![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > exanres | Structured version Visualization version GIF version |
Description: Equivalent expressions with existential quantification. (Contributed by Peter Mazsa, 2-May-2021.) |
Ref | Expression |
---|---|
exanres | ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (∃𝑢(𝑢(𝑅 ↾ 𝐴)𝐵 ∧ 𝑢(𝑆 ↾ 𝐴)𝐶) ↔ ∃𝑢 ∈ 𝐴 (𝑢𝑅𝐵 ∧ 𝑢𝑆𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brres 5741 | . . . . 5 ⊢ (𝐵 ∈ 𝑉 → (𝑢(𝑅 ↾ 𝐴)𝐵 ↔ (𝑢 ∈ 𝐴 ∧ 𝑢𝑅𝐵))) | |
2 | brres 5741 | . . . . 5 ⊢ (𝐶 ∈ 𝑊 → (𝑢(𝑆 ↾ 𝐴)𝐶 ↔ (𝑢 ∈ 𝐴 ∧ 𝑢𝑆𝐶))) | |
3 | 1, 2 | bi2anan9 635 | . . . 4 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → ((𝑢(𝑅 ↾ 𝐴)𝐵 ∧ 𝑢(𝑆 ↾ 𝐴)𝐶) ↔ ((𝑢 ∈ 𝐴 ∧ 𝑢𝑅𝐵) ∧ (𝑢 ∈ 𝐴 ∧ 𝑢𝑆𝐶)))) |
4 | anandi 672 | . . . 4 ⊢ ((𝑢 ∈ 𝐴 ∧ (𝑢𝑅𝐵 ∧ 𝑢𝑆𝐶)) ↔ ((𝑢 ∈ 𝐴 ∧ 𝑢𝑅𝐵) ∧ (𝑢 ∈ 𝐴 ∧ 𝑢𝑆𝐶))) | |
5 | 3, 4 | syl6bbr 290 | . . 3 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → ((𝑢(𝑅 ↾ 𝐴)𝐵 ∧ 𝑢(𝑆 ↾ 𝐴)𝐶) ↔ (𝑢 ∈ 𝐴 ∧ (𝑢𝑅𝐵 ∧ 𝑢𝑆𝐶)))) |
6 | 5 | exbidv 1899 | . 2 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (∃𝑢(𝑢(𝑅 ↾ 𝐴)𝐵 ∧ 𝑢(𝑆 ↾ 𝐴)𝐶) ↔ ∃𝑢(𝑢 ∈ 𝐴 ∧ (𝑢𝑅𝐵 ∧ 𝑢𝑆𝐶)))) |
7 | df-rex 3111 | . 2 ⊢ (∃𝑢 ∈ 𝐴 (𝑢𝑅𝐵 ∧ 𝑢𝑆𝐶) ↔ ∃𝑢(𝑢 ∈ 𝐴 ∧ (𝑢𝑅𝐵 ∧ 𝑢𝑆𝐶))) | |
8 | 6, 7 | syl6bbr 290 | 1 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (∃𝑢(𝑢(𝑅 ↾ 𝐴)𝐵 ∧ 𝑢(𝑆 ↾ 𝐴)𝐶) ↔ ∃𝑢 ∈ 𝐴 (𝑢𝑅𝐵 ∧ 𝑢𝑆𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 207 ∧ wa 396 ∃wex 1761 ∈ wcel 2081 ∃wrex 3106 class class class wbr 4962 ↾ cres 5445 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-ext 2769 ax-sep 5094 ax-nul 5101 ax-pr 5221 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3an 1082 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-ral 3110 df-rex 3111 df-rab 3114 df-v 3439 df-dif 3862 df-un 3864 df-in 3866 df-ss 3874 df-nul 4212 df-if 4382 df-sn 4473 df-pr 4475 df-op 4479 df-br 4963 df-opab 5025 df-xp 5449 df-res 5455 |
This theorem is referenced by: exanres2 35086 br1cossres 35215 |
Copyright terms: Public domain | W3C validator |