MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  suppimacnvss Structured version   Visualization version   GIF version

Theorem suppimacnvss 8071
Description: The support of functions "defined" by inverse images is a subset of the support defined by df-supp 8060. (Contributed by AV, 7-Apr-2019.)
Assertion
Ref Expression
suppimacnvss ((𝑅𝑉𝑍𝑊) → (𝑅 “ (V ∖ {𝑍})) ⊆ (𝑅 supp 𝑍))

Proof of Theorem suppimacnvss
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 exsimpl 1871 . . . . 5 (∃𝑦(𝑥𝑅𝑦𝑦𝑍) → ∃𝑦 𝑥𝑅𝑦)
2 pm5.1 822 . . . . . 6 ((𝑥𝑅𝑦𝑦𝑍) → (𝑥𝑅𝑦𝑦𝑍))
32eximi 1837 . . . . 5 (∃𝑦(𝑥𝑅𝑦𝑦𝑍) → ∃𝑦(𝑥𝑅𝑦𝑦𝑍))
41, 3jca 513 . . . 4 (∃𝑦(𝑥𝑅𝑦𝑦𝑍) → (∃𝑦 𝑥𝑅𝑦 ∧ ∃𝑦(𝑥𝑅𝑦𝑦𝑍)))
54a1i 11 . . 3 ((𝑅𝑉𝑍𝑊) → (∃𝑦(𝑥𝑅𝑦𝑦𝑍) → (∃𝑦 𝑥𝑅𝑦 ∧ ∃𝑦(𝑥𝑅𝑦𝑦𝑍))))
65ss2abdv 4018 . 2 ((𝑅𝑉𝑍𝑊) → {𝑥 ∣ ∃𝑦(𝑥𝑅𝑦𝑦𝑍)} ⊆ {𝑥 ∣ (∃𝑦 𝑥𝑅𝑦 ∧ ∃𝑦(𝑥𝑅𝑦𝑦𝑍))})
7 cnvimadfsn 8070 . . 3 (𝑅 “ (V ∖ {𝑍})) = {𝑥 ∣ ∃𝑦(𝑥𝑅𝑦𝑦𝑍)}
87a1i 11 . 2 ((𝑅𝑉𝑍𝑊) → (𝑅 “ (V ∖ {𝑍})) = {𝑥 ∣ ∃𝑦(𝑥𝑅𝑦𝑦𝑍)})
9 suppvalbr 8063 . 2 ((𝑅𝑉𝑍𝑊) → (𝑅 supp 𝑍) = {𝑥 ∣ (∃𝑦 𝑥𝑅𝑦 ∧ ∃𝑦(𝑥𝑅𝑦𝑦𝑍))})
106, 8, 93sstr4d 3989 1 ((𝑅𝑉𝑍𝑊) → (𝑅 “ (V ∖ {𝑍})) ⊆ (𝑅 supp 𝑍))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1541  wex 1781  wcel 2106  {cab 2714  wne 2941  Vcvv 3443  cdif 3905  wss 3908  {csn 4584   class class class wbr 5103  ccnv 5629  cima 5633  (class class class)co 7349   supp csupp 8059
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-sep 5254  ax-nul 5261  ax-pr 5382  ax-un 7662
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3406  df-v 3445  df-sbc 3738  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-nul 4281  df-if 4485  df-sn 4585  df-pr 4587  df-op 4591  df-uni 4864  df-br 5104  df-opab 5166  df-id 5528  df-xp 5636  df-rel 5637  df-cnv 5638  df-co 5639  df-dm 5640  df-rn 5641  df-res 5642  df-ima 5643  df-iota 6443  df-fun 6493  df-fv 6499  df-ov 7352  df-oprab 7353  df-mpo 7354  df-supp 8060
This theorem is referenced by:  suppimacnv  8072  fsuppinisegfi  31375
  Copyright terms: Public domain W3C validator