| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > exanres | Structured version Visualization version GIF version | ||
| Description: Equivalent expressions with existential quantification. (Contributed by Peter Mazsa, 2-May-2021.) |
| Ref | Expression |
|---|---|
| exanres | ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (∃𝑢(𝑢(𝑅 ↾ 𝐴)𝐵 ∧ 𝑢(𝑆 ↾ 𝐴)𝐶) ↔ ∃𝑢 ∈ 𝐴 (𝑢𝑅𝐵 ∧ 𝑢𝑆𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brres 5960 | . . . . 5 ⊢ (𝐵 ∈ 𝑉 → (𝑢(𝑅 ↾ 𝐴)𝐵 ↔ (𝑢 ∈ 𝐴 ∧ 𝑢𝑅𝐵))) | |
| 2 | brres 5960 | . . . . 5 ⊢ (𝐶 ∈ 𝑊 → (𝑢(𝑆 ↾ 𝐴)𝐶 ↔ (𝑢 ∈ 𝐴 ∧ 𝑢𝑆𝐶))) | |
| 3 | 1, 2 | bi2anan9 638 | . . . 4 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → ((𝑢(𝑅 ↾ 𝐴)𝐵 ∧ 𝑢(𝑆 ↾ 𝐴)𝐶) ↔ ((𝑢 ∈ 𝐴 ∧ 𝑢𝑅𝐵) ∧ (𝑢 ∈ 𝐴 ∧ 𝑢𝑆𝐶)))) |
| 4 | anandi 676 | . . . 4 ⊢ ((𝑢 ∈ 𝐴 ∧ (𝑢𝑅𝐵 ∧ 𝑢𝑆𝐶)) ↔ ((𝑢 ∈ 𝐴 ∧ 𝑢𝑅𝐵) ∧ (𝑢 ∈ 𝐴 ∧ 𝑢𝑆𝐶))) | |
| 5 | 3, 4 | bitr4di 289 | . . 3 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → ((𝑢(𝑅 ↾ 𝐴)𝐵 ∧ 𝑢(𝑆 ↾ 𝐴)𝐶) ↔ (𝑢 ∈ 𝐴 ∧ (𝑢𝑅𝐵 ∧ 𝑢𝑆𝐶)))) |
| 6 | 5 | exbidv 1921 | . 2 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (∃𝑢(𝑢(𝑅 ↾ 𝐴)𝐵 ∧ 𝑢(𝑆 ↾ 𝐴)𝐶) ↔ ∃𝑢(𝑢 ∈ 𝐴 ∧ (𝑢𝑅𝐵 ∧ 𝑢𝑆𝐶)))) |
| 7 | df-rex 3055 | . 2 ⊢ (∃𝑢 ∈ 𝐴 (𝑢𝑅𝐵 ∧ 𝑢𝑆𝐶) ↔ ∃𝑢(𝑢 ∈ 𝐴 ∧ (𝑢𝑅𝐵 ∧ 𝑢𝑆𝐶))) | |
| 8 | 6, 7 | bitr4di 289 | 1 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (∃𝑢(𝑢(𝑅 ↾ 𝐴)𝐵 ∧ 𝑢(𝑆 ↾ 𝐴)𝐶) ↔ ∃𝑢 ∈ 𝐴 (𝑢𝑅𝐵 ∧ 𝑢𝑆𝐶))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∃wex 1779 ∈ wcel 2109 ∃wrex 3054 class class class wbr 5110 ↾ cres 5643 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-xp 5647 df-res 5653 |
| This theorem is referenced by: exanres2 38292 br1cossres 38437 |
| Copyright terms: Public domain | W3C validator |