Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  br1cossres Structured version   Visualization version   GIF version

Theorem br1cossres 38437
Description: 𝐵 and 𝐶 are cosets by a restriction: a binary relation. (Contributed by Peter Mazsa, 30-Dec-2018.)
Assertion
Ref Expression
br1cossres ((𝐵𝑉𝐶𝑊) → (𝐵 ≀ (𝑅𝐴)𝐶 ↔ ∃𝑢𝐴 (𝑢𝑅𝐵𝑢𝑅𝐶)))
Distinct variable groups:   𝑢,𝐴   𝑢,𝐵   𝑢,𝐶   𝑢,𝑅   𝑢,𝑉   𝑢,𝑊

Proof of Theorem br1cossres
StepHypRef Expression
1 brcoss 38429 . 2 ((𝐵𝑉𝐶𝑊) → (𝐵 ≀ (𝑅𝐴)𝐶 ↔ ∃𝑢(𝑢(𝑅𝐴)𝐵𝑢(𝑅𝐴)𝐶)))
2 exanres 38290 . 2 ((𝐵𝑉𝐶𝑊) → (∃𝑢(𝑢(𝑅𝐴)𝐵𝑢(𝑅𝐴)𝐶) ↔ ∃𝑢𝐴 (𝑢𝑅𝐵𝑢𝑅𝐶)))
31, 2bitrd 279 1 ((𝐵𝑉𝐶𝑊) → (𝐵 ≀ (𝑅𝐴)𝐶 ↔ ∃𝑢𝐴 (𝑢𝑅𝐵𝑢𝑅𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wex 1779  wcel 2109  wrex 3054   class class class wbr 5110  cres 5643  ccoss 38176
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-br 5111  df-opab 5173  df-xp 5647  df-res 5653  df-coss 38409
This theorem is referenced by:  br1cossres2  38438  br1cossinres  38445  br1cossxrnres  38446
  Copyright terms: Public domain W3C validator