Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > br1cossres | Structured version Visualization version GIF version |
Description: 𝐵 and 𝐶 are cosets by a restriction: a binary relation. (Contributed by Peter Mazsa, 30-Dec-2018.) |
Ref | Expression |
---|---|
br1cossres | ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝐵 ≀ (𝑅 ↾ 𝐴)𝐶 ↔ ∃𝑢 ∈ 𝐴 (𝑢𝑅𝐵 ∧ 𝑢𝑅𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brcoss 36533 | . 2 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝐵 ≀ (𝑅 ↾ 𝐴)𝐶 ↔ ∃𝑢(𝑢(𝑅 ↾ 𝐴)𝐵 ∧ 𝑢(𝑅 ↾ 𝐴)𝐶))) | |
2 | exanres 36409 | . 2 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (∃𝑢(𝑢(𝑅 ↾ 𝐴)𝐵 ∧ 𝑢(𝑅 ↾ 𝐴)𝐶) ↔ ∃𝑢 ∈ 𝐴 (𝑢𝑅𝐵 ∧ 𝑢𝑅𝐶))) | |
3 | 1, 2 | bitrd 278 | 1 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝐵 ≀ (𝑅 ↾ 𝐴)𝐶 ↔ ∃𝑢 ∈ 𝐴 (𝑢𝑅𝐵 ∧ 𝑢𝑅𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∃wex 1785 ∈ wcel 2109 ∃wrex 3066 class class class wbr 5078 ↾ cres 5590 ≀ ccoss 36312 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-br 5079 df-opab 5141 df-xp 5594 df-res 5600 df-coss 36516 |
This theorem is referenced by: br1cossres2 36542 br1cossinres 36544 br1cossxrnres 36545 |
Copyright terms: Public domain | W3C validator |