![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > suppimacnvss | Structured version Visualization version GIF version |
Description: The support of functions "defined" by inverse images is a subset of the support defined by df-supp 8150. (Contributed by AV, 7-Apr-2019.) |
Ref | Expression |
---|---|
suppimacnvss | ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (◡𝑅 “ (V ∖ {𝑍})) ⊆ (𝑅 supp 𝑍)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exsimpl 1870 | . . . . 5 ⊢ (∃𝑦(𝑥𝑅𝑦 ∧ 𝑦 ≠ 𝑍) → ∃𝑦 𝑥𝑅𝑦) | |
2 | pm5.1 821 | . . . . . 6 ⊢ ((𝑥𝑅𝑦 ∧ 𝑦 ≠ 𝑍) → (𝑥𝑅𝑦 ↔ 𝑦 ≠ 𝑍)) | |
3 | 2 | eximi 1836 | . . . . 5 ⊢ (∃𝑦(𝑥𝑅𝑦 ∧ 𝑦 ≠ 𝑍) → ∃𝑦(𝑥𝑅𝑦 ↔ 𝑦 ≠ 𝑍)) |
4 | 1, 3 | jca 511 | . . . 4 ⊢ (∃𝑦(𝑥𝑅𝑦 ∧ 𝑦 ≠ 𝑍) → (∃𝑦 𝑥𝑅𝑦 ∧ ∃𝑦(𝑥𝑅𝑦 ↔ 𝑦 ≠ 𝑍))) |
5 | 4 | a1i 11 | . . 3 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (∃𝑦(𝑥𝑅𝑦 ∧ 𝑦 ≠ 𝑍) → (∃𝑦 𝑥𝑅𝑦 ∧ ∃𝑦(𝑥𝑅𝑦 ↔ 𝑦 ≠ 𝑍)))) |
6 | 5 | ss2abdv 4061 | . 2 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → {𝑥 ∣ ∃𝑦(𝑥𝑅𝑦 ∧ 𝑦 ≠ 𝑍)} ⊆ {𝑥 ∣ (∃𝑦 𝑥𝑅𝑦 ∧ ∃𝑦(𝑥𝑅𝑦 ↔ 𝑦 ≠ 𝑍))}) |
7 | cnvimadfsn 8160 | . . 3 ⊢ (◡𝑅 “ (V ∖ {𝑍})) = {𝑥 ∣ ∃𝑦(𝑥𝑅𝑦 ∧ 𝑦 ≠ 𝑍)} | |
8 | 7 | a1i 11 | . 2 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (◡𝑅 “ (V ∖ {𝑍})) = {𝑥 ∣ ∃𝑦(𝑥𝑅𝑦 ∧ 𝑦 ≠ 𝑍)}) |
9 | suppvalbr 8153 | . 2 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝑅 supp 𝑍) = {𝑥 ∣ (∃𝑦 𝑥𝑅𝑦 ∧ ∃𝑦(𝑥𝑅𝑦 ↔ 𝑦 ≠ 𝑍))}) | |
10 | 6, 8, 9 | 3sstr4d 4030 | 1 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (◡𝑅 “ (V ∖ {𝑍})) ⊆ (𝑅 supp 𝑍)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1540 ∃wex 1780 ∈ wcel 2105 {cab 2708 ≠ wne 2939 Vcvv 3473 ∖ cdif 3946 ⊆ wss 3949 {csn 4629 class class class wbr 5149 ◡ccnv 5676 “ cima 5680 (class class class)co 7412 supp csupp 8149 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5300 ax-nul 5307 ax-pr 5428 ax-un 7728 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-sbc 3779 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fv 6552 df-ov 7415 df-oprab 7416 df-mpo 7417 df-supp 8150 |
This theorem is referenced by: suppimacnv 8162 fsuppinisegfi 32173 |
Copyright terms: Public domain | W3C validator |