MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eusv2 Structured version   Visualization version   GIF version

Theorem eusv2 5391
Description: Two ways to express single-valuedness of a class expression 𝐴(𝑥). (Contributed by NM, 15-Oct-2010.) (Proof shortened by Mario Carneiro, 18-Nov-2016.)
Hypothesis
Ref Expression
eusv2.1 𝐴 ∈ V
Assertion
Ref Expression
eusv2 (∃!𝑦𝑥 𝑦 = 𝐴 ↔ ∃!𝑦𝑥 𝑦 = 𝐴)
Distinct variable groups:   𝑥,𝑦   𝑦,𝐴
Allowed substitution hint:   𝐴(𝑥)

Proof of Theorem eusv2
StepHypRef Expression
1 eusv2.1 . . 3 𝐴 ∈ V
21eusv2nf 5390 . 2 (∃!𝑦𝑥 𝑦 = 𝐴𝑥𝐴)
3 eusvnfb 5388 . . 3 (∃!𝑦𝑥 𝑦 = 𝐴 ↔ (𝑥𝐴𝐴 ∈ V))
41, 3mpbiran2 708 . 2 (∃!𝑦𝑥 𝑦 = 𝐴𝑥𝐴)
52, 4bitr4i 277 1 (∃!𝑦𝑥 𝑦 = 𝐴 ↔ ∃!𝑦𝑥 𝑦 = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wal 1532   = wceq 1534  wex 1774  wcel 2099  ∃!weu 2557  wnfc 2876  Vcvv 3463
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ral 3052  df-rex 3061  df-v 3465  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-ss 3964  df-nul 4324  df-sn 4625  df-pr 4627  df-uni 4907
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator