Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  krull Structured version   Visualization version   GIF version

Theorem krull 31545
Description: Krull's theorem: Any nonzero ring has at least one maximal ideal. (Contributed by Thierry Arnoux, 10-Apr-2024.)
Assertion
Ref Expression
krull (𝑅 ∈ NzRing → ∃𝑚 𝑚 ∈ (MaxIdeal‘𝑅))
Distinct variable group:   𝑅,𝑚

Proof of Theorem krull
StepHypRef Expression
1 nzrring 20445 . . 3 (𝑅 ∈ NzRing → 𝑅 ∈ Ring)
2 eqid 2738 . . . . 5 (LIdeal‘𝑅) = (LIdeal‘𝑅)
3 eqid 2738 . . . . 5 (0g𝑅) = (0g𝑅)
42, 3lidl0 20403 . . . 4 (𝑅 ∈ Ring → {(0g𝑅)} ∈ (LIdeal‘𝑅))
51, 4syl 17 . . 3 (𝑅 ∈ NzRing → {(0g𝑅)} ∈ (LIdeal‘𝑅))
6 fvex 6769 . . . . . . 7 (0g𝑅) ∈ V
7 hashsng 14012 . . . . . . 7 ((0g𝑅) ∈ V → (♯‘{(0g𝑅)}) = 1)
86, 7ax-mp 5 . . . . . 6 (♯‘{(0g𝑅)}) = 1
9 simpr 484 . . . . . . 7 ((𝑅 ∈ NzRing ∧ {(0g𝑅)} = (Base‘𝑅)) → {(0g𝑅)} = (Base‘𝑅))
109fveq2d 6760 . . . . . 6 ((𝑅 ∈ NzRing ∧ {(0g𝑅)} = (Base‘𝑅)) → (♯‘{(0g𝑅)}) = (♯‘(Base‘𝑅)))
118, 10eqtr3id 2793 . . . . 5 ((𝑅 ∈ NzRing ∧ {(0g𝑅)} = (Base‘𝑅)) → 1 = (♯‘(Base‘𝑅)))
12 1red 10907 . . . . . . 7 ((𝑅 ∈ NzRing ∧ {(0g𝑅)} = (Base‘𝑅)) → 1 ∈ ℝ)
13 eqid 2738 . . . . . . . . . 10 (Base‘𝑅) = (Base‘𝑅)
1413isnzr2hash 20448 . . . . . . . . 9 (𝑅 ∈ NzRing ↔ (𝑅 ∈ Ring ∧ 1 < (♯‘(Base‘𝑅))))
1514simprbi 496 . . . . . . . 8 (𝑅 ∈ NzRing → 1 < (♯‘(Base‘𝑅)))
1615adantr 480 . . . . . . 7 ((𝑅 ∈ NzRing ∧ {(0g𝑅)} = (Base‘𝑅)) → 1 < (♯‘(Base‘𝑅)))
1712, 16ltned 11041 . . . . . 6 ((𝑅 ∈ NzRing ∧ {(0g𝑅)} = (Base‘𝑅)) → 1 ≠ (♯‘(Base‘𝑅)))
1817neneqd 2947 . . . . 5 ((𝑅 ∈ NzRing ∧ {(0g𝑅)} = (Base‘𝑅)) → ¬ 1 = (♯‘(Base‘𝑅)))
1911, 18pm2.65da 813 . . . 4 (𝑅 ∈ NzRing → ¬ {(0g𝑅)} = (Base‘𝑅))
2019neqned 2949 . . 3 (𝑅 ∈ NzRing → {(0g𝑅)} ≠ (Base‘𝑅))
2113ssmxidl 31544 . . 3 ((𝑅 ∈ Ring ∧ {(0g𝑅)} ∈ (LIdeal‘𝑅) ∧ {(0g𝑅)} ≠ (Base‘𝑅)) → ∃𝑚 ∈ (MaxIdeal‘𝑅){(0g𝑅)} ⊆ 𝑚)
221, 5, 20, 21syl3anc 1369 . 2 (𝑅 ∈ NzRing → ∃𝑚 ∈ (MaxIdeal‘𝑅){(0g𝑅)} ⊆ 𝑚)
23 df-rex 3069 . . 3 (∃𝑚 ∈ (MaxIdeal‘𝑅){(0g𝑅)} ⊆ 𝑚 ↔ ∃𝑚(𝑚 ∈ (MaxIdeal‘𝑅) ∧ {(0g𝑅)} ⊆ 𝑚))
24 exsimpl 1872 . . 3 (∃𝑚(𝑚 ∈ (MaxIdeal‘𝑅) ∧ {(0g𝑅)} ⊆ 𝑚) → ∃𝑚 𝑚 ∈ (MaxIdeal‘𝑅))
2523, 24sylbi 216 . 2 (∃𝑚 ∈ (MaxIdeal‘𝑅){(0g𝑅)} ⊆ 𝑚 → ∃𝑚 𝑚 ∈ (MaxIdeal‘𝑅))
2622, 25syl 17 1 (𝑅 ∈ NzRing → ∃𝑚 𝑚 ∈ (MaxIdeal‘𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wex 1783  wcel 2108  wne 2942  wrex 3064  Vcvv 3422  wss 3883  {csn 4558   class class class wbr 5070  cfv 6418  1c1 10803   < clt 10940  chash 13972  Basecbs 16840  0gc0g 17067  Ringcrg 19698  LIdealclidl 20347  NzRingcnzr 20441  MaxIdealcmxidl 31533
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-ac2 10150  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-rpss 7554  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-oadd 8271  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-dju 9590  df-card 9628  df-ac 9803  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-n0 12164  df-xnn0 12236  df-z 12250  df-uz 12512  df-fz 13169  df-hash 13973  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-sca 16904  df-vsca 16905  df-ip 16906  df-0g 17069  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-grp 18495  df-minusg 18496  df-sbg 18497  df-subg 18667  df-mgp 19636  df-ur 19653  df-ring 19700  df-subrg 19937  df-lmod 20040  df-lss 20109  df-sra 20349  df-rgmod 20350  df-lidl 20351  df-nzr 20442  df-mxidl 31534
This theorem is referenced by:  mxidlnzrb  31546
  Copyright terms: Public domain W3C validator