|   | Mathbox for Peter Mazsa | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > exanres | Structured version Visualization version GIF version | ||
| Description: Equivalent expressions with existential quantification. (Contributed by Peter Mazsa, 2-May-2021.) | 
| Ref | Expression | 
|---|---|
| exanres | ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (∃𝑢(𝑢(𝑅 ↾ 𝐴)𝐵 ∧ 𝑢(𝑆 ↾ 𝐴)𝐶) ↔ ∃𝑢 ∈ 𝐴 (𝑢𝑅𝐵 ∧ 𝑢𝑆𝐶))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | brres 6004 | . . . . 5 ⊢ (𝐵 ∈ 𝑉 → (𝑢(𝑅 ↾ 𝐴)𝐵 ↔ (𝑢 ∈ 𝐴 ∧ 𝑢𝑅𝐵))) | |
| 2 | brres 6004 | . . . . 5 ⊢ (𝐶 ∈ 𝑊 → (𝑢(𝑆 ↾ 𝐴)𝐶 ↔ (𝑢 ∈ 𝐴 ∧ 𝑢𝑆𝐶))) | |
| 3 | 1, 2 | bi2anan9 638 | . . . 4 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → ((𝑢(𝑅 ↾ 𝐴)𝐵 ∧ 𝑢(𝑆 ↾ 𝐴)𝐶) ↔ ((𝑢 ∈ 𝐴 ∧ 𝑢𝑅𝐵) ∧ (𝑢 ∈ 𝐴 ∧ 𝑢𝑆𝐶)))) | 
| 4 | anandi 676 | . . . 4 ⊢ ((𝑢 ∈ 𝐴 ∧ (𝑢𝑅𝐵 ∧ 𝑢𝑆𝐶)) ↔ ((𝑢 ∈ 𝐴 ∧ 𝑢𝑅𝐵) ∧ (𝑢 ∈ 𝐴 ∧ 𝑢𝑆𝐶))) | |
| 5 | 3, 4 | bitr4di 289 | . . 3 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → ((𝑢(𝑅 ↾ 𝐴)𝐵 ∧ 𝑢(𝑆 ↾ 𝐴)𝐶) ↔ (𝑢 ∈ 𝐴 ∧ (𝑢𝑅𝐵 ∧ 𝑢𝑆𝐶)))) | 
| 6 | 5 | exbidv 1921 | . 2 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (∃𝑢(𝑢(𝑅 ↾ 𝐴)𝐵 ∧ 𝑢(𝑆 ↾ 𝐴)𝐶) ↔ ∃𝑢(𝑢 ∈ 𝐴 ∧ (𝑢𝑅𝐵 ∧ 𝑢𝑆𝐶)))) | 
| 7 | df-rex 3071 | . 2 ⊢ (∃𝑢 ∈ 𝐴 (𝑢𝑅𝐵 ∧ 𝑢𝑆𝐶) ↔ ∃𝑢(𝑢 ∈ 𝐴 ∧ (𝑢𝑅𝐵 ∧ 𝑢𝑆𝐶))) | |
| 8 | 6, 7 | bitr4di 289 | 1 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (∃𝑢(𝑢(𝑅 ↾ 𝐴)𝐵 ∧ 𝑢(𝑆 ↾ 𝐴)𝐶) ↔ ∃𝑢 ∈ 𝐴 (𝑢𝑅𝐵 ∧ 𝑢𝑆𝐶))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∃wex 1779 ∈ wcel 2108 ∃wrex 3070 class class class wbr 5143 ↾ cres 5687 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-br 5144 df-opab 5206 df-xp 5691 df-res 5697 | 
| This theorem is referenced by: exanres2 38298 br1cossres 38440 | 
| Copyright terms: Public domain | W3C validator |