version | ||
| Description: Two ways to express single-valuedness of a class expression 𝐴(𝑥). (Contributed by NM, 15-Oct-2010.) (Proof shortened by Mario Carneiro, 18-Nov-2016.) |
| Ref | Expression |
|---|---|
| eusv2.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| eusv2 | ⊢ (∃!𝑦∃𝑥 𝑦 = 𝐴 ↔ ∃!𝑦∀𝑥 𝑦 = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eusv2.1 | . . 3 ⊢ 𝐴 ∈ V | |
| 2 | 1 | eusv2nf 5353 | . 2 ⊢ (∃!𝑦∃𝑥 𝑦 = 𝐴 ↔ Ⅎ𝑥𝐴) |
| 3 | eusvnfb 5351 | . . 3 ⊢ (∃!𝑦∀𝑥 𝑦 = 𝐴 ↔ (Ⅎ𝑥𝐴 ∧ 𝐴 ∈ V)) | |
| 4 | 1, 3 | mpbiran2 710 | . 2 ⊢ (∃!𝑦∀𝑥 𝑦 = 𝐴 ↔ Ⅎ𝑥𝐴) |
| 5 | 2, 4 | bitr4i 278 | 1 ⊢ (∃!𝑦∃𝑥 𝑦 = 𝐴 ↔ ∃!𝑦∀𝑥 𝑦 = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∀wal 1538 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ∃!weu 2562 Ⅎwnfc 2877 Vcvv 3450 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-rex 3055 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-sn 4593 df-pr 4595 df-uni 4875 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |