![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > atex | Structured version Visualization version GIF version |
Description: At least one atom exists. (Contributed by NM, 15-Jul-2012.) |
Ref | Expression |
---|---|
atex.1 | β’ π΄ = (AtomsβπΎ) |
Ref | Expression |
---|---|
atex | β’ (πΎ β HL β π΄ β β ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | atex.1 | . . . 4 β’ π΄ = (AtomsβπΎ) | |
2 | 1 | hl2at 38779 | . . 3 β’ (πΎ β HL β βπ β π΄ βπ β π΄ π β π) |
3 | df-rex 3063 | . . . 4 β’ (βπ β π΄ βπ β π΄ π β π β βπ(π β π΄ β§ βπ β π΄ π β π)) | |
4 | exsimpl 1863 | . . . 4 β’ (βπ(π β π΄ β§ βπ β π΄ π β π) β βπ π β π΄) | |
5 | 3, 4 | sylbi 216 | . . 3 β’ (βπ β π΄ βπ β π΄ π β π β βπ π β π΄) |
6 | 2, 5 | syl 17 | . 2 β’ (πΎ β HL β βπ π β π΄) |
7 | n0 4339 | . 2 β’ (π΄ β β β βπ π β π΄) | |
8 | 6, 7 | sylibr 233 | 1 β’ (πΎ β HL β π΄ β β ) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 = wceq 1533 βwex 1773 β wcel 2098 β wne 2932 βwrex 3062 β c0 4315 βcfv 6534 Atomscatm 38636 HLchlt 38723 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5276 ax-sep 5290 ax-nul 5297 ax-pow 5354 ax-pr 5418 ax-un 7719 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-nul 4316 df-if 4522 df-pw 4597 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-iun 4990 df-br 5140 df-opab 5202 df-mpt 5223 df-id 5565 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-iota 6486 df-fun 6536 df-fn 6537 df-f 6538 df-f1 6539 df-fo 6540 df-f1o 6541 df-fv 6542 df-riota 7358 df-ov 7405 df-oprab 7406 df-proset 18256 df-poset 18274 df-plt 18291 df-lub 18307 df-glb 18308 df-join 18309 df-meet 18310 df-p0 18386 df-p1 18387 df-lat 18393 df-clat 18460 df-oposet 38549 df-ol 38551 df-oml 38552 df-covers 38639 df-ats 38640 df-atl 38671 df-cvlat 38695 df-hlat 38724 |
This theorem is referenced by: llnn0 38890 lplnn0N 38921 lvoln0N 38965 |
Copyright terms: Public domain | W3C validator |