| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > krull | Structured version Visualization version GIF version | ||
| Description: Krull's theorem: Any nonzero ring has at least one maximal ideal. (Contributed by Thierry Arnoux, 10-Apr-2024.) |
| Ref | Expression |
|---|---|
| krull | ⊢ (𝑅 ∈ NzRing → ∃𝑚 𝑚 ∈ (MaxIdeal‘𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nzrring 20476 | . . 3 ⊢ (𝑅 ∈ NzRing → 𝑅 ∈ Ring) | |
| 2 | eqid 2735 | . . . . 5 ⊢ (LIdeal‘𝑅) = (LIdeal‘𝑅) | |
| 3 | eqid 2735 | . . . . 5 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
| 4 | 2, 3 | lidl0 21191 | . . . 4 ⊢ (𝑅 ∈ Ring → {(0g‘𝑅)} ∈ (LIdeal‘𝑅)) |
| 5 | 1, 4 | syl 17 | . . 3 ⊢ (𝑅 ∈ NzRing → {(0g‘𝑅)} ∈ (LIdeal‘𝑅)) |
| 6 | fvex 6889 | . . . . . . 7 ⊢ (0g‘𝑅) ∈ V | |
| 7 | hashsng 14387 | . . . . . . 7 ⊢ ((0g‘𝑅) ∈ V → (♯‘{(0g‘𝑅)}) = 1) | |
| 8 | 6, 7 | ax-mp 5 | . . . . . 6 ⊢ (♯‘{(0g‘𝑅)}) = 1 |
| 9 | simpr 484 | . . . . . . 7 ⊢ ((𝑅 ∈ NzRing ∧ {(0g‘𝑅)} = (Base‘𝑅)) → {(0g‘𝑅)} = (Base‘𝑅)) | |
| 10 | 9 | fveq2d 6880 | . . . . . 6 ⊢ ((𝑅 ∈ NzRing ∧ {(0g‘𝑅)} = (Base‘𝑅)) → (♯‘{(0g‘𝑅)}) = (♯‘(Base‘𝑅))) |
| 11 | 8, 10 | eqtr3id 2784 | . . . . 5 ⊢ ((𝑅 ∈ NzRing ∧ {(0g‘𝑅)} = (Base‘𝑅)) → 1 = (♯‘(Base‘𝑅))) |
| 12 | 1red 11236 | . . . . . . 7 ⊢ ((𝑅 ∈ NzRing ∧ {(0g‘𝑅)} = (Base‘𝑅)) → 1 ∈ ℝ) | |
| 13 | eqid 2735 | . . . . . . . . . 10 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 14 | 13 | isnzr2hash 20479 | . . . . . . . . 9 ⊢ (𝑅 ∈ NzRing ↔ (𝑅 ∈ Ring ∧ 1 < (♯‘(Base‘𝑅)))) |
| 15 | 14 | simprbi 496 | . . . . . . . 8 ⊢ (𝑅 ∈ NzRing → 1 < (♯‘(Base‘𝑅))) |
| 16 | 15 | adantr 480 | . . . . . . 7 ⊢ ((𝑅 ∈ NzRing ∧ {(0g‘𝑅)} = (Base‘𝑅)) → 1 < (♯‘(Base‘𝑅))) |
| 17 | 12, 16 | ltned 11371 | . . . . . 6 ⊢ ((𝑅 ∈ NzRing ∧ {(0g‘𝑅)} = (Base‘𝑅)) → 1 ≠ (♯‘(Base‘𝑅))) |
| 18 | 17 | neneqd 2937 | . . . . 5 ⊢ ((𝑅 ∈ NzRing ∧ {(0g‘𝑅)} = (Base‘𝑅)) → ¬ 1 = (♯‘(Base‘𝑅))) |
| 19 | 11, 18 | pm2.65da 816 | . . . 4 ⊢ (𝑅 ∈ NzRing → ¬ {(0g‘𝑅)} = (Base‘𝑅)) |
| 20 | 19 | neqned 2939 | . . 3 ⊢ (𝑅 ∈ NzRing → {(0g‘𝑅)} ≠ (Base‘𝑅)) |
| 21 | 13 | ssmxidl 33489 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ {(0g‘𝑅)} ∈ (LIdeal‘𝑅) ∧ {(0g‘𝑅)} ≠ (Base‘𝑅)) → ∃𝑚 ∈ (MaxIdeal‘𝑅){(0g‘𝑅)} ⊆ 𝑚) |
| 22 | 1, 5, 20, 21 | syl3anc 1373 | . 2 ⊢ (𝑅 ∈ NzRing → ∃𝑚 ∈ (MaxIdeal‘𝑅){(0g‘𝑅)} ⊆ 𝑚) |
| 23 | df-rex 3061 | . . 3 ⊢ (∃𝑚 ∈ (MaxIdeal‘𝑅){(0g‘𝑅)} ⊆ 𝑚 ↔ ∃𝑚(𝑚 ∈ (MaxIdeal‘𝑅) ∧ {(0g‘𝑅)} ⊆ 𝑚)) | |
| 24 | exsimpl 1868 | . . 3 ⊢ (∃𝑚(𝑚 ∈ (MaxIdeal‘𝑅) ∧ {(0g‘𝑅)} ⊆ 𝑚) → ∃𝑚 𝑚 ∈ (MaxIdeal‘𝑅)) | |
| 25 | 23, 24 | sylbi 217 | . 2 ⊢ (∃𝑚 ∈ (MaxIdeal‘𝑅){(0g‘𝑅)} ⊆ 𝑚 → ∃𝑚 𝑚 ∈ (MaxIdeal‘𝑅)) |
| 26 | 22, 25 | syl 17 | 1 ⊢ (𝑅 ∈ NzRing → ∃𝑚 𝑚 ∈ (MaxIdeal‘𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2108 ≠ wne 2932 ∃wrex 3060 Vcvv 3459 ⊆ wss 3926 {csn 4601 class class class wbr 5119 ‘cfv 6531 1c1 11130 < clt 11269 ♯chash 14348 Basecbs 17228 0gc0g 17453 Ringcrg 20193 NzRingcnzr 20472 LIdealclidl 21167 MaxIdealcmxidl 33474 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-ac2 10477 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-isom 6540 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-rpss 7717 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-oadd 8484 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-dju 9915 df-card 9953 df-ac 10130 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-7 12308 df-8 12309 df-n0 12502 df-xnn0 12575 df-z 12589 df-uz 12853 df-fz 13525 df-hash 14349 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17229 df-ress 17252 df-plusg 17284 df-mulr 17285 df-sca 17287 df-vsca 17288 df-ip 17289 df-0g 17455 df-mgm 18618 df-sgrp 18697 df-mnd 18713 df-grp 18919 df-minusg 18920 df-sbg 18921 df-subg 19106 df-cmn 19763 df-abl 19764 df-mgp 20101 df-rng 20113 df-ur 20142 df-ring 20195 df-nzr 20473 df-subrg 20530 df-lmod 20819 df-lss 20889 df-sra 21131 df-rgmod 21132 df-lidl 21169 df-mxidl 33475 |
| This theorem is referenced by: mxidlnzrb 33495 krullndrng 33496 |
| Copyright terms: Public domain | W3C validator |