MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  suppimacnvss Structured version   Visualization version   GIF version

Theorem suppimacnvss 7989
Description: The support of functions "defined" by inverse images is a subset of the support defined by df-supp 7978. (Contributed by AV, 7-Apr-2019.)
Assertion
Ref Expression
suppimacnvss ((𝑅𝑉𝑍𝑊) → (𝑅 “ (V ∖ {𝑍})) ⊆ (𝑅 supp 𝑍))

Proof of Theorem suppimacnvss
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 exsimpl 1871 . . . . 5 (∃𝑦(𝑥𝑅𝑦𝑦𝑍) → ∃𝑦 𝑥𝑅𝑦)
2 pm5.1 821 . . . . . 6 ((𝑥𝑅𝑦𝑦𝑍) → (𝑥𝑅𝑦𝑦𝑍))
32eximi 1837 . . . . 5 (∃𝑦(𝑥𝑅𝑦𝑦𝑍) → ∃𝑦(𝑥𝑅𝑦𝑦𝑍))
41, 3jca 512 . . . 4 (∃𝑦(𝑥𝑅𝑦𝑦𝑍) → (∃𝑦 𝑥𝑅𝑦 ∧ ∃𝑦(𝑥𝑅𝑦𝑦𝑍)))
54a1i 11 . . 3 ((𝑅𝑉𝑍𝑊) → (∃𝑦(𝑥𝑅𝑦𝑦𝑍) → (∃𝑦 𝑥𝑅𝑦 ∧ ∃𝑦(𝑥𝑅𝑦𝑦𝑍))))
65ss2abdv 3997 . 2 ((𝑅𝑉𝑍𝑊) → {𝑥 ∣ ∃𝑦(𝑥𝑅𝑦𝑦𝑍)} ⊆ {𝑥 ∣ (∃𝑦 𝑥𝑅𝑦 ∧ ∃𝑦(𝑥𝑅𝑦𝑦𝑍))})
7 cnvimadfsn 7988 . . 3 (𝑅 “ (V ∖ {𝑍})) = {𝑥 ∣ ∃𝑦(𝑥𝑅𝑦𝑦𝑍)}
87a1i 11 . 2 ((𝑅𝑉𝑍𝑊) → (𝑅 “ (V ∖ {𝑍})) = {𝑥 ∣ ∃𝑦(𝑥𝑅𝑦𝑦𝑍)})
9 suppvalbr 7981 . 2 ((𝑅𝑉𝑍𝑊) → (𝑅 supp 𝑍) = {𝑥 ∣ (∃𝑦 𝑥𝑅𝑦 ∧ ∃𝑦(𝑥𝑅𝑦𝑦𝑍))})
106, 8, 93sstr4d 3968 1 ((𝑅𝑉𝑍𝑊) → (𝑅 “ (V ∖ {𝑍})) ⊆ (𝑅 supp 𝑍))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wex 1782  wcel 2106  {cab 2715  wne 2943  Vcvv 3432  cdif 3884  wss 3887  {csn 4561   class class class wbr 5074  ccnv 5588  cima 5592  (class class class)co 7275   supp csupp 7977
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-supp 7978
This theorem is referenced by:  suppimacnv  7990  fsuppinisegfi  31021
  Copyright terms: Public domain W3C validator