MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unblem2 Structured version   Visualization version   GIF version

Theorem unblem2 9177
Description: Lemma for unbnn 9180. The value of the function 𝐹 belongs to the unbounded set of natural numbers 𝐴. (Contributed by NM, 3-Dec-2003.)
Hypothesis
Ref Expression
unblem.2 𝐹 = (rec((𝑥 ∈ V ↦ (𝐴 ∖ suc 𝑥)), 𝐴) ↾ ω)
Assertion
Ref Expression
unblem2 ((𝐴 ⊆ ω ∧ ∀𝑤 ∈ ω ∃𝑣𝐴 𝑤𝑣) → (𝑧 ∈ ω → (𝐹𝑧) ∈ 𝐴))
Distinct variable groups:   𝑤,𝑣,𝑥,𝑧,𝐴   𝑣,𝐹,𝑤,𝑧
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem unblem2
Dummy variables 𝑢 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6822 . . . 4 (𝑧 = ∅ → (𝐹𝑧) = (𝐹‘∅))
21eleq1d 2816 . . 3 (𝑧 = ∅ → ((𝐹𝑧) ∈ 𝐴 ↔ (𝐹‘∅) ∈ 𝐴))
3 fveq2 6822 . . . 4 (𝑧 = 𝑢 → (𝐹𝑧) = (𝐹𝑢))
43eleq1d 2816 . . 3 (𝑧 = 𝑢 → ((𝐹𝑧) ∈ 𝐴 ↔ (𝐹𝑢) ∈ 𝐴))
5 fveq2 6822 . . . 4 (𝑧 = suc 𝑢 → (𝐹𝑧) = (𝐹‘suc 𝑢))
65eleq1d 2816 . . 3 (𝑧 = suc 𝑢 → ((𝐹𝑧) ∈ 𝐴 ↔ (𝐹‘suc 𝑢) ∈ 𝐴))
7 omsson 7800 . . . . . 6 ω ⊆ On
8 sstr 3943 . . . . . 6 ((𝐴 ⊆ ω ∧ ω ⊆ On) → 𝐴 ⊆ On)
97, 8mpan2 691 . . . . 5 (𝐴 ⊆ ω → 𝐴 ⊆ On)
10 peano1 7819 . . . . . . . . 9 ∅ ∈ ω
11 eleq1 2819 . . . . . . . . . . 11 (𝑤 = ∅ → (𝑤𝑣 ↔ ∅ ∈ 𝑣))
1211rexbidv 3156 . . . . . . . . . 10 (𝑤 = ∅ → (∃𝑣𝐴 𝑤𝑣 ↔ ∃𝑣𝐴 ∅ ∈ 𝑣))
1312rspcv 3573 . . . . . . . . 9 (∅ ∈ ω → (∀𝑤 ∈ ω ∃𝑣𝐴 𝑤𝑣 → ∃𝑣𝐴 ∅ ∈ 𝑣))
1410, 13ax-mp 5 . . . . . . . 8 (∀𝑤 ∈ ω ∃𝑣𝐴 𝑤𝑣 → ∃𝑣𝐴 ∅ ∈ 𝑣)
15 df-rex 3057 . . . . . . . 8 (∃𝑣𝐴 ∅ ∈ 𝑣 ↔ ∃𝑣(𝑣𝐴 ∧ ∅ ∈ 𝑣))
1614, 15sylib 218 . . . . . . 7 (∀𝑤 ∈ ω ∃𝑣𝐴 𝑤𝑣 → ∃𝑣(𝑣𝐴 ∧ ∅ ∈ 𝑣))
17 exsimpl 1869 . . . . . . 7 (∃𝑣(𝑣𝐴 ∧ ∅ ∈ 𝑣) → ∃𝑣 𝑣𝐴)
1816, 17syl 17 . . . . . 6 (∀𝑤 ∈ ω ∃𝑣𝐴 𝑤𝑣 → ∃𝑣 𝑣𝐴)
19 n0 4303 . . . . . 6 (𝐴 ≠ ∅ ↔ ∃𝑣 𝑣𝐴)
2018, 19sylibr 234 . . . . 5 (∀𝑤 ∈ ω ∃𝑣𝐴 𝑤𝑣𝐴 ≠ ∅)
21 onint 7723 . . . . 5 ((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) → 𝐴𝐴)
229, 20, 21syl2an 596 . . . 4 ((𝐴 ⊆ ω ∧ ∀𝑤 ∈ ω ∃𝑣𝐴 𝑤𝑣) → 𝐴𝐴)
23 unblem.2 . . . . . . . 8 𝐹 = (rec((𝑥 ∈ V ↦ (𝐴 ∖ suc 𝑥)), 𝐴) ↾ ω)
2423fveq1i 6823 . . . . . . 7 (𝐹‘∅) = ((rec((𝑥 ∈ V ↦ (𝐴 ∖ suc 𝑥)), 𝐴) ↾ ω)‘∅)
