Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  exanres Structured version   Visualization version   GIF version

Theorem exanres 38290
Description: Equivalent expressions with existential quantification. (Contributed by Peter Mazsa, 2-May-2021.)
Assertion
Ref Expression
exanres ((𝐵𝑉𝐶𝑊) → (∃𝑢(𝑢(𝑅𝐴)𝐵𝑢(𝑆𝐴)𝐶) ↔ ∃𝑢𝐴 (𝑢𝑅𝐵𝑢𝑆𝐶)))
Distinct variable groups:   𝑢,𝐵   𝑢,𝐶   𝑢,𝑉   𝑢,𝑊
Allowed substitution hints:   𝐴(𝑢)   𝑅(𝑢)   𝑆(𝑢)

Proof of Theorem exanres
StepHypRef Expression
1 brres 5960 . . . . 5 (𝐵𝑉 → (𝑢(𝑅𝐴)𝐵 ↔ (𝑢𝐴𝑢𝑅𝐵)))
2 brres 5960 . . . . 5 (𝐶𝑊 → (𝑢(𝑆𝐴)𝐶 ↔ (𝑢𝐴𝑢𝑆𝐶)))
31, 2bi2anan9 638 . . . 4 ((𝐵𝑉𝐶𝑊) → ((𝑢(𝑅𝐴)𝐵𝑢(𝑆𝐴)𝐶) ↔ ((𝑢𝐴𝑢𝑅𝐵) ∧ (𝑢𝐴𝑢𝑆𝐶))))
4 anandi 676 . . . 4 ((𝑢𝐴 ∧ (𝑢𝑅𝐵𝑢𝑆𝐶)) ↔ ((𝑢𝐴𝑢𝑅𝐵) ∧ (𝑢𝐴𝑢𝑆𝐶)))
53, 4bitr4di 289 . . 3 ((𝐵𝑉𝐶𝑊) → ((𝑢(𝑅𝐴)𝐵𝑢(𝑆𝐴)𝐶) ↔ (𝑢𝐴 ∧ (𝑢𝑅𝐵𝑢𝑆𝐶))))
65exbidv 1921 . 2 ((𝐵𝑉𝐶𝑊) → (∃𝑢(𝑢(𝑅𝐴)𝐵𝑢(𝑆𝐴)𝐶) ↔ ∃𝑢(𝑢𝐴 ∧ (𝑢𝑅𝐵𝑢𝑆𝐶))))
7 df-rex 3055 . 2 (∃𝑢𝐴 (𝑢𝑅𝐵𝑢𝑆𝐶) ↔ ∃𝑢(𝑢𝐴 ∧ (𝑢𝑅𝐵𝑢𝑆𝐶)))
86, 7bitr4di 289 1 ((𝐵𝑉𝐶𝑊) → (∃𝑢(𝑢(𝑅𝐴)𝐵𝑢(𝑆𝐴)𝐶) ↔ ∃𝑢𝐴 (𝑢𝑅𝐵𝑢𝑆𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wex 1779  wcel 2109  wrex 3054   class class class wbr 5110  cres 5643
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-br 5111  df-opab 5173  df-xp 5647  df-res 5653
This theorem is referenced by:  exanres2  38292  br1cossres  38437
  Copyright terms: Public domain W3C validator