MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmcoss Structured version   Visualization version   GIF version

Theorem dmcoss 5880
Description: Domain of a composition. Theorem 21 of [Suppes] p. 63. (Contributed by NM, 19-Mar-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
dmcoss dom (𝐴𝐵) ⊆ dom 𝐵

Proof of Theorem dmcoss
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfe1 2147 . . . 4 𝑦𝑦 𝑥𝐵𝑦
2 exsimpl 1871 . . . . 5 (∃𝑧(𝑥𝐵𝑧𝑧𝐴𝑦) → ∃𝑧 𝑥𝐵𝑧)
3 vex 3436 . . . . . 6 𝑥 ∈ V
4 vex 3436 . . . . . 6 𝑦 ∈ V
53, 4opelco 5780 . . . . 5 (⟨𝑥, 𝑦⟩ ∈ (𝐴𝐵) ↔ ∃𝑧(𝑥𝐵𝑧𝑧𝐴𝑦))
6 breq2 5078 . . . . . 6 (𝑦 = 𝑧 → (𝑥𝐵𝑦𝑥𝐵𝑧))
76cbvexvw 2040 . . . . 5 (∃𝑦 𝑥𝐵𝑦 ↔ ∃𝑧 𝑥𝐵𝑧)
82, 5, 73imtr4i 292 . . . 4 (⟨𝑥, 𝑦⟩ ∈ (𝐴𝐵) → ∃𝑦 𝑥𝐵𝑦)
91, 8exlimi 2210 . . 3 (∃𝑦𝑥, 𝑦⟩ ∈ (𝐴𝐵) → ∃𝑦 𝑥𝐵𝑦)
103eldm2 5810 . . 3 (𝑥 ∈ dom (𝐴𝐵) ↔ ∃𝑦𝑥, 𝑦⟩ ∈ (𝐴𝐵))
113eldm 5809 . . 3 (𝑥 ∈ dom 𝐵 ↔ ∃𝑦 𝑥𝐵𝑦)
129, 10, 113imtr4i 292 . 2 (𝑥 ∈ dom (𝐴𝐵) → 𝑥 ∈ dom 𝐵)
1312ssriv 3925 1 dom (𝐴𝐵) ⊆ dom 𝐵
Colors of variables: wff setvar class
Syntax hints:  wa 396  wex 1782  wcel 2106  wss 3887  cop 4567   class class class wbr 5074  dom cdm 5589  ccom 5593
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-co 5598  df-dm 5599
This theorem is referenced by:  rncoss  5881  dmcosseq  5882  cossxp  6175  fvco4i  6869  cofunexg  7791  fin23lem30  10098  wunco  10489  relexpnndm  14752  mvdco  19053  f1omvdconj  19054  znleval  20762  ofco2  21600  tngtopn  23814  xppreima  30983  cycpmrn  31410  relexp0a  41324  dmtrclfvRP  41338
  Copyright terms: Public domain W3C validator