MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmcoss Structured version   Visualization version   GIF version

Theorem dmcoss 5920
Description: Domain of a composition. Theorem 21 of [Suppes] p. 63. (Contributed by NM, 19-Mar-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) Avoid ax-10 2142 and ax-12 2178. (Revised by TM, 31-Dec-2025.)
Assertion
Ref Expression
dmcoss dom (𝐴𝐵) ⊆ dom 𝐵

Proof of Theorem dmcoss
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 exsimpl 1868 . . . . . 6 (∃𝑧(𝑥𝐵𝑧𝑧𝐴𝑦) → ∃𝑧 𝑥𝐵𝑧)
2 vex 3442 . . . . . . 7 𝑥 ∈ V
3 vex 3442 . . . . . . 7 𝑦 ∈ V
42, 3opelco 5818 . . . . . 6 (⟨𝑥, 𝑦⟩ ∈ (𝐴𝐵) ↔ ∃𝑧(𝑥𝐵𝑧𝑧𝐴𝑦))
5 breq2 5099 . . . . . . 7 (𝑦 = 𝑧 → (𝑥𝐵𝑦𝑥𝐵𝑧))
65cbvexvw 2037 . . . . . 6 (∃𝑦 𝑥𝐵𝑦 ↔ ∃𝑧 𝑥𝐵𝑧)
71, 4, 63imtr4i 292 . . . . 5 (⟨𝑥, 𝑦⟩ ∈ (𝐴𝐵) → ∃𝑦 𝑥𝐵𝑦)
87eximi 1835 . . . 4 (∃𝑦𝑥, 𝑦⟩ ∈ (𝐴𝐵) → ∃𝑦𝑦 𝑥𝐵𝑦)
95exexw 2052 . . . 4 (∃𝑦 𝑥𝐵𝑦 ↔ ∃𝑦𝑦 𝑥𝐵𝑦)
108, 9sylibr 234 . . 3 (∃𝑦𝑥, 𝑦⟩ ∈ (𝐴𝐵) → ∃𝑦 𝑥𝐵𝑦)
112eldm2 5848 . . 3 (𝑥 ∈ dom (𝐴𝐵) ↔ ∃𝑦𝑥, 𝑦⟩ ∈ (𝐴𝐵))
122eldm 5847 . . 3 (𝑥 ∈ dom 𝐵 ↔ ∃𝑦 𝑥𝐵𝑦)
1310, 11, 123imtr4i 292 . 2 (𝑥 ∈ dom (𝐴𝐵) → 𝑥 ∈ dom 𝐵)
1413ssriv 3941 1 dom (𝐴𝐵) ⊆ dom 𝐵
Colors of variables: wff setvar class
Syntax hints:  wa 395  wex 1779  wcel 2109  wss 3905  cop 4585   class class class wbr 5095  dom cdm 5623  ccom 5627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-br 5096  df-opab 5158  df-co 5632  df-dm 5633
This theorem is referenced by:  rncoss  5922  dmcosseq  5923  dmcosseqOLD  5924  dmcosseqOLDOLD  5925  cossxp  6224  fvco4i  6928  cofunexg  7891  fin23lem30  10255  wunco  10646  relexpnndm  14966  mvdco  19342  f1omvdconj  19343  znleval  21479  ofco2  22354  tngtopn  24554  xppreima  32602  cycpmrn  33098  relexp0a  43689  dmtrclfvRP  43703  dmtposss  48848
  Copyright terms: Public domain W3C validator