Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  br1cossres Structured version   Visualization version   GIF version

Theorem br1cossres 38430
Description: 𝐵 and 𝐶 are cosets by a restriction: a binary relation. (Contributed by Peter Mazsa, 30-Dec-2018.)
Assertion
Ref Expression
br1cossres ((𝐵𝑉𝐶𝑊) → (𝐵 ≀ (𝑅𝐴)𝐶 ↔ ∃𝑢𝐴 (𝑢𝑅𝐵𝑢𝑅𝐶)))
Distinct variable groups:   𝑢,𝐴   𝑢,𝐵   𝑢,𝐶   𝑢,𝑅   𝑢,𝑉   𝑢,𝑊

Proof of Theorem br1cossres
StepHypRef Expression
1 brcoss 38422 . 2 ((𝐵𝑉𝐶𝑊) → (𝐵 ≀ (𝑅𝐴)𝐶 ↔ ∃𝑢(𝑢(𝑅𝐴)𝐵𝑢(𝑅𝐴)𝐶)))
2 exanres 38283 . 2 ((𝐵𝑉𝐶𝑊) → (∃𝑢(𝑢(𝑅𝐴)𝐵𝑢(𝑅𝐴)𝐶) ↔ ∃𝑢𝐴 (𝑢𝑅𝐵𝑢𝑅𝐶)))
31, 2bitrd 279 1 ((𝐵𝑉𝐶𝑊) → (𝐵 ≀ (𝑅𝐴)𝐶 ↔ ∃𝑢𝐴 (𝑢𝑅𝐵𝑢𝑅𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wex 1779  wcel 2109  wrex 3053   class class class wbr 5107  cres 5640  ccoss 38169
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-xp 5644  df-res 5650  df-coss 38402
This theorem is referenced by:  br1cossres2  38431  br1cossinres  38438  br1cossxrnres  38439
  Copyright terms: Public domain W3C validator