MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unblem2 Structured version   Visualization version   GIF version

Theorem unblem2 9240
Description: Lemma for unbnn 9243. The value of the function 𝐹 belongs to the unbounded set of natural numbers 𝐴. (Contributed by NM, 3-Dec-2003.)
Hypothesis
Ref Expression
unblem.2 𝐹 = (rec((𝑥 ∈ V ↦ (𝐴 ∖ suc 𝑥)), 𝐴) ↾ ω)
Assertion
Ref Expression
unblem2 ((𝐴 ⊆ ω ∧ ∀𝑤 ∈ ω ∃𝑣𝐴 𝑤𝑣) → (𝑧 ∈ ω → (𝐹𝑧) ∈ 𝐴))
Distinct variable groups:   𝑤,𝑣,𝑥,𝑧,𝐴   𝑣,𝐹,𝑤,𝑧
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem unblem2
Dummy variables 𝑢 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6858 . . . 4 (𝑧 = ∅ → (𝐹𝑧) = (𝐹‘∅))
21eleq1d 2813 . . 3 (𝑧 = ∅ → ((𝐹𝑧) ∈ 𝐴 ↔ (𝐹‘∅) ∈ 𝐴))
3 fveq2 6858 . . . 4 (𝑧 = 𝑢 → (𝐹𝑧) = (𝐹𝑢))
43eleq1d 2813 . . 3 (𝑧 = 𝑢 → ((𝐹𝑧) ∈ 𝐴 ↔ (𝐹𝑢) ∈ 𝐴))
5 fveq2 6858 . . . 4 (𝑧 = suc 𝑢 → (𝐹𝑧) = (𝐹‘suc 𝑢))
65eleq1d 2813 . . 3 (𝑧 = suc 𝑢 → ((𝐹𝑧) ∈ 𝐴 ↔ (𝐹‘suc 𝑢) ∈ 𝐴))
7 omsson 7846 . . . . . 6 ω ⊆ On
8 sstr 3955 . . . . . 6 ((𝐴 ⊆ ω ∧ ω ⊆ On) → 𝐴 ⊆ On)
97, 8mpan2 691 . . . . 5 (𝐴 ⊆ ω → 𝐴 ⊆ On)
10 peano1 7865 . . . . . . . . 9 ∅ ∈ ω
11 eleq1 2816 . . . . . . . . . . 11 (𝑤 = ∅ → (𝑤𝑣 ↔ ∅ ∈ 𝑣))
1211rexbidv 3157 . . . . . . . . . 10 (𝑤 = ∅ → (∃𝑣𝐴 𝑤𝑣 ↔ ∃𝑣𝐴 ∅ ∈ 𝑣))
1312rspcv 3584 . . . . . . . . 9 (∅ ∈ ω → (∀𝑤 ∈ ω ∃𝑣𝐴 𝑤𝑣 → ∃𝑣𝐴 ∅ ∈ 𝑣))
1410, 13ax-mp 5 . . . . . . . 8 (∀𝑤 ∈ ω ∃𝑣𝐴 𝑤𝑣 → ∃𝑣𝐴 ∅ ∈ 𝑣)
15 df-rex 3054 . . . . . . . 8 (∃𝑣𝐴 ∅ ∈ 𝑣 ↔ ∃𝑣(𝑣𝐴 ∧ ∅ ∈ 𝑣))
1614, 15sylib 218 . . . . . . 7 (∀𝑤 ∈ ω ∃𝑣𝐴 𝑤𝑣 → ∃𝑣(𝑣𝐴 ∧ ∅ ∈ 𝑣))
17 exsimpl 1868 . . . . . . 7 (∃𝑣(𝑣𝐴 ∧ ∅ ∈ 𝑣) → ∃𝑣 𝑣𝐴)
1816, 17syl 17 . . . . . 6 (∀𝑤 ∈ ω ∃𝑣𝐴 𝑤𝑣 → ∃𝑣 𝑣𝐴)
19 n0 4316 . . . . . 6 (𝐴 ≠ ∅ ↔ ∃𝑣 𝑣𝐴)
2018, 19sylibr 234 . . . . 5 (∀𝑤 ∈ ω ∃𝑣𝐴 𝑤𝑣𝐴 ≠ ∅)
21 onint 7766 . . . . 5 ((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) → 𝐴𝐴)
229, 20, 21syl2an 596 . . . 4 ((𝐴 ⊆ ω ∧ ∀𝑤 ∈ ω ∃𝑣𝐴 𝑤𝑣) → 𝐴𝐴)
23 unblem.2 . . . . . . . 8 𝐹 = (rec((𝑥 ∈ V ↦ (𝐴 ∖ suc 𝑥)), 𝐴) ↾ ω)
2423fveq1i 6859 . . . . . . 7 (𝐹‘∅) = ((rec((𝑥 ∈ V ↦ (𝐴 ∖ suc 𝑥)), 𝐴) ↾ ω)‘∅)
