| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > atex | Structured version Visualization version GIF version | ||
| Description: At least one atom exists. (Contributed by NM, 15-Jul-2012.) |
| Ref | Expression |
|---|---|
| atex.1 | ⊢ 𝐴 = (Atoms‘𝐾) |
| Ref | Expression |
|---|---|
| atex | ⊢ (𝐾 ∈ HL → 𝐴 ≠ ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | atex.1 | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 2 | 1 | hl2at 39372 | . . 3 ⊢ (𝐾 ∈ HL → ∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐴 𝑝 ≠ 𝑞) |
| 3 | df-rex 3054 | . . . 4 ⊢ (∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐴 𝑝 ≠ 𝑞 ↔ ∃𝑝(𝑝 ∈ 𝐴 ∧ ∃𝑞 ∈ 𝐴 𝑝 ≠ 𝑞)) | |
| 4 | exsimpl 1868 | . . . 4 ⊢ (∃𝑝(𝑝 ∈ 𝐴 ∧ ∃𝑞 ∈ 𝐴 𝑝 ≠ 𝑞) → ∃𝑝 𝑝 ∈ 𝐴) | |
| 5 | 3, 4 | sylbi 217 | . . 3 ⊢ (∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐴 𝑝 ≠ 𝑞 → ∃𝑝 𝑝 ∈ 𝐴) |
| 6 | 2, 5 | syl 17 | . 2 ⊢ (𝐾 ∈ HL → ∃𝑝 𝑝 ∈ 𝐴) |
| 7 | n0 4312 | . 2 ⊢ (𝐴 ≠ ∅ ↔ ∃𝑝 𝑝 ∈ 𝐴) | |
| 8 | 6, 7 | sylibr 234 | 1 ⊢ (𝐾 ∈ HL → 𝐴 ≠ ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ≠ wne 2925 ∃wrex 3053 ∅c0 4292 ‘cfv 6499 Atomscatm 39229 HLchlt 39316 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-proset 18231 df-poset 18250 df-plt 18265 df-lub 18281 df-glb 18282 df-join 18283 df-meet 18284 df-p0 18360 df-p1 18361 df-lat 18367 df-clat 18434 df-oposet 39142 df-ol 39144 df-oml 39145 df-covers 39232 df-ats 39233 df-atl 39264 df-cvlat 39288 df-hlat 39317 |
| This theorem is referenced by: llnn0 39483 lplnn0N 39514 lvoln0N 39558 |
| Copyright terms: Public domain | W3C validator |