Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  atex Structured version   Visualization version   GIF version

Theorem atex 39373
Description: At least one atom exists. (Contributed by NM, 15-Jul-2012.)
Hypothesis
Ref Expression
atex.1 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
atex (𝐾 ∈ HL → 𝐴 ≠ ∅)

Proof of Theorem atex
Dummy variables 𝑞 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 atex.1 . . . 4 𝐴 = (Atoms‘𝐾)
21hl2at 39372 . . 3 (𝐾 ∈ HL → ∃𝑝𝐴𝑞𝐴 𝑝𝑞)
3 df-rex 3054 . . . 4 (∃𝑝𝐴𝑞𝐴 𝑝𝑞 ↔ ∃𝑝(𝑝𝐴 ∧ ∃𝑞𝐴 𝑝𝑞))
4 exsimpl 1868 . . . 4 (∃𝑝(𝑝𝐴 ∧ ∃𝑞𝐴 𝑝𝑞) → ∃𝑝 𝑝𝐴)
53, 4sylbi 217 . . 3 (∃𝑝𝐴𝑞𝐴 𝑝𝑞 → ∃𝑝 𝑝𝐴)
62, 5syl 17 . 2 (𝐾 ∈ HL → ∃𝑝 𝑝𝐴)
7 n0 4312 . 2 (𝐴 ≠ ∅ ↔ ∃𝑝 𝑝𝐴)
86, 7sylibr 234 1 (𝐾 ∈ HL → 𝐴 ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wex 1779  wcel 2109  wne 2925  wrex 3053  c0 4292  cfv 6499  Atomscatm 39229  HLchlt 39316
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-proset 18231  df-poset 18250  df-plt 18265  df-lub 18281  df-glb 18282  df-join 18283  df-meet 18284  df-p0 18360  df-p1 18361  df-lat 18367  df-clat 18434  df-oposet 39142  df-ol 39144  df-oml 39145  df-covers 39232  df-ats 39233  df-atl 39264  df-cvlat 39288  df-hlat 39317
This theorem is referenced by:  llnn0  39483  lplnn0N  39514  lvoln0N  39558
  Copyright terms: Public domain W3C validator