MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  suppimacnvss Structured version   Visualization version   GIF version

Theorem suppimacnvss 8177
Description: The support of functions "defined" by inverse images is a subset of the support defined by df-supp 8165. (Contributed by AV, 7-Apr-2019.)
Assertion
Ref Expression
suppimacnvss ((𝑅𝑉𝑍𝑊) → (𝑅 “ (V ∖ {𝑍})) ⊆ (𝑅 supp 𝑍))

Proof of Theorem suppimacnvss
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 exsimpl 1868 . . . . 5 (∃𝑦(𝑥𝑅𝑦𝑦𝑍) → ∃𝑦 𝑥𝑅𝑦)
2 pm5.1 823 . . . . . 6 ((𝑥𝑅𝑦𝑦𝑍) → (𝑥𝑅𝑦𝑦𝑍))
32eximi 1835 . . . . 5 (∃𝑦(𝑥𝑅𝑦𝑦𝑍) → ∃𝑦(𝑥𝑅𝑦𝑦𝑍))
41, 3jca 511 . . . 4 (∃𝑦(𝑥𝑅𝑦𝑦𝑍) → (∃𝑦 𝑥𝑅𝑦 ∧ ∃𝑦(𝑥𝑅𝑦𝑦𝑍)))
54a1i 11 . . 3 ((𝑅𝑉𝑍𝑊) → (∃𝑦(𝑥𝑅𝑦𝑦𝑍) → (∃𝑦 𝑥𝑅𝑦 ∧ ∃𝑦(𝑥𝑅𝑦𝑦𝑍))))
65ss2abdv 4046 . 2 ((𝑅𝑉𝑍𝑊) → {𝑥 ∣ ∃𝑦(𝑥𝑅𝑦𝑦𝑍)} ⊆ {𝑥 ∣ (∃𝑦 𝑥𝑅𝑦 ∧ ∃𝑦(𝑥𝑅𝑦𝑦𝑍))})
7 cnvimadfsn 8176 . . 3 (𝑅 “ (V ∖ {𝑍})) = {𝑥 ∣ ∃𝑦(𝑥𝑅𝑦𝑦𝑍)}
87a1i 11 . 2 ((𝑅𝑉𝑍𝑊) → (𝑅 “ (V ∖ {𝑍})) = {𝑥 ∣ ∃𝑦(𝑥𝑅𝑦𝑦𝑍)})
9 suppvalbr 8168 . 2 ((𝑅𝑉𝑍𝑊) → (𝑅 supp 𝑍) = {𝑥 ∣ (∃𝑦 𝑥𝑅𝑦 ∧ ∃𝑦(𝑥𝑅𝑦𝑦𝑍))})
106, 8, 93sstr4d 4019 1 ((𝑅𝑉𝑍𝑊) → (𝑅 “ (V ∖ {𝑍})) ⊆ (𝑅 supp 𝑍))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  {cab 2714  wne 2933  Vcvv 3464  cdif 3928  wss 3931  {csn 4606   class class class wbr 5124  ccnv 5658  cima 5662  (class class class)co 7410   supp csupp 8164
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-sbc 3771  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-supp 8165
This theorem is referenced by:  suppimacnv  8178  fsuppinisegfi  32669
  Copyright terms: Public domain W3C validator