Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > krull | Structured version Visualization version GIF version |
Description: Krull's theorem: Any nonzero ring has at least one maximal ideal. (Contributed by Thierry Arnoux, 10-Apr-2024.) |
Ref | Expression |
---|---|
krull | ⊢ (𝑅 ∈ NzRing → ∃𝑚 𝑚 ∈ (MaxIdeal‘𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nzrring 20445 | . . 3 ⊢ (𝑅 ∈ NzRing → 𝑅 ∈ Ring) | |
2 | eqid 2738 | . . . . 5 ⊢ (LIdeal‘𝑅) = (LIdeal‘𝑅) | |
3 | eqid 2738 | . . . . 5 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
4 | 2, 3 | lidl0 20403 | . . . 4 ⊢ (𝑅 ∈ Ring → {(0g‘𝑅)} ∈ (LIdeal‘𝑅)) |
5 | 1, 4 | syl 17 | . . 3 ⊢ (𝑅 ∈ NzRing → {(0g‘𝑅)} ∈ (LIdeal‘𝑅)) |
6 | fvex 6769 | . . . . . . 7 ⊢ (0g‘𝑅) ∈ V | |
7 | hashsng 14012 | . . . . . . 7 ⊢ ((0g‘𝑅) ∈ V → (♯‘{(0g‘𝑅)}) = 1) | |
8 | 6, 7 | ax-mp 5 | . . . . . 6 ⊢ (♯‘{(0g‘𝑅)}) = 1 |
9 | simpr 484 | . . . . . . 7 ⊢ ((𝑅 ∈ NzRing ∧ {(0g‘𝑅)} = (Base‘𝑅)) → {(0g‘𝑅)} = (Base‘𝑅)) | |
10 | 9 | fveq2d 6760 | . . . . . 6 ⊢ ((𝑅 ∈ NzRing ∧ {(0g‘𝑅)} = (Base‘𝑅)) → (♯‘{(0g‘𝑅)}) = (♯‘(Base‘𝑅))) |
11 | 8, 10 | eqtr3id 2793 | . . . . 5 ⊢ ((𝑅 ∈ NzRing ∧ {(0g‘𝑅)} = (Base‘𝑅)) → 1 = (♯‘(Base‘𝑅))) |
12 | 1red 10907 | . . . . . . 7 ⊢ ((𝑅 ∈ NzRing ∧ {(0g‘𝑅)} = (Base‘𝑅)) → 1 ∈ ℝ) | |
13 | eqid 2738 | . . . . . . . . . 10 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
14 | 13 | isnzr2hash 20448 | . . . . . . . . 9 ⊢ (𝑅 ∈ NzRing ↔ (𝑅 ∈ Ring ∧ 1 < (♯‘(Base‘𝑅)))) |
15 | 14 | simprbi 496 | . . . . . . . 8 ⊢ (𝑅 ∈ NzRing → 1 < (♯‘(Base‘𝑅))) |
16 | 15 | adantr 480 | . . . . . . 7 ⊢ ((𝑅 ∈ NzRing ∧ {(0g‘𝑅)} = (Base‘𝑅)) → 1 < (♯‘(Base‘𝑅))) |
17 | 12, 16 | ltned 11041 | . . . . . 6 ⊢ ((𝑅 ∈ NzRing ∧ {(0g‘𝑅)} = (Base‘𝑅)) → 1 ≠ (♯‘(Base‘𝑅))) |
18 | 17 | neneqd 2947 | . . . . 5 ⊢ ((𝑅 ∈ NzRing ∧ {(0g‘𝑅)} = (Base‘𝑅)) → ¬ 1 = (♯‘(Base‘𝑅))) |
19 | 11, 18 | pm2.65da 813 | . . . 4 ⊢ (𝑅 ∈ NzRing → ¬ {(0g‘𝑅)} = (Base‘𝑅)) |
20 | 19 | neqned 2949 | . . 3 ⊢ (𝑅 ∈ NzRing → {(0g‘𝑅)} ≠ (Base‘𝑅)) |
21 | 13 | ssmxidl 31544 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ {(0g‘𝑅)} ∈ (LIdeal‘𝑅) ∧ {(0g‘𝑅)} ≠ (Base‘𝑅)) → ∃𝑚 ∈ (MaxIdeal‘𝑅){(0g‘𝑅)} ⊆ 𝑚) |
22 | 1, 5, 20, 21 | syl3anc 1369 | . 2 ⊢ (𝑅 ∈ NzRing → ∃𝑚 ∈ (MaxIdeal‘𝑅){(0g‘𝑅)} ⊆ 𝑚) |
23 | df-rex 3069 | . . 3 ⊢ (∃𝑚 ∈ (MaxIdeal‘𝑅){(0g‘𝑅)} ⊆ 𝑚 ↔ ∃𝑚(𝑚 ∈ (MaxIdeal‘𝑅) ∧ {(0g‘𝑅)} ⊆ 𝑚)) | |
24 | exsimpl 1872 | . . 3 ⊢ (∃𝑚(𝑚 ∈ (MaxIdeal‘𝑅) ∧ {(0g‘𝑅)} ⊆ 𝑚) → ∃𝑚 𝑚 ∈ (MaxIdeal‘𝑅)) | |
25 | 23, 24 | sylbi 216 | . 2 ⊢ (∃𝑚 ∈ (MaxIdeal‘𝑅){(0g‘𝑅)} ⊆ 𝑚 → ∃𝑚 𝑚 ∈ (MaxIdeal‘𝑅)) |
26 | 22, 25 | syl 17 | 1 ⊢ (𝑅 ∈ NzRing → ∃𝑚 𝑚 ∈ (MaxIdeal‘𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∃wex 1783 ∈ wcel 2108 ≠ wne 2942 ∃wrex 3064 Vcvv 3422 ⊆ wss 3883 {csn 4558 class class class wbr 5070 ‘cfv 6418 1c1 10803 < clt 10940 ♯chash 13972 Basecbs 16840 0gc0g 17067 Ringcrg 19698 LIdealclidl 20347 NzRingcnzr 20441 MaxIdealcmxidl 31533 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-ac2 10150 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-rpss 7554 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-oadd 8271 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-dju 9590 df-card 9628 df-ac 9803 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-n0 12164 df-xnn0 12236 df-z 12250 df-uz 12512 df-fz 13169 df-hash 13973 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-sca 16904 df-vsca 16905 df-ip 16906 df-0g 17069 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-grp 18495 df-minusg 18496 df-sbg 18497 df-subg 18667 df-mgp 19636 df-ur 19653 df-ring 19700 df-subrg 19937 df-lmod 20040 df-lss 20109 df-sra 20349 df-rgmod 20350 df-lidl 20351 df-nzr 20442 df-mxidl 31534 |
This theorem is referenced by: mxidlnzrb 31546 |
Copyright terms: Public domain | W3C validator |