![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dmcoss | Structured version Visualization version GIF version |
Description: Domain of a composition. Theorem 21 of [Suppes] p. 63. (Contributed by NM, 19-Mar-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
dmcoss | ⊢ dom (𝐴 ∘ 𝐵) ⊆ dom 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfe1 2139 | . . . 4 ⊢ Ⅎ𝑦∃𝑦 𝑥𝐵𝑦 | |
2 | exsimpl 1863 | . . . . 5 ⊢ (∃𝑧(𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦) → ∃𝑧 𝑥𝐵𝑧) | |
3 | vex 3467 | . . . . . 6 ⊢ 𝑥 ∈ V | |
4 | vex 3467 | . . . . . 6 ⊢ 𝑦 ∈ V | |
5 | 3, 4 | opelco 5873 | . . . . 5 ⊢ (⟨𝑥, 𝑦⟩ ∈ (𝐴 ∘ 𝐵) ↔ ∃𝑧(𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦)) |
6 | breq2 5152 | . . . . . 6 ⊢ (𝑦 = 𝑧 → (𝑥𝐵𝑦 ↔ 𝑥𝐵𝑧)) | |
7 | 6 | cbvexvw 2032 | . . . . 5 ⊢ (∃𝑦 𝑥𝐵𝑦 ↔ ∃𝑧 𝑥𝐵𝑧) |
8 | 2, 5, 7 | 3imtr4i 291 | . . . 4 ⊢ (⟨𝑥, 𝑦⟩ ∈ (𝐴 ∘ 𝐵) → ∃𝑦 𝑥𝐵𝑦) |
9 | 1, 8 | exlimi 2205 | . . 3 ⊢ (∃𝑦⟨𝑥, 𝑦⟩ ∈ (𝐴 ∘ 𝐵) → ∃𝑦 𝑥𝐵𝑦) |
10 | 3 | eldm2 5903 | . . 3 ⊢ (𝑥 ∈ dom (𝐴 ∘ 𝐵) ↔ ∃𝑦⟨𝑥, 𝑦⟩ ∈ (𝐴 ∘ 𝐵)) |
11 | 3 | eldm 5902 | . . 3 ⊢ (𝑥 ∈ dom 𝐵 ↔ ∃𝑦 𝑥𝐵𝑦) |
12 | 9, 10, 11 | 3imtr4i 291 | . 2 ⊢ (𝑥 ∈ dom (𝐴 ∘ 𝐵) → 𝑥 ∈ dom 𝐵) |
13 | 12 | ssriv 3981 | 1 ⊢ dom (𝐴 ∘ 𝐵) ⊆ dom 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 394 ∃wex 1773 ∈ wcel 2098 ⊆ wss 3945 ⟨cop 4635 class class class wbr 5148 dom cdm 5677 ∘ ccom 5681 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-12 2166 ax-ext 2696 ax-sep 5299 ax-nul 5306 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-clab 2703 df-cleq 2717 df-clel 2802 df-rab 3420 df-v 3465 df-dif 3948 df-un 3950 df-ss 3962 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-br 5149 df-opab 5211 df-co 5686 df-dm 5687 |
This theorem is referenced by: rncoss 5974 dmcosseq 5975 cossxp 6276 fvco4i 6996 cofunexg 7951 fin23lem30 10365 wunco 10756 relexpnndm 15020 mvdco 19404 f1omvdconj 19405 znleval 21492 ofco2 22383 tngtopn 24597 xppreima 32489 cycpmrn 32921 relexp0a 43211 dmtrclfvRP 43225 |
Copyright terms: Public domain | W3C validator |