MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmcoss Structured version   Visualization version   GIF version

Theorem dmcoss 5938
Description: Domain of a composition. Theorem 21 of [Suppes] p. 63. (Contributed by NM, 19-Mar-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
dmcoss dom (𝐴𝐵) ⊆ dom 𝐵

Proof of Theorem dmcoss
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfe1 2151 . . . 4 𝑦𝑦 𝑥𝐵𝑦
2 exsimpl 1868 . . . . 5 (∃𝑧(𝑥𝐵𝑧𝑧𝐴𝑦) → ∃𝑧 𝑥𝐵𝑧)
3 vex 3451 . . . . . 6 𝑥 ∈ V
4 vex 3451 . . . . . 6 𝑦 ∈ V
53, 4opelco 5835 . . . . 5 (⟨𝑥, 𝑦⟩ ∈ (𝐴𝐵) ↔ ∃𝑧(𝑥𝐵𝑧𝑧𝐴𝑦))
6 breq2 5111 . . . . . 6 (𝑦 = 𝑧 → (𝑥𝐵𝑦𝑥𝐵𝑧))
76cbvexvw 2037 . . . . 5 (∃𝑦 𝑥𝐵𝑦 ↔ ∃𝑧 𝑥𝐵𝑧)
82, 5, 73imtr4i 292 . . . 4 (⟨𝑥, 𝑦⟩ ∈ (𝐴𝐵) → ∃𝑦 𝑥𝐵𝑦)
91, 8exlimi 2218 . . 3 (∃𝑦𝑥, 𝑦⟩ ∈ (𝐴𝐵) → ∃𝑦 𝑥𝐵𝑦)
103eldm2 5865 . . 3 (𝑥 ∈ dom (𝐴𝐵) ↔ ∃𝑦𝑥, 𝑦⟩ ∈ (𝐴𝐵))
113eldm 5864 . . 3 (𝑥 ∈ dom 𝐵 ↔ ∃𝑦 𝑥𝐵𝑦)
129, 10, 113imtr4i 292 . 2 (𝑥 ∈ dom (𝐴𝐵) → 𝑥 ∈ dom 𝐵)
1312ssriv 3950 1 dom (𝐴𝐵) ⊆ dom 𝐵
Colors of variables: wff setvar class
Syntax hints:  wa 395  wex 1779  wcel 2109  wss 3914  cop 4595   class class class wbr 5107  dom cdm 5638  ccom 5642
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-co 5647  df-dm 5648
This theorem is referenced by:  rncoss  5939  dmcosseq  5940  dmcosseqOLD  5941  cossxp  6245  fvco4i  6962  cofunexg  7927  fin23lem30  10295  wunco  10686  relexpnndm  15007  mvdco  19375  f1omvdconj  19376  znleval  21464  ofco2  22338  tngtopn  24538  xppreima  32569  cycpmrn  33100  relexp0a  43705  dmtrclfvRP  43719  dmtposss  48864
  Copyright terms: Public domain W3C validator