Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  krull Structured version   Visualization version   GIF version

Theorem krull 33494
Description: Krull's theorem: Any nonzero ring has at least one maximal ideal. (Contributed by Thierry Arnoux, 10-Apr-2024.)
Assertion
Ref Expression
krull (𝑅 ∈ NzRing → ∃𝑚 𝑚 ∈ (MaxIdeal‘𝑅))
Distinct variable group:   𝑅,𝑚

Proof of Theorem krull
StepHypRef Expression
1 nzrring 20476 . . 3 (𝑅 ∈ NzRing → 𝑅 ∈ Ring)
2 eqid 2735 . . . . 5 (LIdeal‘𝑅) = (LIdeal‘𝑅)
3 eqid 2735 . . . . 5 (0g𝑅) = (0g𝑅)
42, 3lidl0 21191 . . . 4 (𝑅 ∈ Ring → {(0g𝑅)} ∈ (LIdeal‘𝑅))
51, 4syl 17 . . 3 (𝑅 ∈ NzRing → {(0g𝑅)} ∈ (LIdeal‘𝑅))
6 fvex 6889 . . . . . . 7 (0g𝑅) ∈ V
7 hashsng 14387 . . . . . . 7 ((0g𝑅) ∈ V → (♯‘{(0g𝑅)}) = 1)
86, 7ax-mp 5 . . . . . 6 (♯‘{(0g𝑅)}) = 1
9 simpr 484 . . . . . . 7 ((𝑅 ∈ NzRing ∧ {(0g𝑅)} = (Base‘𝑅)) → {(0g𝑅)} = (Base‘𝑅))
109fveq2d 6880 . . . . . 6 ((𝑅 ∈ NzRing ∧ {(0g𝑅)} = (Base‘𝑅)) → (♯‘{(0g𝑅)}) = (♯‘(Base‘𝑅)))
118, 10eqtr3id 2784 . . . . 5 ((𝑅 ∈ NzRing ∧ {(0g𝑅)} = (Base‘𝑅)) → 1 = (♯‘(Base‘𝑅)))
12 1red 11236 . . . . . . 7 ((𝑅 ∈ NzRing ∧ {(0g𝑅)} = (Base‘𝑅)) → 1 ∈ ℝ)
13 eqid 2735 . . . . . . . . . 10 (Base‘𝑅) = (Base‘𝑅)
1413isnzr2hash 20479 . . . . . . . . 9 (𝑅 ∈ NzRing ↔ (𝑅 ∈ Ring ∧ 1 < (♯‘(Base‘𝑅))))
1514simprbi 496 . . . . . . . 8 (𝑅 ∈ NzRing → 1 < (♯‘(Base‘𝑅)))
1615adantr 480 . . . . . . 7 ((𝑅 ∈ NzRing ∧ {(0g𝑅)} = (Base‘𝑅)) → 1 < (♯‘(Base‘𝑅)))
1712, 16ltned 11371 . . . . . 6 ((𝑅 ∈ NzRing ∧ {(0g𝑅)} = (Base‘𝑅)) → 1 ≠ (♯‘(Base‘𝑅)))
1817neneqd 2937 . . . . 5 ((𝑅 ∈ NzRing ∧ {(0g𝑅)} = (Base‘𝑅)) → ¬ 1 = (♯‘(Base‘𝑅)))
1911, 18pm2.65da 816 . . . 4 (𝑅 ∈ NzRing → ¬ {(0g𝑅)} = (Base‘𝑅))
2019neqned 2939 . . 3 (𝑅 ∈ NzRing → {(0g𝑅)} ≠ (Base‘𝑅))
2113ssmxidl 33489 . . 3 ((𝑅 ∈ Ring ∧ {(0g𝑅)} ∈ (LIdeal‘𝑅) ∧ {(0g𝑅)} ≠ (Base‘𝑅)) → ∃𝑚 ∈ (MaxIdeal‘𝑅){(0g𝑅)} ⊆ 𝑚)
221, 5, 20, 21syl3anc 1373 . 2 (𝑅 ∈ NzRing → ∃𝑚 ∈ (MaxIdeal‘𝑅){(0g𝑅)} ⊆ 𝑚)
23 df-rex 3061 . . 3 (∃𝑚 ∈ (MaxIdeal‘𝑅){(0g𝑅)} ⊆ 𝑚 ↔ ∃𝑚(𝑚 ∈ (MaxIdeal‘𝑅) ∧ {(0g𝑅)} ⊆ 𝑚))
24 exsimpl 1868 . . 3 (∃𝑚(𝑚 ∈ (MaxIdeal‘𝑅) ∧ {(0g𝑅)} ⊆ 𝑚) → ∃𝑚 𝑚 ∈ (MaxIdeal‘𝑅))
2523, 24sylbi 217 . 2 (∃𝑚 ∈ (MaxIdeal‘𝑅){(0g𝑅)} ⊆ 𝑚 → ∃𝑚 𝑚 ∈ (MaxIdeal‘𝑅))
2622, 25syl 17 1 (𝑅 ∈ NzRing → ∃𝑚 𝑚 ∈ (MaxIdeal‘𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wex 1779  wcel 2108  wne 2932  wrex 3060  Vcvv 3459  wss 3926  {csn 4601   class class class wbr 5119  cfv 6531  1c1 11130   < clt 11269  chash 14348  Basecbs 17228  0gc0g 17453  Ringcrg 20193  NzRingcnzr 20472  LIdealclidl 21167  MaxIdealcmxidl 33474
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-ac2 10477  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-rpss 7717  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-oadd 8484  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-dju 9915  df-card 9953  df-ac 10130  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-n0 12502  df-xnn0 12575  df-z 12589  df-uz 12853  df-fz 13525  df-hash 14349  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-mulr 17285  df-sca 17287  df-vsca 17288  df-ip 17289  df-0g 17455  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-grp 18919  df-minusg 18920  df-sbg 18921  df-subg 19106  df-cmn 19763  df-abl 19764  df-mgp 20101  df-rng 20113  df-ur 20142  df-ring 20195  df-nzr 20473  df-subrg 20530  df-lmod 20819  df-lss 20889  df-sra 21131  df-rgmod 21132  df-lidl 21169  df-mxidl 33475
This theorem is referenced by:  mxidlnzrb  33495  krullndrng  33496
  Copyright terms: Public domain W3C validator