![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dmcoss | Structured version Visualization version GIF version |
Description: Domain of a composition. Theorem 21 of [Suppes] p. 63. (Contributed by NM, 19-Mar-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
dmcoss | ⊢ dom (𝐴 ∘ 𝐵) ⊆ dom 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfe1 2151 | . . . 4 ⊢ Ⅎ𝑦∃𝑦 𝑥𝐵𝑦 | |
2 | exsimpl 1867 | . . . . 5 ⊢ (∃𝑧(𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦) → ∃𝑧 𝑥𝐵𝑧) | |
3 | vex 3492 | . . . . . 6 ⊢ 𝑥 ∈ V | |
4 | vex 3492 | . . . . . 6 ⊢ 𝑦 ∈ V | |
5 | 3, 4 | opelco 5896 | . . . . 5 ⊢ (〈𝑥, 𝑦〉 ∈ (𝐴 ∘ 𝐵) ↔ ∃𝑧(𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦)) |
6 | breq2 5170 | . . . . . 6 ⊢ (𝑦 = 𝑧 → (𝑥𝐵𝑦 ↔ 𝑥𝐵𝑧)) | |
7 | 6 | cbvexvw 2036 | . . . . 5 ⊢ (∃𝑦 𝑥𝐵𝑦 ↔ ∃𝑧 𝑥𝐵𝑧) |
8 | 2, 5, 7 | 3imtr4i 292 | . . . 4 ⊢ (〈𝑥, 𝑦〉 ∈ (𝐴 ∘ 𝐵) → ∃𝑦 𝑥𝐵𝑦) |
9 | 1, 8 | exlimi 2218 | . . 3 ⊢ (∃𝑦〈𝑥, 𝑦〉 ∈ (𝐴 ∘ 𝐵) → ∃𝑦 𝑥𝐵𝑦) |
10 | 3 | eldm2 5926 | . . 3 ⊢ (𝑥 ∈ dom (𝐴 ∘ 𝐵) ↔ ∃𝑦〈𝑥, 𝑦〉 ∈ (𝐴 ∘ 𝐵)) |
11 | 3 | eldm 5925 | . . 3 ⊢ (𝑥 ∈ dom 𝐵 ↔ ∃𝑦 𝑥𝐵𝑦) |
12 | 9, 10, 11 | 3imtr4i 292 | . 2 ⊢ (𝑥 ∈ dom (𝐴 ∘ 𝐵) → 𝑥 ∈ dom 𝐵) |
13 | 12 | ssriv 4012 | 1 ⊢ dom (𝐴 ∘ 𝐵) ⊆ dom 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 ∃wex 1777 ∈ wcel 2108 ⊆ wss 3976 〈cop 4654 class class class wbr 5166 dom cdm 5700 ∘ ccom 5704 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-co 5709 df-dm 5710 |
This theorem is referenced by: rncoss 5998 dmcosseq 5999 dmcosseqOLD 6000 cossxp 6303 fvco4i 7023 cofunexg 7989 fin23lem30 10411 wunco 10802 relexpnndm 15090 mvdco 19487 f1omvdconj 19488 znleval 21596 ofco2 22478 tngtopn 24692 xppreima 32664 cycpmrn 33136 relexp0a 43678 dmtrclfvRP 43692 |
Copyright terms: Public domain | W3C validator |