MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unblem2 Structured version   Visualization version   GIF version

Theorem unblem2 9198
Description: Lemma for unbnn 9201. The value of the function 𝐹 belongs to the unbounded set of natural numbers 𝐴. (Contributed by NM, 3-Dec-2003.)
Hypothesis
Ref Expression
unblem.2 𝐹 = (rec((𝑥 ∈ V ↦ (𝐴 ∖ suc 𝑥)), 𝐴) ↾ ω)
Assertion
Ref Expression
unblem2 ((𝐴 ⊆ ω ∧ ∀𝑤 ∈ ω ∃𝑣𝐴 𝑤𝑣) → (𝑧 ∈ ω → (𝐹𝑧) ∈ 𝐴))
Distinct variable groups:   𝑤,𝑣,𝑥,𝑧,𝐴   𝑣,𝐹,𝑤,𝑧
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem unblem2
Dummy variables 𝑢 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6826 . . . 4 (𝑧 = ∅ → (𝐹𝑧) = (𝐹‘∅))
21eleq1d 2813 . . 3 (𝑧 = ∅ → ((𝐹𝑧) ∈ 𝐴 ↔ (𝐹‘∅) ∈ 𝐴))
3 fveq2 6826 . . . 4 (𝑧 = 𝑢 → (𝐹𝑧) = (𝐹𝑢))
43eleq1d 2813 . . 3 (𝑧 = 𝑢 → ((𝐹𝑧) ∈ 𝐴 ↔ (𝐹𝑢) ∈ 𝐴))
5 fveq2 6826 . . . 4 (𝑧 = suc 𝑢 → (𝐹𝑧) = (𝐹‘suc 𝑢))
65eleq1d 2813 . . 3 (𝑧 = suc 𝑢 → ((𝐹𝑧) ∈ 𝐴 ↔ (𝐹‘suc 𝑢) ∈ 𝐴))
7 omsson 7810 . . . . . 6 ω ⊆ On
8 sstr 3946 . . . . . 6 ((𝐴 ⊆ ω ∧ ω ⊆ On) → 𝐴 ⊆ On)
97, 8mpan2 691 . . . . 5 (𝐴 ⊆ ω → 𝐴 ⊆ On)
10 peano1 7829 . . . . . . . . 9 ∅ ∈ ω
11 eleq1 2816 . . . . . . . . . . 11 (𝑤 = ∅ → (𝑤𝑣 ↔ ∅ ∈ 𝑣))
1211rexbidv 3153 . . . . . . . . . 10 (𝑤 = ∅ → (∃𝑣𝐴 𝑤𝑣 ↔ ∃𝑣𝐴 ∅ ∈ 𝑣))
1312rspcv 3575 . . . . . . . . 9 (∅ ∈ ω → (∀𝑤 ∈ ω ∃𝑣𝐴 𝑤𝑣 → ∃𝑣𝐴 ∅ ∈ 𝑣))
1410, 13ax-mp 5 . . . . . . . 8 (∀𝑤 ∈ ω ∃𝑣𝐴 𝑤𝑣 → ∃𝑣𝐴 ∅ ∈ 𝑣)
15 df-rex 3054 . . . . . . . 8 (∃𝑣𝐴 ∅ ∈ 𝑣 ↔ ∃𝑣(𝑣𝐴 ∧ ∅ ∈ 𝑣))
1614, 15sylib 218 . . . . . . 7 (∀𝑤 ∈ ω ∃𝑣𝐴 𝑤𝑣 → ∃𝑣(𝑣𝐴 ∧ ∅ ∈ 𝑣))
17 exsimpl 1868 . . . . . . 7 (∃𝑣(𝑣𝐴 ∧ ∅ ∈ 𝑣) → ∃𝑣 𝑣𝐴)
1816, 17syl 17 . . . . . 6 (∀𝑤 ∈ ω ∃𝑣𝐴 𝑤𝑣 → ∃𝑣 𝑣𝐴)
19 n0 4306 . . . . . 6 (𝐴 ≠ ∅ ↔ ∃𝑣 𝑣𝐴)
2018, 19sylibr 234 . . . . 5 (∀𝑤 ∈ ω ∃𝑣𝐴 𝑤𝑣𝐴 ≠ ∅)
21 onint 7730 . . . . 5 ((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) → 𝐴𝐴)
229, 20, 21syl2an 596 . . . 4 ((𝐴 ⊆ ω ∧ ∀𝑤 ∈ ω ∃𝑣𝐴 𝑤𝑣) → 𝐴𝐴)
23 unblem.2 . . . . . . . 8 𝐹 = (rec((𝑥 ∈ V ↦ (𝐴 ∖ suc 𝑥)), 𝐴) ↾ ω)
2423fveq1i 6827 . . . . . . 7 (𝐹‘∅) = ((rec((𝑥 ∈ V ↦ (𝐴 ∖ suc 𝑥)), 𝐴) ↾ ω)‘∅)
