| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dmcoss | Structured version Visualization version GIF version | ||
| Description: Domain of a composition. Theorem 21 of [Suppes] p. 63. (Contributed by NM, 19-Mar-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| Ref | Expression |
|---|---|
| dmcoss | ⊢ dom (𝐴 ∘ 𝐵) ⊆ dom 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfe1 2151 | . . . 4 ⊢ Ⅎ𝑦∃𝑦 𝑥𝐵𝑦 | |
| 2 | exsimpl 1868 | . . . . 5 ⊢ (∃𝑧(𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦) → ∃𝑧 𝑥𝐵𝑧) | |
| 3 | vex 3468 | . . . . . 6 ⊢ 𝑥 ∈ V | |
| 4 | vex 3468 | . . . . . 6 ⊢ 𝑦 ∈ V | |
| 5 | 3, 4 | opelco 5856 | . . . . 5 ⊢ (〈𝑥, 𝑦〉 ∈ (𝐴 ∘ 𝐵) ↔ ∃𝑧(𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦)) |
| 6 | breq2 5128 | . . . . . 6 ⊢ (𝑦 = 𝑧 → (𝑥𝐵𝑦 ↔ 𝑥𝐵𝑧)) | |
| 7 | 6 | cbvexvw 2037 | . . . . 5 ⊢ (∃𝑦 𝑥𝐵𝑦 ↔ ∃𝑧 𝑥𝐵𝑧) |
| 8 | 2, 5, 7 | 3imtr4i 292 | . . . 4 ⊢ (〈𝑥, 𝑦〉 ∈ (𝐴 ∘ 𝐵) → ∃𝑦 𝑥𝐵𝑦) |
| 9 | 1, 8 | exlimi 2218 | . . 3 ⊢ (∃𝑦〈𝑥, 𝑦〉 ∈ (𝐴 ∘ 𝐵) → ∃𝑦 𝑥𝐵𝑦) |
| 10 | 3 | eldm2 5886 | . . 3 ⊢ (𝑥 ∈ dom (𝐴 ∘ 𝐵) ↔ ∃𝑦〈𝑥, 𝑦〉 ∈ (𝐴 ∘ 𝐵)) |
| 11 | 3 | eldm 5885 | . . 3 ⊢ (𝑥 ∈ dom 𝐵 ↔ ∃𝑦 𝑥𝐵𝑦) |
| 12 | 9, 10, 11 | 3imtr4i 292 | . 2 ⊢ (𝑥 ∈ dom (𝐴 ∘ 𝐵) → 𝑥 ∈ dom 𝐵) |
| 13 | 12 | ssriv 3967 | 1 ⊢ dom (𝐴 ∘ 𝐵) ⊆ dom 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∃wex 1779 ∈ wcel 2109 ⊆ wss 3931 〈cop 4612 class class class wbr 5124 dom cdm 5659 ∘ ccom 5663 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5125 df-opab 5187 df-co 5668 df-dm 5669 |
| This theorem is referenced by: rncoss 5960 dmcosseq 5961 dmcosseqOLD 5962 cossxp 6266 fvco4i 6985 cofunexg 7952 fin23lem30 10361 wunco 10752 relexpnndm 15065 mvdco 19431 f1omvdconj 19432 znleval 21520 ofco2 22394 tngtopn 24594 xppreima 32628 cycpmrn 33159 relexp0a 43715 dmtrclfvRP 43729 dmtposss 48831 |
| Copyright terms: Public domain | W3C validator |