| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dmcoss | Structured version Visualization version GIF version | ||
| Description: Domain of a composition. Theorem 21 of [Suppes] p. 63. (Contributed by NM, 19-Mar-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| Ref | Expression |
|---|---|
| dmcoss | ⊢ dom (𝐴 ∘ 𝐵) ⊆ dom 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfe1 2151 | . . . 4 ⊢ Ⅎ𝑦∃𝑦 𝑥𝐵𝑦 | |
| 2 | exsimpl 1868 | . . . . 5 ⊢ (∃𝑧(𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦) → ∃𝑧 𝑥𝐵𝑧) | |
| 3 | vex 3451 | . . . . . 6 ⊢ 𝑥 ∈ V | |
| 4 | vex 3451 | . . . . . 6 ⊢ 𝑦 ∈ V | |
| 5 | 3, 4 | opelco 5835 | . . . . 5 ⊢ (〈𝑥, 𝑦〉 ∈ (𝐴 ∘ 𝐵) ↔ ∃𝑧(𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦)) |
| 6 | breq2 5111 | . . . . . 6 ⊢ (𝑦 = 𝑧 → (𝑥𝐵𝑦 ↔ 𝑥𝐵𝑧)) | |
| 7 | 6 | cbvexvw 2037 | . . . . 5 ⊢ (∃𝑦 𝑥𝐵𝑦 ↔ ∃𝑧 𝑥𝐵𝑧) |
| 8 | 2, 5, 7 | 3imtr4i 292 | . . . 4 ⊢ (〈𝑥, 𝑦〉 ∈ (𝐴 ∘ 𝐵) → ∃𝑦 𝑥𝐵𝑦) |
| 9 | 1, 8 | exlimi 2218 | . . 3 ⊢ (∃𝑦〈𝑥, 𝑦〉 ∈ (𝐴 ∘ 𝐵) → ∃𝑦 𝑥𝐵𝑦) |
| 10 | 3 | eldm2 5865 | . . 3 ⊢ (𝑥 ∈ dom (𝐴 ∘ 𝐵) ↔ ∃𝑦〈𝑥, 𝑦〉 ∈ (𝐴 ∘ 𝐵)) |
| 11 | 3 | eldm 5864 | . . 3 ⊢ (𝑥 ∈ dom 𝐵 ↔ ∃𝑦 𝑥𝐵𝑦) |
| 12 | 9, 10, 11 | 3imtr4i 292 | . 2 ⊢ (𝑥 ∈ dom (𝐴 ∘ 𝐵) → 𝑥 ∈ dom 𝐵) |
| 13 | 12 | ssriv 3950 | 1 ⊢ dom (𝐴 ∘ 𝐵) ⊆ dom 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∃wex 1779 ∈ wcel 2109 ⊆ wss 3914 〈cop 4595 class class class wbr 5107 dom cdm 5638 ∘ ccom 5642 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-co 5647 df-dm 5648 |
| This theorem is referenced by: rncoss 5939 dmcosseq 5940 dmcosseqOLD 5941 cossxp 6245 fvco4i 6962 cofunexg 7927 fin23lem30 10295 wunco 10686 relexpnndm 15007 mvdco 19375 f1omvdconj 19376 znleval 21464 ofco2 22338 tngtopn 24538 xppreima 32569 cycpmrn 33100 relexp0a 43705 dmtrclfvRP 43719 dmtposss 48864 |
| Copyright terms: Public domain | W3C validator |