![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > exanres | Structured version Visualization version GIF version |
Description: Equivalent expressions with existential quantification. (Contributed by Peter Mazsa, 2-May-2021.) |
Ref | Expression |
---|---|
exanres | ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (∃𝑢(𝑢(𝑅 ↾ 𝐴)𝐵 ∧ 𝑢(𝑆 ↾ 𝐴)𝐶) ↔ ∃𝑢 ∈ 𝐴 (𝑢𝑅𝐵 ∧ 𝑢𝑆𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brres 5988 | . . . . 5 ⊢ (𝐵 ∈ 𝑉 → (𝑢(𝑅 ↾ 𝐴)𝐵 ↔ (𝑢 ∈ 𝐴 ∧ 𝑢𝑅𝐵))) | |
2 | brres 5988 | . . . . 5 ⊢ (𝐶 ∈ 𝑊 → (𝑢(𝑆 ↾ 𝐴)𝐶 ↔ (𝑢 ∈ 𝐴 ∧ 𝑢𝑆𝐶))) | |
3 | 1, 2 | bi2anan9 636 | . . . 4 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → ((𝑢(𝑅 ↾ 𝐴)𝐵 ∧ 𝑢(𝑆 ↾ 𝐴)𝐶) ↔ ((𝑢 ∈ 𝐴 ∧ 𝑢𝑅𝐵) ∧ (𝑢 ∈ 𝐴 ∧ 𝑢𝑆𝐶)))) |
4 | anandi 673 | . . . 4 ⊢ ((𝑢 ∈ 𝐴 ∧ (𝑢𝑅𝐵 ∧ 𝑢𝑆𝐶)) ↔ ((𝑢 ∈ 𝐴 ∧ 𝑢𝑅𝐵) ∧ (𝑢 ∈ 𝐴 ∧ 𝑢𝑆𝐶))) | |
5 | 3, 4 | bitr4di 289 | . . 3 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → ((𝑢(𝑅 ↾ 𝐴)𝐵 ∧ 𝑢(𝑆 ↾ 𝐴)𝐶) ↔ (𝑢 ∈ 𝐴 ∧ (𝑢𝑅𝐵 ∧ 𝑢𝑆𝐶)))) |
6 | 5 | exbidv 1923 | . 2 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (∃𝑢(𝑢(𝑅 ↾ 𝐴)𝐵 ∧ 𝑢(𝑆 ↾ 𝐴)𝐶) ↔ ∃𝑢(𝑢 ∈ 𝐴 ∧ (𝑢𝑅𝐵 ∧ 𝑢𝑆𝐶)))) |
7 | df-rex 3070 | . 2 ⊢ (∃𝑢 ∈ 𝐴 (𝑢𝑅𝐵 ∧ 𝑢𝑆𝐶) ↔ ∃𝑢(𝑢 ∈ 𝐴 ∧ (𝑢𝑅𝐵 ∧ 𝑢𝑆𝐶))) | |
8 | 6, 7 | bitr4di 289 | 1 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (∃𝑢(𝑢(𝑅 ↾ 𝐴)𝐵 ∧ 𝑢(𝑆 ↾ 𝐴)𝐶) ↔ ∃𝑢 ∈ 𝐴 (𝑢𝑅𝐵 ∧ 𝑢𝑆𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∃wex 1780 ∈ wcel 2105 ∃wrex 3069 class class class wbr 5148 ↾ cres 5678 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-br 5149 df-opab 5211 df-xp 5682 df-res 5688 |
This theorem is referenced by: exanres2 37632 br1cossres 37775 |
Copyright terms: Public domain | W3C validator |