![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > suppimacnvss | Structured version Visualization version GIF version |
Description: The support of functions "defined" by inverse images is a subset of the support defined by df-supp 7632. (Contributed by AV, 7-Apr-2019.) |
Ref | Expression |
---|---|
suppimacnvss | ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (◡𝑅 “ (V ∖ {𝑍})) ⊆ (𝑅 supp 𝑍)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exsimpl 1832 | . . . . 5 ⊢ (∃𝑦(𝑥𝑅𝑦 ∧ 𝑦 ≠ 𝑍) → ∃𝑦 𝑥𝑅𝑦) | |
2 | pm5.1 813 | . . . . . 6 ⊢ ((𝑥𝑅𝑦 ∧ 𝑦 ≠ 𝑍) → (𝑥𝑅𝑦 ↔ 𝑦 ≠ 𝑍)) | |
3 | 2 | eximi 1798 | . . . . 5 ⊢ (∃𝑦(𝑥𝑅𝑦 ∧ 𝑦 ≠ 𝑍) → ∃𝑦(𝑥𝑅𝑦 ↔ 𝑦 ≠ 𝑍)) |
4 | 1, 3 | jca 504 | . . . 4 ⊢ (∃𝑦(𝑥𝑅𝑦 ∧ 𝑦 ≠ 𝑍) → (∃𝑦 𝑥𝑅𝑦 ∧ ∃𝑦(𝑥𝑅𝑦 ↔ 𝑦 ≠ 𝑍))) |
5 | 4 | a1i 11 | . . 3 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (∃𝑦(𝑥𝑅𝑦 ∧ 𝑦 ≠ 𝑍) → (∃𝑦 𝑥𝑅𝑦 ∧ ∃𝑦(𝑥𝑅𝑦 ↔ 𝑦 ≠ 𝑍)))) |
6 | 5 | ss2abdv 3927 | . 2 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → {𝑥 ∣ ∃𝑦(𝑥𝑅𝑦 ∧ 𝑦 ≠ 𝑍)} ⊆ {𝑥 ∣ (∃𝑦 𝑥𝑅𝑦 ∧ ∃𝑦(𝑥𝑅𝑦 ↔ 𝑦 ≠ 𝑍))}) |
7 | cnvimadfsn 7640 | . . 3 ⊢ (◡𝑅 “ (V ∖ {𝑍})) = {𝑥 ∣ ∃𝑦(𝑥𝑅𝑦 ∧ 𝑦 ≠ 𝑍)} | |
8 | 7 | a1i 11 | . 2 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (◡𝑅 “ (V ∖ {𝑍})) = {𝑥 ∣ ∃𝑦(𝑥𝑅𝑦 ∧ 𝑦 ≠ 𝑍)}) |
9 | suppvalbr 7635 | . 2 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝑅 supp 𝑍) = {𝑥 ∣ (∃𝑦 𝑥𝑅𝑦 ∧ ∃𝑦(𝑥𝑅𝑦 ↔ 𝑦 ≠ 𝑍))}) | |
10 | 6, 8, 9 | 3sstr4d 3897 | 1 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (◡𝑅 “ (V ∖ {𝑍})) ⊆ (𝑅 supp 𝑍)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 387 = wceq 1508 ∃wex 1743 ∈ wcel 2051 {cab 2751 ≠ wne 2960 Vcvv 3408 ∖ cdif 3819 ⊆ wss 3822 {csn 4435 class class class wbr 4925 ◡ccnv 5402 “ cima 5406 (class class class)co 6974 supp csupp 7631 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-13 2302 ax-ext 2743 ax-sep 5056 ax-nul 5063 ax-pr 5182 ax-un 7277 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-3an 1071 df-tru 1511 df-ex 1744 df-nf 1748 df-sb 2017 df-mo 2548 df-eu 2585 df-clab 2752 df-cleq 2764 df-clel 2839 df-nfc 2911 df-ne 2961 df-ral 3086 df-rex 3087 df-rab 3090 df-v 3410 df-sbc 3675 df-dif 3825 df-un 3827 df-in 3829 df-ss 3836 df-nul 4173 df-if 4345 df-sn 4436 df-pr 4438 df-op 4442 df-uni 4709 df-br 4926 df-opab 4988 df-id 5308 df-xp 5409 df-rel 5410 df-cnv 5411 df-co 5412 df-dm 5413 df-rn 5414 df-res 5415 df-ima 5416 df-iota 6149 df-fun 6187 df-fv 6193 df-ov 6977 df-oprab 6978 df-mpo 6979 df-supp 7632 |
This theorem is referenced by: suppimacnv 7642 |
Copyright terms: Public domain | W3C validator |