![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > krull | Structured version Visualization version GIF version |
Description: Krull's theorem: Any nonzero ring has at least one maximal ideal. (Contributed by Thierry Arnoux, 10-Apr-2024.) |
Ref | Expression |
---|---|
krull | β’ (π β NzRing β βπ π β (MaxIdealβπ )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nzrring 20409 | . . 3 β’ (π β NzRing β π β Ring) | |
2 | eqid 2730 | . . . . 5 β’ (LIdealβπ ) = (LIdealβπ ) | |
3 | eqid 2730 | . . . . 5 β’ (0gβπ ) = (0gβπ ) | |
4 | 2, 3 | lidl0 20995 | . . . 4 β’ (π β Ring β {(0gβπ )} β (LIdealβπ )) |
5 | 1, 4 | syl 17 | . . 3 β’ (π β NzRing β {(0gβπ )} β (LIdealβπ )) |
6 | fvex 6905 | . . . . . . 7 β’ (0gβπ ) β V | |
7 | hashsng 14335 | . . . . . . 7 β’ ((0gβπ ) β V β (β―β{(0gβπ )}) = 1) | |
8 | 6, 7 | ax-mp 5 | . . . . . 6 β’ (β―β{(0gβπ )}) = 1 |
9 | simpr 483 | . . . . . . 7 β’ ((π β NzRing β§ {(0gβπ )} = (Baseβπ )) β {(0gβπ )} = (Baseβπ )) | |
10 | 9 | fveq2d 6896 | . . . . . 6 β’ ((π β NzRing β§ {(0gβπ )} = (Baseβπ )) β (β―β{(0gβπ )}) = (β―β(Baseβπ ))) |
11 | 8, 10 | eqtr3id 2784 | . . . . 5 β’ ((π β NzRing β§ {(0gβπ )} = (Baseβπ )) β 1 = (β―β(Baseβπ ))) |
12 | 1red 11221 | . . . . . . 7 β’ ((π β NzRing β§ {(0gβπ )} = (Baseβπ )) β 1 β β) | |
13 | eqid 2730 | . . . . . . . . . 10 β’ (Baseβπ ) = (Baseβπ ) | |
14 | 13 | isnzr2hash 20412 | . . . . . . . . 9 β’ (π β NzRing β (π β Ring β§ 1 < (β―β(Baseβπ )))) |
15 | 14 | simprbi 495 | . . . . . . . 8 β’ (π β NzRing β 1 < (β―β(Baseβπ ))) |
16 | 15 | adantr 479 | . . . . . . 7 β’ ((π β NzRing β§ {(0gβπ )} = (Baseβπ )) β 1 < (β―β(Baseβπ ))) |
17 | 12, 16 | ltned 11356 | . . . . . 6 β’ ((π β NzRing β§ {(0gβπ )} = (Baseβπ )) β 1 β (β―β(Baseβπ ))) |
18 | 17 | neneqd 2943 | . . . . 5 β’ ((π β NzRing β§ {(0gβπ )} = (Baseβπ )) β Β¬ 1 = (β―β(Baseβπ ))) |
19 | 11, 18 | pm2.65da 813 | . . . 4 β’ (π β NzRing β Β¬ {(0gβπ )} = (Baseβπ )) |
20 | 19 | neqned 2945 | . . 3 β’ (π β NzRing β {(0gβπ )} β (Baseβπ )) |
21 | 13 | ssmxidl 32862 | . . 3 β’ ((π β Ring β§ {(0gβπ )} β (LIdealβπ ) β§ {(0gβπ )} β (Baseβπ )) β βπ β (MaxIdealβπ ){(0gβπ )} β π) |
22 | 1, 5, 20, 21 | syl3anc 1369 | . 2 β’ (π β NzRing β βπ β (MaxIdealβπ ){(0gβπ )} β π) |
23 | df-rex 3069 | . . 3 β’ (βπ β (MaxIdealβπ ){(0gβπ )} β π β βπ(π β (MaxIdealβπ ) β§ {(0gβπ )} β π)) | |
24 | exsimpl 1869 | . . 3 β’ (βπ(π β (MaxIdealβπ ) β§ {(0gβπ )} β π) β βπ π β (MaxIdealβπ )) | |
25 | 23, 24 | sylbi 216 | . 2 β’ (βπ β (MaxIdealβπ ){(0gβπ )} β π β βπ π β (MaxIdealβπ )) |
26 | 22, 25 | syl 17 | 1 β’ (π β NzRing β βπ π β (MaxIdealβπ )) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 394 = wceq 1539 βwex 1779 β wcel 2104 β wne 2938 βwrex 3068 Vcvv 3472 β wss 3949 {csn 4629 class class class wbr 5149 βcfv 6544 1c1 11115 < clt 11254 β―chash 14296 Basecbs 17150 0gc0g 17391 Ringcrg 20129 NzRingcnzr 20405 LIdealclidl 20930 MaxIdealcmxidl 32847 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7729 ax-ac2 10462 ax-cnex 11170 ax-resscn 11171 ax-1cn 11172 ax-icn 11173 ax-addcl 11174 ax-addrcl 11175 ax-mulcl 11176 ax-mulrcl 11177 ax-mulcom 11178 ax-addass 11179 ax-mulass 11180 ax-distr 11181 ax-i2m1 11182 ax-1ne0 11183 ax-1rid 11184 ax-rnegex 11185 ax-rrecex 11186 ax-cnre 11187 ax-pre-lttri 11188 ax-pre-lttrn 11189 ax-pre-ltadd 11190 ax-pre-mulgt0 11191 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-int 4952 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-se 5633 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-isom 6553 df-riota 7369 df-ov 7416 df-oprab 7417 df-mpo 7418 df-rpss 7717 df-om 7860 df-1st 7979 df-2nd 7980 df-frecs 8270 df-wrecs 8301 df-recs 8375 df-rdg 8414 df-1o 8470 df-oadd 8474 df-er 8707 df-en 8944 df-dom 8945 df-sdom 8946 df-fin 8947 df-dju 9900 df-card 9938 df-ac 10115 df-pnf 11256 df-mnf 11257 df-xr 11258 df-ltxr 11259 df-le 11260 df-sub 11452 df-neg 11453 df-nn 12219 df-2 12281 df-3 12282 df-4 12283 df-5 12284 df-6 12285 df-7 12286 df-8 12287 df-n0 12479 df-xnn0 12551 df-z 12565 df-uz 12829 df-fz 13491 df-hash 14297 df-sets 17103 df-slot 17121 df-ndx 17133 df-base 17151 df-ress 17180 df-plusg 17216 df-mulr 17217 df-sca 17219 df-vsca 17220 df-ip 17221 df-0g 17393 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-grp 18860 df-minusg 18861 df-sbg 18862 df-subg 19041 df-cmn 19693 df-abl 19694 df-mgp 20031 df-rng 20049 df-ur 20078 df-ring 20131 df-nzr 20406 df-subrg 20461 df-lmod 20618 df-lss 20689 df-sra 20932 df-rgmod 20933 df-lidl 20934 df-mxidl 32848 |
This theorem is referenced by: mxidlnzrb 32867 |
Copyright terms: Public domain | W3C validator |