| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dmcoss | Structured version Visualization version GIF version | ||
| Description: Domain of a composition. Theorem 21 of [Suppes] p. 63. (Contributed by NM, 19-Mar-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) Avoid ax-10 2142 and ax-12 2178. (Revised by TM, 31-Dec-2025.) |
| Ref | Expression |
|---|---|
| dmcoss | ⊢ dom (𝐴 ∘ 𝐵) ⊆ dom 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exsimpl 1868 | . . . . . 6 ⊢ (∃𝑧(𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦) → ∃𝑧 𝑥𝐵𝑧) | |
| 2 | vex 3442 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
| 3 | vex 3442 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
| 4 | 2, 3 | opelco 5818 | . . . . . 6 ⊢ (〈𝑥, 𝑦〉 ∈ (𝐴 ∘ 𝐵) ↔ ∃𝑧(𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦)) |
| 5 | breq2 5099 | . . . . . . 7 ⊢ (𝑦 = 𝑧 → (𝑥𝐵𝑦 ↔ 𝑥𝐵𝑧)) | |
| 6 | 5 | cbvexvw 2037 | . . . . . 6 ⊢ (∃𝑦 𝑥𝐵𝑦 ↔ ∃𝑧 𝑥𝐵𝑧) |
| 7 | 1, 4, 6 | 3imtr4i 292 | . . . . 5 ⊢ (〈𝑥, 𝑦〉 ∈ (𝐴 ∘ 𝐵) → ∃𝑦 𝑥𝐵𝑦) |
| 8 | 7 | eximi 1835 | . . . 4 ⊢ (∃𝑦〈𝑥, 𝑦〉 ∈ (𝐴 ∘ 𝐵) → ∃𝑦∃𝑦 𝑥𝐵𝑦) |
| 9 | 5 | exexw 2052 | . . . 4 ⊢ (∃𝑦 𝑥𝐵𝑦 ↔ ∃𝑦∃𝑦 𝑥𝐵𝑦) |
| 10 | 8, 9 | sylibr 234 | . . 3 ⊢ (∃𝑦〈𝑥, 𝑦〉 ∈ (𝐴 ∘ 𝐵) → ∃𝑦 𝑥𝐵𝑦) |
| 11 | 2 | eldm2 5848 | . . 3 ⊢ (𝑥 ∈ dom (𝐴 ∘ 𝐵) ↔ ∃𝑦〈𝑥, 𝑦〉 ∈ (𝐴 ∘ 𝐵)) |
| 12 | 2 | eldm 5847 | . . 3 ⊢ (𝑥 ∈ dom 𝐵 ↔ ∃𝑦 𝑥𝐵𝑦) |
| 13 | 10, 11, 12 | 3imtr4i 292 | . 2 ⊢ (𝑥 ∈ dom (𝐴 ∘ 𝐵) → 𝑥 ∈ dom 𝐵) |
| 14 | 13 | ssriv 3941 | 1 ⊢ dom (𝐴 ∘ 𝐵) ⊆ dom 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∃wex 1779 ∈ wcel 2109 ⊆ wss 3905 〈cop 4585 class class class wbr 5095 dom cdm 5623 ∘ ccom 5627 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-br 5096 df-opab 5158 df-co 5632 df-dm 5633 |
| This theorem is referenced by: rncoss 5922 dmcosseq 5923 dmcosseqOLD 5924 dmcosseqOLDOLD 5925 cossxp 6224 fvco4i 6928 cofunexg 7891 fin23lem30 10255 wunco 10646 relexpnndm 14966 mvdco 19342 f1omvdconj 19343 znleval 21479 ofco2 22354 tngtopn 24554 xppreima 32602 cycpmrn 33098 relexp0a 43689 dmtrclfvRP 43703 dmtposss 48848 |
| Copyright terms: Public domain | W3C validator |