MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unblem2 Structured version   Visualization version   GIF version

Theorem unblem2 9357
Description: Lemma for unbnn 9360. The value of the function 𝐹 belongs to the unbounded set of natural numbers 𝐴. (Contributed by NM, 3-Dec-2003.)
Hypothesis
Ref Expression
unblem.2 𝐹 = (rec((𝑥 ∈ V ↦ (𝐴 ∖ suc 𝑥)), 𝐴) ↾ ω)
Assertion
Ref Expression
unblem2 ((𝐴 ⊆ ω ∧ ∀𝑤 ∈ ω ∃𝑣𝐴 𝑤𝑣) → (𝑧 ∈ ω → (𝐹𝑧) ∈ 𝐴))
Distinct variable groups:   𝑤,𝑣,𝑥,𝑧,𝐴   𝑣,𝐹,𝑤,𝑧
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem unblem2
Dummy variables 𝑢 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6920 . . . 4 (𝑧 = ∅ → (𝐹𝑧) = (𝐹‘∅))
21eleq1d 2829 . . 3 (𝑧 = ∅ → ((𝐹𝑧) ∈ 𝐴 ↔ (𝐹‘∅) ∈ 𝐴))
3 fveq2 6920 . . . 4 (𝑧 = 𝑢 → (𝐹𝑧) = (𝐹𝑢))
43eleq1d 2829 . . 3 (𝑧 = 𝑢 → ((𝐹𝑧) ∈ 𝐴 ↔ (𝐹𝑢) ∈ 𝐴))
5 fveq2 6920 . . . 4 (𝑧 = suc 𝑢 → (𝐹𝑧) = (𝐹‘suc 𝑢))
65eleq1d 2829 . . 3 (𝑧 = suc 𝑢 → ((𝐹𝑧) ∈ 𝐴 ↔ (𝐹‘suc 𝑢) ∈ 𝐴))
7 omsson 7907 . . . . . 6 ω ⊆ On
8 sstr 4017 . . . . . 6 ((𝐴 ⊆ ω ∧ ω ⊆ On) → 𝐴 ⊆ On)
97, 8mpan2 690 . . . . 5 (𝐴 ⊆ ω → 𝐴 ⊆ On)
10 peano1 7927 . . . . . . . . 9 ∅ ∈ ω
11 eleq1 2832 . . . . . . . . . . 11 (𝑤 = ∅ → (𝑤𝑣 ↔ ∅ ∈ 𝑣))
1211rexbidv 3185 . . . . . . . . . 10 (𝑤 = ∅ → (∃𝑣𝐴 𝑤𝑣 ↔ ∃𝑣𝐴 ∅ ∈ 𝑣))
1312rspcv 3631 . . . . . . . . 9 (∅ ∈ ω → (∀𝑤 ∈ ω ∃𝑣𝐴 𝑤𝑣 → ∃𝑣𝐴 ∅ ∈ 𝑣))
1410, 13ax-mp 5 . . . . . . . 8 (∀𝑤 ∈ ω ∃𝑣𝐴 𝑤𝑣 → ∃𝑣𝐴 ∅ ∈ 𝑣)
15 df-rex 3077 . . . . . . . 8 (∃𝑣𝐴 ∅ ∈ 𝑣 ↔ ∃𝑣(𝑣𝐴 ∧ ∅ ∈ 𝑣))
1614, 15sylib 218 . . . . . . 7 (∀𝑤 ∈ ω ∃𝑣𝐴 𝑤𝑣 → ∃𝑣(𝑣𝐴 ∧ ∅ ∈ 𝑣))
17 exsimpl 1867 . . . . . . 7 (∃𝑣(𝑣𝐴 ∧ ∅ ∈ 𝑣) → ∃𝑣 𝑣𝐴)
1816, 17syl 17 . . . . . 6 (∀𝑤 ∈ ω ∃𝑣𝐴 𝑤𝑣 → ∃𝑣 𝑣𝐴)
19 n0 4376 . . . . . 6 (𝐴 ≠ ∅ ↔ ∃𝑣 𝑣𝐴)
2018, 19sylibr 234 . . . . 5 (∀𝑤 ∈ ω ∃𝑣𝐴 𝑤𝑣𝐴 ≠ ∅)
21 onint 7826 . . . . 5 ((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) → 𝐴𝐴)
229, 20, 21syl2an 595 . . . 4 ((𝐴 ⊆ ω ∧ ∀𝑤 ∈ ω ∃𝑣𝐴 𝑤𝑣) → 𝐴𝐴)
23 unblem.2 . . . . . . . 8 𝐹 = (rec((𝑥 ∈ V ↦ (𝐴 ∖ suc 𝑥)), 𝐴) ↾ ω)
2423fveq1i 6921 . . . . . . 7 (𝐹‘∅) = ((rec((𝑥 ∈ V ↦ (𝐴 ∖ suc 𝑥)), 𝐴) ↾ ω)‘∅)