25 fr0g 8404 . . . . . . 7 ( 𝐴𝐴 → ((rec((𝑥 ∈ V ↦ (𝐴 ∖ suc 𝑥)), 𝐴) ↾ ω)‘∅) = 𝐴)
2624, 25eqtr2id 2777 . . . . . 6 ( 𝐴𝐴 𝐴 = (𝐹‘∅))
2726eleq1d 2813 . . . . 5 ( 𝐴𝐴 → ( 𝐴𝐴 ↔ (𝐹‘∅) ∈ 𝐴))
2827ibi 267 . . . 4 ( 𝐴𝐴 → (𝐹‘∅) ∈ 𝐴)
2922, 28syl 17 . . 3 ((𝐴 ⊆ ω ∧ ∀𝑤 ∈ ω ∃𝑣𝐴 𝑤𝑣) → (𝐹‘∅) ∈ 𝐴)
30 unblem1 9239 . . . . 5 (((𝐴 ⊆ ω ∧ ∀𝑤 ∈ ω ∃𝑣𝐴 𝑤𝑣) ∧ (𝐹𝑢) ∈ 𝐴) → (𝐴 ∖ suc (𝐹𝑢)) ∈ 𝐴)
31 suceq 6400 . . . . . . . . . . . 12 (𝑦 = 𝑥 → suc 𝑦 = suc 𝑥)
3231difeq2d 4089 . . . . . . . . . . 11 (𝑦 = 𝑥 → (𝐴 ∖ suc 𝑦) = (𝐴 ∖ suc 𝑥))
3332inteqd 4915 . . . . . . . . . 10 (𝑦 = 𝑥 (𝐴 ∖ suc 𝑦) = (𝐴 ∖ suc 𝑥))
34 suceq 6400 . . . . . . . . . . . 12 (𝑦 = (𝐹𝑢) → suc 𝑦 = suc (𝐹𝑢))
3534difeq2d 4089 . . . . . . . . . . 11 (𝑦 = (𝐹𝑢) → (𝐴 ∖ suc 𝑦) = (𝐴 ∖ suc (𝐹𝑢)))
3635inteqd 4915 . . . . . . . . . 10 (𝑦 = (𝐹𝑢) → (𝐴 ∖ suc 𝑦) = (𝐴 ∖ suc (𝐹𝑢)))
3723, 33, 36frsucmpt2 8408 . . . . . . . . 9 ((𝑢 ∈ ω ∧ (𝐴 ∖ suc (𝐹𝑢)) ∈ 𝐴) → (𝐹‘suc 𝑢) = (𝐴 ∖ suc (𝐹𝑢)))
3837eqcomd 2735 . . . . . . . 8 ((𝑢 ∈ ω ∧ (𝐴 ∖ suc (𝐹𝑢)) ∈ 𝐴) → (𝐴 ∖ suc (𝐹𝑢)) = (𝐹‘suc 𝑢))
3938eleq1d 2813 . . . . . . 7 ((𝑢 ∈ ω ∧ (𝐴 ∖ suc (𝐹𝑢)) ∈ 𝐴) → ( (𝐴 ∖ suc (𝐹𝑢)) ∈ 𝐴 ↔ (𝐹‘suc 𝑢) ∈ 𝐴))
4039ex 412 . . . . . 6 (𝑢 ∈ ω → ( (𝐴 ∖ suc (𝐹𝑢)) ∈ 𝐴 → ( (𝐴 ∖ suc (𝐹𝑢)) ∈ 𝐴 ↔ (𝐹‘suc 𝑢) ∈ 𝐴)))
4140ibd 269 . . . . 5 (𝑢 ∈ ω → ( (𝐴 ∖ suc (𝐹𝑢)) ∈ 𝐴 → (𝐹‘suc 𝑢) ∈ 𝐴))
4230, 41syl5 34 . . . 4 (𝑢 ∈ ω → (((𝐴 ⊆ ω ∧ ∀𝑤 ∈ ω ∃𝑣𝐴 𝑤𝑣) ∧ (𝐹𝑢) ∈ 𝐴) → (𝐹‘suc 𝑢) ∈ 𝐴))
4342expd 415 . . 3 (𝑢 ∈ ω → ((𝐴 ⊆ ω ∧ ∀𝑤 ∈ ω ∃𝑣𝐴 𝑤𝑣) → ((𝐹𝑢) ∈ 𝐴 → (𝐹‘suc 𝑢) ∈ 𝐴)))
442, 4, 6, 29, 43finds2 7874 . 2 (𝑧 ∈ ω → ((𝐴 ⊆ ω ∧ ∀𝑤 ∈ ω ∃𝑣𝐴 𝑤𝑣) → (𝐹𝑧) ∈ 𝐴))
4544com12 32 1 ((𝐴 ⊆ ω ∧ ∀𝑤 ∈ ω ∃𝑣𝐴 𝑤𝑣) → (𝑧 ∈ ω → (𝐹𝑧) ∈ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  wne 2925  wral 3044  wrex 3053  Vcvv 3447  cdif 3911  wss 3914  c0 4296   cint 4910  cmpt 5188  cres 5640  Oncon0 6332  suc csuc 6334  cfv 6511  ωcom 7842  reccrdg 8377
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378
This theorem is referenced by:  unblem3  9241  unblem4  9242
  Copyright terms: Public domain W3C validator