Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > suppimacnvss | Structured version Visualization version GIF version |
Description: The support of functions "defined" by inverse images is a subset of the support defined by df-supp 8060. (Contributed by AV, 7-Apr-2019.) |
Ref | Expression |
---|---|
suppimacnvss | ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (◡𝑅 “ (V ∖ {𝑍})) ⊆ (𝑅 supp 𝑍)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exsimpl 1871 | . . . . 5 ⊢ (∃𝑦(𝑥𝑅𝑦 ∧ 𝑦 ≠ 𝑍) → ∃𝑦 𝑥𝑅𝑦) | |
2 | pm5.1 822 | . . . . . 6 ⊢ ((𝑥𝑅𝑦 ∧ 𝑦 ≠ 𝑍) → (𝑥𝑅𝑦 ↔ 𝑦 ≠ 𝑍)) | |
3 | 2 | eximi 1837 | . . . . 5 ⊢ (∃𝑦(𝑥𝑅𝑦 ∧ 𝑦 ≠ 𝑍) → ∃𝑦(𝑥𝑅𝑦 ↔ 𝑦 ≠ 𝑍)) |
4 | 1, 3 | jca 513 | . . . 4 ⊢ (∃𝑦(𝑥𝑅𝑦 ∧ 𝑦 ≠ 𝑍) → (∃𝑦 𝑥𝑅𝑦 ∧ ∃𝑦(𝑥𝑅𝑦 ↔ 𝑦 ≠ 𝑍))) |
5 | 4 | a1i 11 | . . 3 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (∃𝑦(𝑥𝑅𝑦 ∧ 𝑦 ≠ 𝑍) → (∃𝑦 𝑥𝑅𝑦 ∧ ∃𝑦(𝑥𝑅𝑦 ↔ 𝑦 ≠ 𝑍)))) |
6 | 5 | ss2abdv 4018 | . 2 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → {𝑥 ∣ ∃𝑦(𝑥𝑅𝑦 ∧ 𝑦 ≠ 𝑍)} ⊆ {𝑥 ∣ (∃𝑦 𝑥𝑅𝑦 ∧ ∃𝑦(𝑥𝑅𝑦 ↔ 𝑦 ≠ 𝑍))}) |
7 | cnvimadfsn 8070 | . . 3 ⊢ (◡𝑅 “ (V ∖ {𝑍})) = {𝑥 ∣ ∃𝑦(𝑥𝑅𝑦 ∧ 𝑦 ≠ 𝑍)} | |
8 | 7 | a1i 11 | . 2 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (◡𝑅 “ (V ∖ {𝑍})) = {𝑥 ∣ ∃𝑦(𝑥𝑅𝑦 ∧ 𝑦 ≠ 𝑍)}) |
9 | suppvalbr 8063 | . 2 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝑅 supp 𝑍) = {𝑥 ∣ (∃𝑦 𝑥𝑅𝑦 ∧ ∃𝑦(𝑥𝑅𝑦 ↔ 𝑦 ≠ 𝑍))}) | |
10 | 6, 8, 9 | 3sstr4d 3989 | 1 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (◡𝑅 “ (V ∖ {𝑍})) ⊆ (𝑅 supp 𝑍)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1541 ∃wex 1781 ∈ wcel 2106 {cab 2714 ≠ wne 2941 Vcvv 3443 ∖ cdif 3905 ⊆ wss 3908 {csn 4584 class class class wbr 5103 ◡ccnv 5629 “ cima 5633 (class class class)co 7349 supp csupp 8059 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-sep 5254 ax-nul 5261 ax-pr 5382 ax-un 7662 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3406 df-v 3445 df-sbc 3738 df-dif 3911 df-un 3913 df-in 3915 df-ss 3925 df-nul 4281 df-if 4485 df-sn 4585 df-pr 4587 df-op 4591 df-uni 4864 df-br 5104 df-opab 5166 df-id 5528 df-xp 5636 df-rel 5637 df-cnv 5638 df-co 5639 df-dm 5640 df-rn 5641 df-res 5642 df-ima 5643 df-iota 6443 df-fun 6493 df-fv 6499 df-ov 7352 df-oprab 7353 df-mpo 7354 df-supp 8060 |
This theorem is referenced by: suppimacnv 8072 fsuppinisegfi 31375 |
Copyright terms: Public domain | W3C validator |