MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unblem2 Structured version   Visualization version   GIF version

Theorem unblem2 8774
Description: Lemma for unbnn 8777. The value of the function 𝐹 belongs to the unbounded set of natural numbers 𝐴. (Contributed by NM, 3-Dec-2003.)
Hypothesis
Ref Expression
unblem.2 𝐹 = (rec((𝑥 ∈ V ↦ (𝐴 ∖ suc 𝑥)), 𝐴) ↾ ω)
Assertion
Ref Expression
unblem2 ((𝐴 ⊆ ω ∧ ∀𝑤 ∈ ω ∃𝑣𝐴 𝑤𝑣) → (𝑧 ∈ ω → (𝐹𝑧) ∈ 𝐴))
Distinct variable groups:   𝑤,𝑣,𝑥,𝑧,𝐴   𝑣,𝐹,𝑤,𝑧
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem unblem2
Dummy variables 𝑢 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6673 . . . 4 (𝑧 = ∅ → (𝐹𝑧) = (𝐹‘∅))
21eleq1d 2900 . . 3 (𝑧 = ∅ → ((𝐹𝑧) ∈ 𝐴 ↔ (𝐹‘∅) ∈ 𝐴))
3 fveq2 6673 . . . 4 (𝑧 = 𝑢 → (𝐹𝑧) = (𝐹𝑢))
43eleq1d 2900 . . 3 (𝑧 = 𝑢 → ((𝐹𝑧) ∈ 𝐴 ↔ (𝐹𝑢) ∈ 𝐴))
5 fveq2 6673 . . . 4 (𝑧 = suc 𝑢 → (𝐹𝑧) = (𝐹‘suc 𝑢))
65eleq1d 2900 . . 3 (𝑧 = suc 𝑢 → ((𝐹𝑧) ∈ 𝐴 ↔ (𝐹‘suc 𝑢) ∈ 𝐴))
7 omsson 7587 . . . . . 6 ω ⊆ On
8 sstr 3978 . . . . . 6 ((𝐴 ⊆ ω ∧ ω ⊆ On) → 𝐴 ⊆ On)
97, 8mpan2 689 . . . . 5 (𝐴 ⊆ ω → 𝐴 ⊆ On)
10 peano1 7604 . . . . . . . . 9 ∅ ∈ ω
11 eleq1 2903 . . . . . . . . . . 11 (𝑤 = ∅ → (𝑤𝑣 ↔ ∅ ∈ 𝑣))
1211rexbidv 3300 . . . . . . . . . 10 (𝑤 = ∅ → (∃𝑣𝐴 𝑤𝑣 ↔ ∃𝑣𝐴 ∅ ∈ 𝑣))
1312rspcv 3621 . . . . . . . . 9 (∅ ∈ ω → (∀𝑤 ∈ ω ∃𝑣𝐴 𝑤𝑣 → ∃𝑣𝐴 ∅ ∈ 𝑣))
1410, 13ax-mp 5 . . . . . . . 8 (∀𝑤 ∈ ω ∃𝑣𝐴 𝑤𝑣 → ∃𝑣𝐴 ∅ ∈ 𝑣)
15 df-rex 3147 . . . . . . . 8 (∃𝑣𝐴 ∅ ∈ 𝑣 ↔ ∃𝑣(𝑣𝐴 ∧ ∅ ∈ 𝑣))
1614, 15sylib 220 . . . . . . 7 (∀𝑤 ∈ ω ∃𝑣𝐴 𝑤𝑣 → ∃𝑣(𝑣𝐴 ∧ ∅ ∈ 𝑣))
17 exsimpl 1868 . . . . . . 7 (∃𝑣(𝑣𝐴 ∧ ∅ ∈ 𝑣) → ∃𝑣 𝑣𝐴)
1816, 17syl 17 . . . . . 6 (∀𝑤 ∈ ω ∃𝑣𝐴 𝑤𝑣 → ∃𝑣 𝑣𝐴)
19 n0 4313 . . . . . 6 (𝐴 ≠ ∅ ↔ ∃𝑣 𝑣𝐴)
2018, 19sylibr 236 . . . . 5 (∀𝑤 ∈ ω ∃𝑣𝐴 𝑤𝑣𝐴 ≠ ∅)
21 onint 7513 . . . . 5 ((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) → 𝐴𝐴)
229, 20, 21syl2an 597 . . . 4 ((𝐴 ⊆ ω ∧ ∀𝑤 ∈ ω ∃𝑣𝐴 𝑤𝑣) → 𝐴𝐴)
23 unblem.2 . . . . . . . 8 𝐹 = (rec((𝑥 ∈ V ↦ (𝐴 ∖ suc 𝑥)), 𝐴) ↾ ω)
2423fveq1i 6674 . . . . . . 7 (𝐹‘∅) = ((rec((𝑥 ∈ V ↦ (𝐴 ∖ suc 𝑥)), 𝐴) ↾ ω)‘∅)
25 fr0g 8074 . . . . . . 7 ( 𝐴𝐴 → ((rec((𝑥 ∈ V ↦ (𝐴 ∖ suc 𝑥)), 𝐴) ↾ ω)‘∅) = 𝐴)
2624, 25syl5req 2872 . . . . . 6 ( 𝐴𝐴 𝐴 = (𝐹‘∅))
