Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  exanres Structured version   Visualization version   GIF version

Theorem exanres 38296
Description: Equivalent expressions with existential quantification. (Contributed by Peter Mazsa, 2-May-2021.)
Assertion
Ref Expression
exanres ((𝐵𝑉𝐶𝑊) → (∃𝑢(𝑢(𝑅𝐴)𝐵𝑢(𝑆𝐴)𝐶) ↔ ∃𝑢𝐴 (𝑢𝑅𝐵𝑢𝑆𝐶)))
Distinct variable groups:   𝑢,𝐵   𝑢,𝐶   𝑢,𝑉   𝑢,𝑊
Allowed substitution hints:   𝐴(𝑢)   𝑅(𝑢)   𝑆(𝑢)

Proof of Theorem exanres
StepHypRef Expression
1 brres 6004 . . . . 5 (𝐵𝑉 → (𝑢(𝑅𝐴)𝐵 ↔ (𝑢𝐴𝑢𝑅𝐵)))
2 brres 6004 . . . . 5 (𝐶𝑊 → (𝑢(𝑆𝐴)𝐶 ↔ (𝑢𝐴𝑢𝑆𝐶)))
31, 2bi2anan9 638 . . . 4 ((𝐵𝑉𝐶𝑊) → ((𝑢(𝑅𝐴)𝐵𝑢(𝑆𝐴)𝐶) ↔ ((𝑢𝐴𝑢𝑅𝐵) ∧ (𝑢𝐴𝑢𝑆𝐶))))
4 anandi 676 . . . 4 ((𝑢𝐴 ∧ (𝑢𝑅𝐵𝑢𝑆𝐶)) ↔ ((𝑢𝐴𝑢𝑅𝐵) ∧ (𝑢𝐴𝑢𝑆𝐶)))
53, 4bitr4di 289 . . 3 ((𝐵𝑉𝐶𝑊) → ((𝑢(𝑅𝐴)𝐵𝑢(𝑆𝐴)𝐶) ↔ (𝑢𝐴 ∧ (𝑢𝑅𝐵𝑢𝑆𝐶))))
65exbidv 1921 . 2 ((𝐵𝑉𝐶𝑊) → (∃𝑢(𝑢(𝑅𝐴)𝐵𝑢(𝑆𝐴)𝐶) ↔ ∃𝑢(𝑢𝐴 ∧ (𝑢𝑅𝐵𝑢𝑆𝐶))))
7 df-rex 3071 . 2 (∃𝑢𝐴 (𝑢𝑅𝐵𝑢𝑆𝐶) ↔ ∃𝑢(𝑢𝐴 ∧ (𝑢𝑅𝐵𝑢𝑆𝐶)))
86, 7bitr4di 289 1 ((𝐵𝑉𝐶𝑊) → (∃𝑢(𝑢(𝑅𝐴)𝐵𝑢(𝑆𝐴)𝐶) ↔ ∃𝑢𝐴 (𝑢𝑅𝐵𝑢𝑆𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wex 1779  wcel 2108  wrex 3070   class class class wbr 5143  cres 5687
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-br 5144  df-opab 5206  df-xp 5691  df-res 5697
This theorem is referenced by:  exanres2  38298  br1cossres  38440
  Copyright terms: Public domain W3C validator