MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmcoss Structured version   Visualization version   GIF version

Theorem dmcoss 5959
Description: Domain of a composition. Theorem 21 of [Suppes] p. 63. (Contributed by NM, 19-Mar-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
dmcoss dom (𝐴𝐵) ⊆ dom 𝐵

Proof of Theorem dmcoss
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfe1 2151 . . . 4 𝑦𝑦 𝑥𝐵𝑦
2 exsimpl 1868 . . . . 5 (∃𝑧(𝑥𝐵𝑧𝑧𝐴𝑦) → ∃𝑧 𝑥𝐵𝑧)
3 vex 3468 . . . . . 6 𝑥 ∈ V
4 vex 3468 . . . . . 6 𝑦 ∈ V
53, 4opelco 5856 . . . . 5 (⟨𝑥, 𝑦⟩ ∈ (𝐴𝐵) ↔ ∃𝑧(𝑥𝐵𝑧𝑧𝐴𝑦))
6 breq2 5128 . . . . . 6 (𝑦 = 𝑧 → (𝑥𝐵𝑦𝑥𝐵𝑧))
76cbvexvw 2037 . . . . 5 (∃𝑦 𝑥𝐵𝑦 ↔ ∃𝑧 𝑥𝐵𝑧)
82, 5, 73imtr4i 292 . . . 4 (⟨𝑥, 𝑦⟩ ∈ (𝐴𝐵) → ∃𝑦 𝑥𝐵𝑦)
91, 8exlimi 2218 . . 3 (∃𝑦𝑥, 𝑦⟩ ∈ (𝐴𝐵) → ∃𝑦 𝑥𝐵𝑦)
103eldm2 5886 . . 3 (𝑥 ∈ dom (𝐴𝐵) ↔ ∃𝑦𝑥, 𝑦⟩ ∈ (𝐴𝐵))
113eldm 5885 . . 3 (𝑥 ∈ dom 𝐵 ↔ ∃𝑦 𝑥𝐵𝑦)
129, 10, 113imtr4i 292 . 2 (𝑥 ∈ dom (𝐴𝐵) → 𝑥 ∈ dom 𝐵)
1312ssriv 3967 1 dom (𝐴𝐵) ⊆ dom 𝐵
Colors of variables: wff setvar class
Syntax hints:  wa 395  wex 1779  wcel 2109  wss 3931  cop 4612   class class class wbr 5124  dom cdm 5659  ccom 5663
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-br 5125  df-opab 5187  df-co 5668  df-dm 5669
This theorem is referenced by:  rncoss  5960  dmcosseq  5961  dmcosseqOLD  5962  cossxp  6266  fvco4i  6985  cofunexg  7952  fin23lem30  10361  wunco  10752  relexpnndm  15065  mvdco  19431  f1omvdconj  19432  znleval  21520  ofco2  22394  tngtopn  24594  xppreima  32628  cycpmrn  33159  relexp0a  43715  dmtrclfvRP  43729  dmtposss  48831
  Copyright terms: Public domain W3C validator