Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dmcoss | Structured version Visualization version GIF version |
Description: Domain of a composition. Theorem 21 of [Suppes] p. 63. (Contributed by NM, 19-Mar-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
dmcoss | ⊢ dom (𝐴 ∘ 𝐵) ⊆ dom 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfe1 2149 | . . . 4 ⊢ Ⅎ𝑦∃𝑦 𝑥𝐵𝑦 | |
2 | exsimpl 1872 | . . . . 5 ⊢ (∃𝑧(𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦) → ∃𝑧 𝑥𝐵𝑧) | |
3 | vex 3426 | . . . . . 6 ⊢ 𝑥 ∈ V | |
4 | vex 3426 | . . . . . 6 ⊢ 𝑦 ∈ V | |
5 | 3, 4 | opelco 5769 | . . . . 5 ⊢ (〈𝑥, 𝑦〉 ∈ (𝐴 ∘ 𝐵) ↔ ∃𝑧(𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦)) |
6 | breq2 5074 | . . . . . 6 ⊢ (𝑦 = 𝑧 → (𝑥𝐵𝑦 ↔ 𝑥𝐵𝑧)) | |
7 | 6 | cbvexvw 2041 | . . . . 5 ⊢ (∃𝑦 𝑥𝐵𝑦 ↔ ∃𝑧 𝑥𝐵𝑧) |
8 | 2, 5, 7 | 3imtr4i 291 | . . . 4 ⊢ (〈𝑥, 𝑦〉 ∈ (𝐴 ∘ 𝐵) → ∃𝑦 𝑥𝐵𝑦) |
9 | 1, 8 | exlimi 2213 | . . 3 ⊢ (∃𝑦〈𝑥, 𝑦〉 ∈ (𝐴 ∘ 𝐵) → ∃𝑦 𝑥𝐵𝑦) |
10 | 3 | eldm2 5799 | . . 3 ⊢ (𝑥 ∈ dom (𝐴 ∘ 𝐵) ↔ ∃𝑦〈𝑥, 𝑦〉 ∈ (𝐴 ∘ 𝐵)) |
11 | 3 | eldm 5798 | . . 3 ⊢ (𝑥 ∈ dom 𝐵 ↔ ∃𝑦 𝑥𝐵𝑦) |
12 | 9, 10, 11 | 3imtr4i 291 | . 2 ⊢ (𝑥 ∈ dom (𝐴 ∘ 𝐵) → 𝑥 ∈ dom 𝐵) |
13 | 12 | ssriv 3921 | 1 ⊢ dom (𝐴 ∘ 𝐵) ⊆ dom 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 ∃wex 1783 ∈ wcel 2108 ⊆ wss 3883 〈cop 4564 class class class wbr 5070 dom cdm 5580 ∘ ccom 5584 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-co 5589 df-dm 5590 |
This theorem is referenced by: rncoss 5870 dmcosseq 5871 cossxp 6164 fvco4i 6851 cofunexg 7765 fin23lem30 10029 wunco 10420 relexpnndm 14680 mvdco 18968 f1omvdconj 18969 znleval 20674 ofco2 21508 tngtopn 23720 xppreima 30884 cycpmrn 31312 relexp0a 41213 dmtrclfvRP 41227 |
Copyright terms: Public domain | W3C validator |