Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > exanres | Structured version Visualization version GIF version |
Description: Equivalent expressions with existential quantification. (Contributed by Peter Mazsa, 2-May-2021.) |
Ref | Expression |
---|---|
exanres | ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (∃𝑢(𝑢(𝑅 ↾ 𝐴)𝐵 ∧ 𝑢(𝑆 ↾ 𝐴)𝐶) ↔ ∃𝑢 ∈ 𝐴 (𝑢𝑅𝐵 ∧ 𝑢𝑆𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brres 5887 | . . . . 5 ⊢ (𝐵 ∈ 𝑉 → (𝑢(𝑅 ↾ 𝐴)𝐵 ↔ (𝑢 ∈ 𝐴 ∧ 𝑢𝑅𝐵))) | |
2 | brres 5887 | . . . . 5 ⊢ (𝐶 ∈ 𝑊 → (𝑢(𝑆 ↾ 𝐴)𝐶 ↔ (𝑢 ∈ 𝐴 ∧ 𝑢𝑆𝐶))) | |
3 | 1, 2 | bi2anan9 635 | . . . 4 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → ((𝑢(𝑅 ↾ 𝐴)𝐵 ∧ 𝑢(𝑆 ↾ 𝐴)𝐶) ↔ ((𝑢 ∈ 𝐴 ∧ 𝑢𝑅𝐵) ∧ (𝑢 ∈ 𝐴 ∧ 𝑢𝑆𝐶)))) |
4 | anandi 672 | . . . 4 ⊢ ((𝑢 ∈ 𝐴 ∧ (𝑢𝑅𝐵 ∧ 𝑢𝑆𝐶)) ↔ ((𝑢 ∈ 𝐴 ∧ 𝑢𝑅𝐵) ∧ (𝑢 ∈ 𝐴 ∧ 𝑢𝑆𝐶))) | |
5 | 3, 4 | bitr4di 288 | . . 3 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → ((𝑢(𝑅 ↾ 𝐴)𝐵 ∧ 𝑢(𝑆 ↾ 𝐴)𝐶) ↔ (𝑢 ∈ 𝐴 ∧ (𝑢𝑅𝐵 ∧ 𝑢𝑆𝐶)))) |
6 | 5 | exbidv 1925 | . 2 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (∃𝑢(𝑢(𝑅 ↾ 𝐴)𝐵 ∧ 𝑢(𝑆 ↾ 𝐴)𝐶) ↔ ∃𝑢(𝑢 ∈ 𝐴 ∧ (𝑢𝑅𝐵 ∧ 𝑢𝑆𝐶)))) |
7 | df-rex 3069 | . 2 ⊢ (∃𝑢 ∈ 𝐴 (𝑢𝑅𝐵 ∧ 𝑢𝑆𝐶) ↔ ∃𝑢(𝑢 ∈ 𝐴 ∧ (𝑢𝑅𝐵 ∧ 𝑢𝑆𝐶))) | |
8 | 6, 7 | bitr4di 288 | 1 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (∃𝑢(𝑢(𝑅 ↾ 𝐴)𝐵 ∧ 𝑢(𝑆 ↾ 𝐴)𝐶) ↔ ∃𝑢 ∈ 𝐴 (𝑢𝑅𝐵 ∧ 𝑢𝑆𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∃wex 1783 ∈ wcel 2108 ∃wrex 3064 class class class wbr 5070 ↾ cres 5582 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-xp 5586 df-res 5592 |
This theorem is referenced by: exanres2 36359 br1cossres 36489 |
Copyright terms: Public domain | W3C validator |