2726eleq1d 2900 . . . . 5 ( 𝐴𝐴 → ( 𝐴𝐴 ↔ (𝐹‘∅) ∈ 𝐴))
2827ibi 269 . . . 4 ( 𝐴𝐴 → (𝐹‘∅) ∈ 𝐴)
2922, 28syl 17 . . 3 ((𝐴 ⊆ ω ∧ ∀𝑤 ∈ ω ∃𝑣𝐴 𝑤𝑣) → (𝐹‘∅) ∈ 𝐴)
30 unblem1 8773 . . . . 5 (((𝐴 ⊆ ω ∧ ∀𝑤 ∈ ω ∃𝑣𝐴 𝑤𝑣) ∧ (𝐹𝑢) ∈ 𝐴) → (𝐴 ∖ suc (𝐹𝑢)) ∈ 𝐴)
31 suceq 6259 . . . . . . . . . . . 12 (𝑦 = 𝑥 → suc 𝑦 = suc 𝑥)
3231difeq2d 4102 . . . . . . . . . . 11 (𝑦 = 𝑥 → (𝐴 ∖ suc 𝑦) = (𝐴 ∖ suc 𝑥))
3332inteqd 4884 . . . . . . . . . 10 (𝑦 = 𝑥 (𝐴 ∖ suc 𝑦) = (𝐴 ∖ suc 𝑥))
34 suceq 6259 . . . . . . . . . . . 12 (𝑦 = (𝐹𝑢) → suc 𝑦 = suc (𝐹𝑢))
3534difeq2d 4102 . . . . . . . . . . 11 (𝑦 = (𝐹𝑢) → (𝐴 ∖ suc 𝑦) = (𝐴 ∖ suc (𝐹𝑢)))
3635inteqd 4884 . . . . . . . . . 10 (𝑦 = (𝐹𝑢) → (𝐴 ∖ suc 𝑦) = (𝐴 ∖ suc (𝐹𝑢)))
3723, 33, 36frsucmpt2 8079 . . . . . . . . 9 ((𝑢 ∈ ω ∧ (𝐴 ∖ suc (𝐹𝑢)) ∈ 𝐴) → (𝐹‘suc 𝑢) = (𝐴 ∖ suc (𝐹𝑢)))
3837eqcomd 2830 . . . . . . . 8 ((𝑢 ∈ ω ∧ (𝐴 ∖ suc (𝐹𝑢)) ∈ 𝐴) → (𝐴 ∖ suc (𝐹𝑢)) = (𝐹‘suc 𝑢))
3938eleq1d 2900 . . . . . . 7 ((𝑢 ∈ ω ∧ (𝐴 ∖ suc (𝐹𝑢)) ∈ 𝐴) → ( (𝐴 ∖ suc (𝐹𝑢)) ∈ 𝐴 ↔ (𝐹‘suc 𝑢) ∈ 𝐴))
4039ex 415 . . . . . 6 (𝑢 ∈ ω → ( (𝐴 ∖ suc (𝐹𝑢)) ∈ 𝐴 → ( (𝐴 ∖ suc (𝐹𝑢)) ∈ 𝐴 ↔ (𝐹‘suc 𝑢) ∈ 𝐴)))
4140ibd 271 . . . . 5 (𝑢 ∈ ω → ( (𝐴 ∖ suc (𝐹𝑢)) ∈ 𝐴 → (𝐹‘suc 𝑢) ∈ 𝐴))
4230, 41syl5 34 . . . 4 (𝑢 ∈ ω → (((𝐴 ⊆ ω ∧ ∀𝑤 ∈ ω ∃𝑣𝐴 𝑤𝑣) ∧ (𝐹𝑢) ∈ 𝐴) → (𝐹‘suc 𝑢) ∈ 𝐴))
4342expd 418 . . 3 (𝑢 ∈ ω → ((𝐴 ⊆ ω ∧ ∀𝑤 ∈ ω ∃𝑣𝐴 𝑤𝑣) → ((𝐹𝑢) ∈ 𝐴 → (𝐹‘suc 𝑢) ∈ 𝐴)))
442, 4, 6, 29, 43finds2 7613 . 2 (𝑧 ∈ ω → ((𝐴 ⊆ ω ∧ ∀𝑤 ∈ ω ∃𝑣𝐴 𝑤𝑣) → (𝐹𝑧) ∈ 𝐴))
4544com12 32 1 ((𝐴 ⊆ ω ∧ ∀𝑤 ∈ ω ∃𝑣𝐴 𝑤𝑣) → (𝑧 ∈ ω → (𝐹𝑧) ∈ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1536  wex 1779  wcel 2113  wne 3019  wral 3141  wrex 3142  Vcvv 3497  cdif 3936  wss 3939  c0 4294   cint 4879  cmpt 5149  cres 5560  Oncon0 6194  suc csuc 6196  cfv 6358  ωcom 7583  reccrdg 8048
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-ral 3146  df-rex 3147  df-reu 3148  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-int 4880  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-om 7584  df-wrecs 7950  df-recs 8011  df-rdg 8049
This theorem is referenced by:  unblem3  8775  unblem4  8776
  Copyright terms: Public domain W3C validator