| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dmcoss | Structured version Visualization version GIF version | ||
| Description: Domain of a composition. Theorem 21 of [Suppes] p. 63. (Contributed by NM, 19-Mar-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) Avoid ax-10 2146 and ax-12 2182. (Revised by TM, 31-Dec-2025.) |
| Ref | Expression |
|---|---|
| dmcoss | ⊢ dom (𝐴 ∘ 𝐵) ⊆ dom 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exsimpl 1869 | . . . . . 6 ⊢ (∃𝑧(𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦) → ∃𝑧 𝑥𝐵𝑧) | |
| 2 | vex 3442 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
| 3 | vex 3442 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
| 4 | 2, 3 | opelco 5818 | . . . . . 6 ⊢ (〈𝑥, 𝑦〉 ∈ (𝐴 ∘ 𝐵) ↔ ∃𝑧(𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦)) |
| 5 | breq2 5099 | . . . . . . 7 ⊢ (𝑦 = 𝑧 → (𝑥𝐵𝑦 ↔ 𝑥𝐵𝑧)) | |
| 6 | 5 | cbvexvw 2038 | . . . . . 6 ⊢ (∃𝑦 𝑥𝐵𝑦 ↔ ∃𝑧 𝑥𝐵𝑧) |
| 7 | 1, 4, 6 | 3imtr4i 292 | . . . . 5 ⊢ (〈𝑥, 𝑦〉 ∈ (𝐴 ∘ 𝐵) → ∃𝑦 𝑥𝐵𝑦) |
| 8 | 7 | eximi 1836 | . . . 4 ⊢ (∃𝑦〈𝑥, 𝑦〉 ∈ (𝐴 ∘ 𝐵) → ∃𝑦∃𝑦 𝑥𝐵𝑦) |
| 9 | 5 | exexw 2054 | . . . 4 ⊢ (∃𝑦 𝑥𝐵𝑦 ↔ ∃𝑦∃𝑦 𝑥𝐵𝑦) |
| 10 | 8, 9 | sylibr 234 | . . 3 ⊢ (∃𝑦〈𝑥, 𝑦〉 ∈ (𝐴 ∘ 𝐵) → ∃𝑦 𝑥𝐵𝑦) |
| 11 | 2 | eldm2 5848 | . . 3 ⊢ (𝑥 ∈ dom (𝐴 ∘ 𝐵) ↔ ∃𝑦〈𝑥, 𝑦〉 ∈ (𝐴 ∘ 𝐵)) |
| 12 | 2 | eldm 5847 | . . 3 ⊢ (𝑥 ∈ dom 𝐵 ↔ ∃𝑦 𝑥𝐵𝑦) |
| 13 | 10, 11, 12 | 3imtr4i 292 | . 2 ⊢ (𝑥 ∈ dom (𝐴 ∘ 𝐵) → 𝑥 ∈ dom 𝐵) |
| 14 | 13 | ssriv 3935 | 1 ⊢ dom (𝐴 ∘ 𝐵) ⊆ dom 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∃wex 1780 ∈ wcel 2113 ⊆ wss 3899 〈cop 4583 class class class wbr 5095 dom cdm 5621 ∘ ccom 5625 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-rab 3398 df-v 3440 df-dif 3902 df-un 3904 df-ss 3916 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5096 df-opab 5158 df-co 5630 df-dm 5631 |
| This theorem is referenced by: rncoss 5923 dmcosseq 5924 dmcosseqOLD 5925 dmcosseqOLDOLD 5926 cossxp 6227 fvco4i 6932 cofunexg 7890 fin23lem30 10243 wunco 10634 relexpnndm 14958 mvdco 19367 f1omvdconj 19368 znleval 21501 ofco2 22376 tngtopn 24575 xppreima 32638 cycpmrn 33123 relexp0a 43823 dmtrclfvRP 43837 dmtposss 48990 |
| Copyright terms: Public domain | W3C validator |