MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmcoss Structured version   Visualization version   GIF version

Theorem dmcoss 5921
Description: Domain of a composition. Theorem 21 of [Suppes] p. 63. (Contributed by NM, 19-Mar-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) Avoid ax-10 2146 and ax-12 2182. (Revised by TM, 31-Dec-2025.)
Assertion
Ref Expression
dmcoss dom (𝐴𝐵) ⊆ dom 𝐵

Proof of Theorem dmcoss
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 exsimpl 1869 . . . . . 6 (∃𝑧(𝑥𝐵𝑧𝑧𝐴𝑦) → ∃𝑧 𝑥𝐵𝑧)
2 vex 3442 . . . . . . 7 𝑥 ∈ V
3 vex 3442 . . . . . . 7 𝑦 ∈ V
42, 3opelco 5818 . . . . . 6 (⟨𝑥, 𝑦⟩ ∈ (𝐴𝐵) ↔ ∃𝑧(𝑥𝐵𝑧𝑧𝐴𝑦))
5 breq2 5099 . . . . . . 7 (𝑦 = 𝑧 → (𝑥𝐵𝑦𝑥𝐵𝑧))
65cbvexvw 2038 . . . . . 6 (∃𝑦 𝑥𝐵𝑦 ↔ ∃𝑧 𝑥𝐵𝑧)
71, 4, 63imtr4i 292 . . . . 5 (⟨𝑥, 𝑦⟩ ∈ (𝐴𝐵) → ∃𝑦 𝑥𝐵𝑦)
87eximi 1836 . . . 4 (∃𝑦𝑥, 𝑦⟩ ∈ (𝐴𝐵) → ∃𝑦𝑦 𝑥𝐵𝑦)
95exexw 2054 . . . 4 (∃𝑦 𝑥𝐵𝑦 ↔ ∃𝑦𝑦 𝑥𝐵𝑦)
108, 9sylibr 234 . . 3 (∃𝑦𝑥, 𝑦⟩ ∈ (𝐴𝐵) → ∃𝑦 𝑥𝐵𝑦)
112eldm2 5848 . . 3 (𝑥 ∈ dom (𝐴𝐵) ↔ ∃𝑦𝑥, 𝑦⟩ ∈ (𝐴𝐵))
122eldm 5847 . . 3 (𝑥 ∈ dom 𝐵 ↔ ∃𝑦 𝑥𝐵𝑦)
1310, 11, 123imtr4i 292 . 2 (𝑥 ∈ dom (𝐴𝐵) → 𝑥 ∈ dom 𝐵)
1413ssriv 3935 1 dom (𝐴𝐵) ⊆ dom 𝐵
Colors of variables: wff setvar class
Syntax hints:  wa 395  wex 1780  wcel 2113  wss 3899  cop 4583   class class class wbr 5095  dom cdm 5621  ccom 5625
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-rab 3398  df-v 3440  df-dif 3902  df-un 3904  df-ss 3916  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-br 5096  df-opab 5158  df-co 5630  df-dm 5631
This theorem is referenced by:  rncoss  5923  dmcosseq  5924  dmcosseqOLD  5925  dmcosseqOLDOLD  5926  cossxp  6227  fvco4i  6932  cofunexg  7890  fin23lem30  10243  wunco  10634  relexpnndm  14958  mvdco  19367  f1omvdconj  19368  znleval  21501  ofco2  22376  tngtopn  24575  xppreima  32638  cycpmrn  33123  relexp0a  43823  dmtrclfvRP  43837  dmtposss  48990
  Copyright terms: Public domain W3C validator