25 fr0g 8355 . . . . . . 7 ( 𝐴𝐴 → ((rec((𝑥 ∈ V ↦ (𝐴 ∖ suc 𝑥)), 𝐴) ↾ ω)‘∅) = 𝐴)
2624, 25eqtr2id 2779 . . . . . 6 ( 𝐴𝐴 𝐴 = (𝐹‘∅))
2726eleq1d 2816 . . . . 5 ( 𝐴𝐴 → ( 𝐴𝐴 ↔ (𝐹‘∅) ∈ 𝐴))
2827ibi 267 . . . 4 ( 𝐴𝐴 → (𝐹‘∅) ∈ 𝐴)
2922, 28syl 17 . . 3 ((𝐴 ⊆ ω ∧ ∀𝑤 ∈ ω ∃𝑣𝐴 𝑤𝑣) → (𝐹‘∅) ∈ 𝐴)
30 unblem1 9176 . . . . 5 (((𝐴 ⊆ ω ∧ ∀𝑤 ∈ ω ∃𝑣𝐴 𝑤𝑣) ∧ (𝐹𝑢) ∈ 𝐴) → (𝐴 ∖ suc (𝐹𝑢)) ∈ 𝐴)
31 suceq 6374 . . . . . . . . . . . 12 (𝑦 = 𝑥 → suc 𝑦 = suc 𝑥)
3231difeq2d 4076 . . . . . . . . . . 11 (𝑦 = 𝑥 → (𝐴 ∖ suc 𝑦) = (𝐴 ∖ suc 𝑥))
3332inteqd 4902 . . . . . . . . . 10 (𝑦 = 𝑥 (𝐴 ∖ suc 𝑦) = (𝐴 ∖ suc 𝑥))
34 suceq 6374 . . . . . . . . . . . 12 (𝑦 = (𝐹𝑢) → suc 𝑦 = suc (𝐹𝑢))
3534difeq2d 4076 . . . . . . . . . . 11 (𝑦 = (𝐹𝑢) → (𝐴 ∖ suc 𝑦) = (𝐴 ∖ suc (𝐹𝑢)))
3635inteqd 4902 . . . . . . . . . 10 (𝑦 = (𝐹𝑢) → (𝐴 ∖ suc 𝑦) = (𝐴 ∖ suc (𝐹𝑢)))
3723, 33, 36frsucmpt2 8359 . . . . . . . . 9 ((𝑢 ∈ ω ∧ (𝐴 ∖ suc (𝐹𝑢)) ∈ 𝐴) → (𝐹‘suc 𝑢) = (𝐴 ∖ suc (𝐹𝑢)))
3837eqcomd 2737 . . . . . . . 8 ((𝑢 ∈ ω ∧ (𝐴 ∖ suc (𝐹𝑢)) ∈ 𝐴) → (𝐴 ∖ suc (𝐹𝑢)) = (𝐹‘suc 𝑢))
3938eleq1d 2816 . . . . . . 7 ((𝑢 ∈ ω ∧ (𝐴 ∖ suc (𝐹𝑢)) ∈ 𝐴) → ( (𝐴 ∖ suc (𝐹𝑢)) ∈ 𝐴 ↔ (𝐹‘suc 𝑢) ∈ 𝐴))
4039ex 412 . . . . . 6 (𝑢 ∈ ω → ( (𝐴 ∖ suc (𝐹𝑢)) ∈ 𝐴 → ( (𝐴 ∖ suc (𝐹𝑢)) ∈ 𝐴 ↔ (𝐹‘suc 𝑢) ∈ 𝐴)))
4140ibd 269 . . . . 5 (𝑢 ∈ ω → ( (𝐴 ∖ suc (𝐹𝑢)) ∈ 𝐴 → (𝐹‘suc 𝑢) ∈ 𝐴))
4230, 41syl5 34 . . . 4 (𝑢 ∈ ω → (((𝐴 ⊆ ω ∧ ∀𝑤 ∈ ω ∃𝑣𝐴 𝑤𝑣) ∧ (𝐹𝑢) ∈ 𝐴) → (𝐹‘suc 𝑢) ∈ 𝐴))
4342expd 415 . . 3 (𝑢 ∈ ω → ((𝐴 ⊆ ω ∧ ∀𝑤 ∈ ω ∃𝑣𝐴 𝑤𝑣) → ((𝐹𝑢) ∈ 𝐴 → (𝐹‘suc 𝑢) ∈ 𝐴)))
442, 4, 6, 29, 43finds2 7828 . 2 (𝑧 ∈ ω → ((𝐴 ⊆ ω ∧ ∀𝑤 ∈ ω ∃𝑣𝐴 𝑤𝑣) → (𝐹𝑧) ∈ 𝐴))
4544com12 32 1 ((𝐴 ⊆ ω ∧ ∀𝑤 ∈ ω ∃𝑣𝐴 𝑤𝑣) → (𝑧 ∈ ω → (𝐹𝑧) ∈ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wex 1780  wcel 2111  wne 2928  wral 3047  wrex 3056  Vcvv 3436  cdif 3899  wss 3902  c0 4283   cint 4897  cmpt 5172  cres 5618  Oncon0 6306  suc csuc 6308  cfv 6481  ωcom 7796  reccrdg 8328
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329
This theorem is referenced by:  unblem3  9178  unblem4  9179
  Copyright terms: Public domain W3C validator