![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > suppimacnvss | Structured version Visualization version GIF version |
Description: The support of functions "defined" by inverse images is a subset of the support defined by df-supp 8185. (Contributed by AV, 7-Apr-2019.) |
Ref | Expression |
---|---|
suppimacnvss | ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (◡𝑅 “ (V ∖ {𝑍})) ⊆ (𝑅 supp 𝑍)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exsimpl 1866 | . . . . 5 ⊢ (∃𝑦(𝑥𝑅𝑦 ∧ 𝑦 ≠ 𝑍) → ∃𝑦 𝑥𝑅𝑦) | |
2 | pm5.1 824 | . . . . . 6 ⊢ ((𝑥𝑅𝑦 ∧ 𝑦 ≠ 𝑍) → (𝑥𝑅𝑦 ↔ 𝑦 ≠ 𝑍)) | |
3 | 2 | eximi 1832 | . . . . 5 ⊢ (∃𝑦(𝑥𝑅𝑦 ∧ 𝑦 ≠ 𝑍) → ∃𝑦(𝑥𝑅𝑦 ↔ 𝑦 ≠ 𝑍)) |
4 | 1, 3 | jca 511 | . . . 4 ⊢ (∃𝑦(𝑥𝑅𝑦 ∧ 𝑦 ≠ 𝑍) → (∃𝑦 𝑥𝑅𝑦 ∧ ∃𝑦(𝑥𝑅𝑦 ↔ 𝑦 ≠ 𝑍))) |
5 | 4 | a1i 11 | . . 3 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (∃𝑦(𝑥𝑅𝑦 ∧ 𝑦 ≠ 𝑍) → (∃𝑦 𝑥𝑅𝑦 ∧ ∃𝑦(𝑥𝑅𝑦 ↔ 𝑦 ≠ 𝑍)))) |
6 | 5 | ss2abdv 4076 | . 2 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → {𝑥 ∣ ∃𝑦(𝑥𝑅𝑦 ∧ 𝑦 ≠ 𝑍)} ⊆ {𝑥 ∣ (∃𝑦 𝑥𝑅𝑦 ∧ ∃𝑦(𝑥𝑅𝑦 ↔ 𝑦 ≠ 𝑍))}) |
7 | cnvimadfsn 8196 | . . 3 ⊢ (◡𝑅 “ (V ∖ {𝑍})) = {𝑥 ∣ ∃𝑦(𝑥𝑅𝑦 ∧ 𝑦 ≠ 𝑍)} | |
8 | 7 | a1i 11 | . 2 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (◡𝑅 “ (V ∖ {𝑍})) = {𝑥 ∣ ∃𝑦(𝑥𝑅𝑦 ∧ 𝑦 ≠ 𝑍)}) |
9 | suppvalbr 8188 | . 2 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝑅 supp 𝑍) = {𝑥 ∣ (∃𝑦 𝑥𝑅𝑦 ∧ ∃𝑦(𝑥𝑅𝑦 ↔ 𝑦 ≠ 𝑍))}) | |
10 | 6, 8, 9 | 3sstr4d 4043 | 1 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (◡𝑅 “ (V ∖ {𝑍})) ⊆ (𝑅 supp 𝑍)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∃wex 1776 ∈ wcel 2106 {cab 2712 ≠ wne 2938 Vcvv 3478 ∖ cdif 3960 ⊆ wss 3963 {csn 4631 class class class wbr 5148 ◡ccnv 5688 “ cima 5692 (class class class)co 7431 supp csupp 8184 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fv 6571 df-ov 7434 df-oprab 7435 df-mpo 7436 df-supp 8185 |
This theorem is referenced by: suppimacnv 8198 fsuppinisegfi 32702 |
Copyright terms: Public domain | W3C validator |