Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  exanres Structured version   Visualization version   GIF version

Theorem exanres 36357
Description: Equivalent expressions with existential quantification. (Contributed by Peter Mazsa, 2-May-2021.)
Assertion
Ref Expression
exanres ((𝐵𝑉𝐶𝑊) → (∃𝑢(𝑢(𝑅𝐴)𝐵𝑢(𝑆𝐴)𝐶) ↔ ∃𝑢𝐴 (𝑢𝑅𝐵𝑢𝑆𝐶)))
Distinct variable groups:   𝑢,𝐵   𝑢,𝐶   𝑢,𝑉   𝑢,𝑊
Allowed substitution hints:   𝐴(𝑢)   𝑅(𝑢)   𝑆(𝑢)

Proof of Theorem exanres
StepHypRef Expression
1 brres 5887 . . . . 5 (𝐵𝑉 → (𝑢(𝑅𝐴)𝐵 ↔ (𝑢𝐴𝑢𝑅𝐵)))
2 brres 5887 . . . . 5 (𝐶𝑊 → (𝑢(𝑆𝐴)𝐶 ↔ (𝑢𝐴𝑢𝑆𝐶)))
31, 2bi2anan9 635 . . . 4 ((𝐵𝑉𝐶𝑊) → ((𝑢(𝑅𝐴)𝐵𝑢(𝑆𝐴)𝐶) ↔ ((𝑢𝐴𝑢𝑅𝐵) ∧ (𝑢𝐴𝑢𝑆𝐶))))
4 anandi 672 . . . 4 ((𝑢𝐴 ∧ (𝑢𝑅𝐵𝑢𝑆𝐶)) ↔ ((𝑢𝐴𝑢𝑅𝐵) ∧ (𝑢𝐴𝑢𝑆𝐶)))
53, 4bitr4di 288 . . 3 ((𝐵𝑉𝐶𝑊) → ((𝑢(𝑅𝐴)𝐵𝑢(𝑆𝐴)𝐶) ↔ (𝑢𝐴 ∧ (𝑢𝑅𝐵𝑢𝑆𝐶))))
65exbidv 1925 . 2 ((𝐵𝑉𝐶𝑊) → (∃𝑢(𝑢(𝑅𝐴)𝐵𝑢(𝑆𝐴)𝐶) ↔ ∃𝑢(𝑢𝐴 ∧ (𝑢𝑅𝐵𝑢𝑆𝐶))))
7 df-rex 3069 . 2 (∃𝑢𝐴 (𝑢𝑅𝐵𝑢𝑆𝐶) ↔ ∃𝑢(𝑢𝐴 ∧ (𝑢𝑅𝐵𝑢𝑆𝐶)))
86, 7bitr4di 288 1 ((𝐵𝑉𝐶𝑊) → (∃𝑢(𝑢(𝑅𝐴)𝐵𝑢(𝑆𝐴)𝐶) ↔ ∃𝑢𝐴 (𝑢𝑅𝐵𝑢𝑆𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wex 1783  wcel 2108  wrex 3064   class class class wbr 5070  cres 5582
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-xp 5586  df-res 5592
This theorem is referenced by:  exanres2  36359  br1cossres  36489
  Copyright terms: Public domain W3C validator