25 fr0g 8365 . . . . . . 7 ( 𝐴𝐴 → ((rec((𝑥 ∈ V ↦ (𝐴 ∖ suc 𝑥)), 𝐴) ↾ ω)‘∅) = 𝐴)
2624, 25eqtr2id 2777 . . . . . 6 ( 𝐴𝐴 𝐴 = (𝐹‘∅))
2726eleq1d 2813 . . . . 5 ( 𝐴𝐴 → ( 𝐴𝐴 ↔ (𝐹‘∅) ∈ 𝐴))
2827ibi 267 . . . 4 ( 𝐴𝐴 → (𝐹‘∅) ∈ 𝐴)
2922, 28syl 17 . . 3 ((𝐴 ⊆ ω ∧ ∀𝑤 ∈ ω ∃𝑣𝐴 𝑤𝑣) → (𝐹‘∅) ∈ 𝐴)
30 unblem1 9197 . . . . 5 (((𝐴 ⊆ ω ∧ ∀𝑤 ∈ ω ∃𝑣𝐴 𝑤𝑣) ∧ (𝐹𝑢) ∈ 𝐴) → (𝐴 ∖ suc (𝐹𝑢)) ∈ 𝐴)
31 suceq 6379 . . . . . . . . . . . 12 (𝑦 = 𝑥 → suc 𝑦 = suc 𝑥)
3231difeq2d 4079 . . . . . . . . . . 11 (𝑦 = 𝑥 → (𝐴 ∖ suc 𝑦) = (𝐴 ∖ suc 𝑥))
3332inteqd 4904 . . . . . . . . . 10 (𝑦 = 𝑥 (𝐴 ∖ suc 𝑦) = (𝐴 ∖ suc 𝑥))
34 suceq 6379 . . . . . . . . . . . 12 (𝑦 = (𝐹𝑢) → suc 𝑦 = suc (𝐹𝑢))
3534difeq2d 4079 . . . . . . . . . . 11 (𝑦 = (𝐹𝑢) → (𝐴 ∖ suc 𝑦) = (𝐴 ∖ suc (𝐹𝑢)))
3635inteqd 4904 . . . . . . . . . 10 (𝑦 = (𝐹𝑢) → (𝐴 ∖ suc 𝑦) = (𝐴 ∖ suc (𝐹𝑢)))
3723, 33, 36frsucmpt2 8369 . . . . . . . . 9 ((𝑢 ∈ ω ∧ (𝐴 ∖ suc (𝐹𝑢)) ∈ 𝐴) → (𝐹‘suc 𝑢) = (𝐴 ∖ suc (𝐹𝑢)))
3837eqcomd 2735 . . . . . . . 8 ((𝑢 ∈ ω ∧ (𝐴 ∖ suc (𝐹𝑢)) ∈ 𝐴) → (𝐴 ∖ suc (𝐹𝑢)) = (𝐹‘suc 𝑢))
3938eleq1d 2813 . . . . . . 7 ((𝑢 ∈ ω ∧ (𝐴 ∖ suc (𝐹𝑢)) ∈ 𝐴) → ( (𝐴 ∖ suc (𝐹𝑢)) ∈ 𝐴 ↔ (𝐹‘suc 𝑢) ∈ 𝐴))
4039ex 412 . . . . . 6 (𝑢 ∈ ω → ( (𝐴 ∖ suc (𝐹𝑢)) ∈ 𝐴 → ( (𝐴 ∖ suc (𝐹𝑢)) ∈ 𝐴 ↔ (𝐹‘suc 𝑢) ∈ 𝐴)))
4140ibd 269 . . . . 5 (𝑢 ∈ ω → ( (𝐴 ∖ suc (𝐹𝑢)) ∈ 𝐴 → (𝐹‘suc 𝑢) ∈ 𝐴))
4230, 41syl5 34 . . . 4 (𝑢 ∈ ω → (((𝐴 ⊆ ω ∧ ∀𝑤 ∈ ω ∃𝑣𝐴 𝑤𝑣) ∧ (𝐹𝑢) ∈ 𝐴) → (𝐹‘suc 𝑢) ∈ 𝐴))
4342expd 415 . . 3 (𝑢 ∈ ω → ((𝐴 ⊆ ω ∧ ∀𝑤 ∈ ω ∃𝑣𝐴 𝑤𝑣) → ((𝐹𝑢) ∈ 𝐴 → (𝐹‘suc 𝑢) ∈ 𝐴)))
442, 4, 6, 29, 43finds2 7838 . 2 (𝑧 ∈ ω → ((𝐴 ⊆ ω ∧ ∀𝑤 ∈ ω ∃𝑣𝐴 𝑤𝑣) → (𝐹𝑧) ∈ 𝐴))
4544com12 32 1 ((𝐴 ⊆ ω ∧ ∀𝑤 ∈ ω ∃𝑣𝐴 𝑤𝑣) → (𝑧 ∈ ω → (𝐹𝑧) ∈ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  wne 2925  wral 3044  wrex 3053  Vcvv 3438  cdif 3902  wss 3905  c0 4286   cint 4899  cmpt 5176  cres 5625  Oncon0 6311  suc csuc 6313  cfv 6486  ωcom 7806  reccrdg 8338
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356  df-om 7807  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339
This theorem is referenced by:  unblem3  9199  unblem4  9200
  Copyright terms: Public domain W3C validator