25 fr0g 8492 . . . . . . 7 ( 𝐴𝐴 → ((rec((𝑥 ∈ V ↦ (𝐴 ∖ suc 𝑥)), 𝐴) ↾ ω)‘∅) = 𝐴)
2624, 25eqtr2id 2793 . . . . . 6 ( 𝐴𝐴 𝐴 = (𝐹‘∅))
2726eleq1d 2829 . . . . 5 ( 𝐴𝐴 → ( 𝐴𝐴 ↔ (𝐹‘∅) ∈ 𝐴))
2827ibi 267 . . . 4 ( 𝐴𝐴 → (𝐹‘∅) ∈ 𝐴)
2922, 28syl 17 . . 3 ((𝐴 ⊆ ω ∧ ∀𝑤 ∈ ω ∃𝑣𝐴 𝑤𝑣) → (𝐹‘∅) ∈ 𝐴)
30 unblem1 9356 . . . . 5 (((𝐴 ⊆ ω ∧ ∀𝑤 ∈ ω ∃𝑣𝐴 𝑤𝑣) ∧ (𝐹𝑢) ∈ 𝐴) → (𝐴 ∖ suc (𝐹𝑢)) ∈ 𝐴)
31 suceq 6461 . . . . . . . . . . . 12 (𝑦 = 𝑥 → suc 𝑦 = suc 𝑥)
3231difeq2d 4149 . . . . . . . . . . 11 (𝑦 = 𝑥 → (𝐴 ∖ suc 𝑦) = (𝐴 ∖ suc 𝑥))
3332inteqd 4975 . . . . . . . . . 10 (𝑦 = 𝑥 (𝐴 ∖ suc 𝑦) = (𝐴 ∖ suc 𝑥))
34 suceq 6461 . . . . . . . . . . . 12 (𝑦 = (𝐹𝑢) → suc 𝑦 = suc (𝐹𝑢))
3534difeq2d 4149 . . . . . . . . . . 11 (𝑦 = (𝐹𝑢) → (𝐴 ∖ suc 𝑦) = (𝐴 ∖ suc (𝐹𝑢)))
3635inteqd 4975 . . . . . . . . . 10 (𝑦 = (𝐹𝑢) → (𝐴 ∖ suc 𝑦) = (𝐴 ∖ suc (𝐹𝑢)))
3723, 33, 36frsucmpt2 8496 . . . . . . . . 9 ((𝑢 ∈ ω ∧ (𝐴 ∖ suc (𝐹𝑢)) ∈ 𝐴) → (𝐹‘suc 𝑢) = (𝐴 ∖ suc (𝐹𝑢)))
3837eqcomd 2746 . . . . . . . 8 ((𝑢 ∈ ω ∧ (𝐴 ∖ suc (𝐹𝑢)) ∈ 𝐴) → (𝐴 ∖ suc (𝐹𝑢)) = (𝐹‘suc 𝑢))
3938eleq1d 2829 . . . . . . 7 ((𝑢 ∈ ω ∧ (𝐴 ∖ suc (𝐹𝑢)) ∈ 𝐴) → ( (𝐴 ∖ suc (𝐹𝑢)) ∈ 𝐴 ↔ (𝐹‘suc 𝑢) ∈ 𝐴))
4039ex 412 . . . . . 6 (𝑢 ∈ ω → ( (𝐴 ∖ suc (𝐹𝑢)) ∈ 𝐴 → ( (𝐴 ∖ suc (𝐹𝑢)) ∈ 𝐴 ↔ (𝐹‘suc 𝑢) ∈ 𝐴)))
4140ibd 269 . . . . 5 (𝑢 ∈ ω → ( (𝐴 ∖ suc (𝐹𝑢)) ∈ 𝐴 → (𝐹‘suc 𝑢) ∈ 𝐴))
4230, 41syl5 34 . . . 4 (𝑢 ∈ ω → (((𝐴 ⊆ ω ∧ ∀𝑤 ∈ ω ∃𝑣𝐴 𝑤𝑣) ∧ (𝐹𝑢) ∈ 𝐴) → (𝐹‘suc 𝑢) ∈ 𝐴))
4342expd 415 . . 3 (𝑢 ∈ ω → ((𝐴 ⊆ ω ∧ ∀𝑤 ∈ ω ∃𝑣𝐴 𝑤𝑣) → ((𝐹𝑢) ∈ 𝐴 → (𝐹‘suc 𝑢) ∈ 𝐴)))
442, 4, 6, 29, 43finds2 7938 . 2 (𝑧 ∈ ω → ((𝐴 ⊆ ω ∧ ∀𝑤 ∈ ω ∃𝑣𝐴 𝑤𝑣) → (𝐹𝑧) ∈ 𝐴))
4544com12 32 1 ((𝐴 ⊆ ω ∧ ∀𝑤 ∈ ω ∃𝑣𝐴 𝑤𝑣) → (𝑧 ∈ ω → (𝐹𝑧) ∈ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wex 1777  wcel 2108  wne 2946  wral 3067  wrex 3076  Vcvv 3488  cdif 3973  wss 3976  c0 4352   cint 4970  cmpt 5249  cres 5702  Oncon0 6395  suc csuc 6397  cfv 6573  ωcom 7903  reccrdg 8465
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466
This theorem is referenced by:  unblem3  9358  unblem4  9359
  Copyright terms: Public domain W3C validator