Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  krull Structured version   Visualization version   GIF version

Theorem krull 33487
Description: Krull's theorem: Any nonzero ring has at least one maximal ideal. (Contributed by Thierry Arnoux, 10-Apr-2024.)
Assertion
Ref Expression
krull (𝑅 ∈ NzRing → ∃𝑚 𝑚 ∈ (MaxIdeal‘𝑅))
Distinct variable group:   𝑅,𝑚

Proof of Theorem krull
StepHypRef Expression
1 nzrring 20533 . . 3 (𝑅 ∈ NzRing → 𝑅 ∈ Ring)
2 eqid 2735 . . . . 5 (LIdeal‘𝑅) = (LIdeal‘𝑅)
3 eqid 2735 . . . . 5 (0g𝑅) = (0g𝑅)
42, 3lidl0 21258 . . . 4 (𝑅 ∈ Ring → {(0g𝑅)} ∈ (LIdeal‘𝑅))
51, 4syl 17 . . 3 (𝑅 ∈ NzRing → {(0g𝑅)} ∈ (LIdeal‘𝑅))
6 fvex 6920 . . . . . . 7 (0g𝑅) ∈ V
7 hashsng 14405 . . . . . . 7 ((0g𝑅) ∈ V → (♯‘{(0g𝑅)}) = 1)
86, 7ax-mp 5 . . . . . 6 (♯‘{(0g𝑅)}) = 1
9 simpr 484 . . . . . . 7 ((𝑅 ∈ NzRing ∧ {(0g𝑅)} = (Base‘𝑅)) → {(0g𝑅)} = (Base‘𝑅))
109fveq2d 6911 . . . . . 6 ((𝑅 ∈ NzRing ∧ {(0g𝑅)} = (Base‘𝑅)) → (♯‘{(0g𝑅)}) = (♯‘(Base‘𝑅)))
118, 10eqtr3id 2789 . . . . 5 ((𝑅 ∈ NzRing ∧ {(0g𝑅)} = (Base‘𝑅)) → 1 = (♯‘(Base‘𝑅)))
12 1red 11260 . . . . . . 7 ((𝑅 ∈ NzRing ∧ {(0g𝑅)} = (Base‘𝑅)) → 1 ∈ ℝ)
13 eqid 2735 . . . . . . . . . 10 (Base‘𝑅) = (Base‘𝑅)
1413isnzr2hash 20536 . . . . . . . . 9 (𝑅 ∈ NzRing ↔ (𝑅 ∈ Ring ∧ 1 < (♯‘(Base‘𝑅))))
1514simprbi 496 . . . . . . . 8 (𝑅 ∈ NzRing → 1 < (♯‘(Base‘𝑅)))
1615adantr 480 . . . . . . 7 ((𝑅 ∈ NzRing ∧ {(0g𝑅)} = (Base‘𝑅)) → 1 < (♯‘(Base‘𝑅)))
1712, 16ltned 11395 . . . . . 6 ((𝑅 ∈ NzRing ∧ {(0g𝑅)} = (Base‘𝑅)) → 1 ≠ (♯‘(Base‘𝑅)))
1817neneqd 2943 . . . . 5 ((𝑅 ∈ NzRing ∧ {(0g𝑅)} = (Base‘𝑅)) → ¬ 1 = (♯‘(Base‘𝑅)))
1911, 18pm2.65da 817 . . . 4 (𝑅 ∈ NzRing → ¬ {(0g𝑅)} = (Base‘𝑅))
2019neqned 2945 . . 3 (𝑅 ∈ NzRing → {(0g𝑅)} ≠ (Base‘𝑅))
2113ssmxidl 33482 . . 3 ((𝑅 ∈ Ring ∧ {(0g𝑅)} ∈ (LIdeal‘𝑅) ∧ {(0g𝑅)} ≠ (Base‘𝑅)) → ∃𝑚 ∈ (MaxIdeal‘𝑅){(0g𝑅)} ⊆ 𝑚)
221, 5, 20, 21syl3anc 1370 . 2 (𝑅 ∈ NzRing → ∃𝑚 ∈ (MaxIdeal‘𝑅){(0g𝑅)} ⊆ 𝑚)
23 df-rex 3069 . . 3 (∃𝑚 ∈ (MaxIdeal‘𝑅){(0g𝑅)} ⊆ 𝑚 ↔ ∃𝑚(𝑚 ∈ (MaxIdeal‘𝑅) ∧ {(0g𝑅)} ⊆ 𝑚))
24 exsimpl 1866 . . 3 (∃𝑚(𝑚 ∈ (MaxIdeal‘𝑅) ∧ {(0g𝑅)} ⊆ 𝑚) → ∃𝑚 𝑚 ∈ (MaxIdeal‘𝑅))
2523, 24sylbi 217 . 2 (∃𝑚 ∈ (MaxIdeal‘𝑅){(0g𝑅)} ⊆ 𝑚 → ∃𝑚 𝑚 ∈ (MaxIdeal‘𝑅))
2622, 25syl 17 1 (𝑅 ∈ NzRing → ∃𝑚 𝑚 ∈ (MaxIdeal‘𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wex 1776  wcel 2106  wne 2938  wrex 3068  Vcvv 3478  wss 3963  {csn 4631   class class class wbr 5148  cfv 6563  1c1 11154   < clt 11293  chash 14366  Basecbs 17245  0gc0g 17486  Ringcrg 20251  NzRingcnzr 20529  LIdealclidl 21234  MaxIdealcmxidl 33467
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-ac2 10501  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-rpss 7742  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-oadd 8509  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-dju 9939  df-card 9977  df-ac 10154  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-n0 12525  df-xnn0 12598  df-z 12612  df-uz 12877  df-fz 13545  df-hash 14367  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-sca 17314  df-vsca 17315  df-ip 17316  df-0g 17488  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-grp 18967  df-minusg 18968  df-sbg 18969  df-subg 19154  df-cmn 19815  df-abl 19816  df-mgp 20153  df-rng 20171  df-ur 20200  df-ring 20253  df-nzr 20530  df-subrg 20587  df-lmod 20877  df-lss 20948  df-sra 21190  df-rgmod 21191  df-lidl 21236  df-mxidl 33468
This theorem is referenced by:  mxidlnzrb  33488  krullndrng  33489
  Copyright terms: Public domain W3C validator