| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dmcoss | Structured version Visualization version GIF version | ||
| Description: Domain of a composition. Theorem 21 of [Suppes] p. 63. (Contributed by NM, 19-Mar-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) Avoid ax-10 2143 and ax-12 2179. (Revised by TM, 31-Dec-2025.) |
| Ref | Expression |
|---|---|
| dmcoss | ⊢ dom (𝐴 ∘ 𝐵) ⊆ dom 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exsimpl 1869 | . . . . . 6 ⊢ (∃𝑧(𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦) → ∃𝑧 𝑥𝐵𝑧) | |
| 2 | vex 3438 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
| 3 | vex 3438 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
| 4 | 2, 3 | opelco 5809 | . . . . . 6 ⊢ (〈𝑥, 𝑦〉 ∈ (𝐴 ∘ 𝐵) ↔ ∃𝑧(𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦)) |
| 5 | breq2 5093 | . . . . . . 7 ⊢ (𝑦 = 𝑧 → (𝑥𝐵𝑦 ↔ 𝑥𝐵𝑧)) | |
| 6 | 5 | cbvexvw 2038 | . . . . . 6 ⊢ (∃𝑦 𝑥𝐵𝑦 ↔ ∃𝑧 𝑥𝐵𝑧) |
| 7 | 1, 4, 6 | 3imtr4i 292 | . . . . 5 ⊢ (〈𝑥, 𝑦〉 ∈ (𝐴 ∘ 𝐵) → ∃𝑦 𝑥𝐵𝑦) |
| 8 | 7 | eximi 1836 | . . . 4 ⊢ (∃𝑦〈𝑥, 𝑦〉 ∈ (𝐴 ∘ 𝐵) → ∃𝑦∃𝑦 𝑥𝐵𝑦) |
| 9 | 5 | exexw 2053 | . . . 4 ⊢ (∃𝑦 𝑥𝐵𝑦 ↔ ∃𝑦∃𝑦 𝑥𝐵𝑦) |
| 10 | 8, 9 | sylibr 234 | . . 3 ⊢ (∃𝑦〈𝑥, 𝑦〉 ∈ (𝐴 ∘ 𝐵) → ∃𝑦 𝑥𝐵𝑦) |
| 11 | 2 | eldm2 5839 | . . 3 ⊢ (𝑥 ∈ dom (𝐴 ∘ 𝐵) ↔ ∃𝑦〈𝑥, 𝑦〉 ∈ (𝐴 ∘ 𝐵)) |
| 12 | 2 | eldm 5838 | . . 3 ⊢ (𝑥 ∈ dom 𝐵 ↔ ∃𝑦 𝑥𝐵𝑦) |
| 13 | 10, 11, 12 | 3imtr4i 292 | . 2 ⊢ (𝑥 ∈ dom (𝐴 ∘ 𝐵) → 𝑥 ∈ dom 𝐵) |
| 14 | 13 | ssriv 3936 | 1 ⊢ dom (𝐴 ∘ 𝐵) ⊆ dom 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∃wex 1780 ∈ wcel 2110 ⊆ wss 3900 〈cop 4580 class class class wbr 5089 dom cdm 5614 ∘ ccom 5618 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3394 df-v 3436 df-dif 3903 df-un 3905 df-ss 3917 df-nul 4282 df-if 4474 df-sn 4575 df-pr 4577 df-op 4581 df-br 5090 df-opab 5152 df-co 5623 df-dm 5624 |
| This theorem is referenced by: rncoss 5913 dmcosseq 5914 dmcosseqOLD 5915 dmcosseqOLDOLD 5916 cossxp 6215 fvco4i 6918 cofunexg 7876 fin23lem30 10225 wunco 10616 relexpnndm 14940 mvdco 19350 f1omvdconj 19351 znleval 21484 ofco2 22359 tngtopn 24558 xppreima 32617 cycpmrn 33102 relexp0a 43728 dmtrclfvRP 43742 dmtposss 48886 |
| Copyright terms: Public domain | W3C validator |