Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  krull Structured version   Visualization version   GIF version

Theorem krull 33436
Description: Krull's theorem: Any nonzero ring has at least one maximal ideal. (Contributed by Thierry Arnoux, 10-Apr-2024.)
Assertion
Ref Expression
krull (𝑅 ∈ NzRing → ∃𝑚 𝑚 ∈ (MaxIdeal‘𝑅))
Distinct variable group:   𝑅,𝑚

Proof of Theorem krull
StepHypRef Expression
1 nzrring 20426 . . 3 (𝑅 ∈ NzRing → 𝑅 ∈ Ring)
2 eqid 2731 . . . . 5 (LIdeal‘𝑅) = (LIdeal‘𝑅)
3 eqid 2731 . . . . 5 (0g𝑅) = (0g𝑅)
42, 3lidl0 21162 . . . 4 (𝑅 ∈ Ring → {(0g𝑅)} ∈ (LIdeal‘𝑅))
51, 4syl 17 . . 3 (𝑅 ∈ NzRing → {(0g𝑅)} ∈ (LIdeal‘𝑅))
6 fvex 6830 . . . . . . 7 (0g𝑅) ∈ V
7 hashsng 14271 . . . . . . 7 ((0g𝑅) ∈ V → (♯‘{(0g𝑅)}) = 1)
86, 7ax-mp 5 . . . . . 6 (♯‘{(0g𝑅)}) = 1
9 simpr 484 . . . . . . 7 ((𝑅 ∈ NzRing ∧ {(0g𝑅)} = (Base‘𝑅)) → {(0g𝑅)} = (Base‘𝑅))
109fveq2d 6821 . . . . . 6 ((𝑅 ∈ NzRing ∧ {(0g𝑅)} = (Base‘𝑅)) → (♯‘{(0g𝑅)}) = (♯‘(Base‘𝑅)))
118, 10eqtr3id 2780 . . . . 5 ((𝑅 ∈ NzRing ∧ {(0g𝑅)} = (Base‘𝑅)) → 1 = (♯‘(Base‘𝑅)))
12 1red 11108 . . . . . . 7 ((𝑅 ∈ NzRing ∧ {(0g𝑅)} = (Base‘𝑅)) → 1 ∈ ℝ)
13 eqid 2731 . . . . . . . . . 10 (Base‘𝑅) = (Base‘𝑅)
1413isnzr2hash 20429 . . . . . . . . 9 (𝑅 ∈ NzRing ↔ (𝑅 ∈ Ring ∧ 1 < (♯‘(Base‘𝑅))))
1514simprbi 496 . . . . . . . 8 (𝑅 ∈ NzRing → 1 < (♯‘(Base‘𝑅)))
1615adantr 480 . . . . . . 7 ((𝑅 ∈ NzRing ∧ {(0g𝑅)} = (Base‘𝑅)) → 1 < (♯‘(Base‘𝑅)))
1712, 16ltned 11244 . . . . . 6 ((𝑅 ∈ NzRing ∧ {(0g𝑅)} = (Base‘𝑅)) → 1 ≠ (♯‘(Base‘𝑅)))
1817neneqd 2933 . . . . 5 ((𝑅 ∈ NzRing ∧ {(0g𝑅)} = (Base‘𝑅)) → ¬ 1 = (♯‘(Base‘𝑅)))
1911, 18pm2.65da 816 . . . 4 (𝑅 ∈ NzRing → ¬ {(0g𝑅)} = (Base‘𝑅))
2019neqned 2935 . . 3 (𝑅 ∈ NzRing → {(0g𝑅)} ≠ (Base‘𝑅))
2113ssmxidl 33431 . . 3 ((𝑅 ∈ Ring ∧ {(0g𝑅)} ∈ (LIdeal‘𝑅) ∧ {(0g𝑅)} ≠ (Base‘𝑅)) → ∃𝑚 ∈ (MaxIdeal‘𝑅){(0g𝑅)} ⊆ 𝑚)
221, 5, 20, 21syl3anc 1373 . 2 (𝑅 ∈ NzRing → ∃𝑚 ∈ (MaxIdeal‘𝑅){(0g𝑅)} ⊆ 𝑚)
23 df-rex 3057 . . 3 (∃𝑚 ∈ (MaxIdeal‘𝑅){(0g𝑅)} ⊆ 𝑚 ↔ ∃𝑚(𝑚 ∈ (MaxIdeal‘𝑅) ∧ {(0g𝑅)} ⊆ 𝑚))
24 exsimpl 1869 . . 3 (∃𝑚(𝑚 ∈ (MaxIdeal‘𝑅) ∧ {(0g𝑅)} ⊆ 𝑚) → ∃𝑚 𝑚 ∈ (MaxIdeal‘𝑅))
2523, 24sylbi 217 . 2 (∃𝑚 ∈ (MaxIdeal‘𝑅){(0g𝑅)} ⊆ 𝑚 → ∃𝑚 𝑚 ∈ (MaxIdeal‘𝑅))
2622, 25syl 17 1 (𝑅 ∈ NzRing → ∃𝑚 𝑚 ∈ (MaxIdeal‘𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wex 1780  wcel 2111  wne 2928  wrex 3056  Vcvv 3436  wss 3897  {csn 4571   class class class wbr 5086  cfv 6476  1c1 11002   < clt 11141  chash 14232  Basecbs 17115  0gc0g 17338  Ringcrg 20146  NzRingcnzr 20422  LIdealclidl 21138  MaxIdealcmxidl 33416
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-ac2 10349  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-int 4893  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-se 5565  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-isom 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-rpss 7651  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-oadd 8384  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-dju 9789  df-card 9827  df-ac 10002  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-nn 12121  df-2 12183  df-3 12184  df-4 12185  df-5 12186  df-6 12187  df-7 12188  df-8 12189  df-n0 12377  df-xnn0 12450  df-z 12464  df-uz 12728  df-fz 13403  df-hash 14233  df-sets 17070  df-slot 17088  df-ndx 17100  df-base 17116  df-ress 17137  df-plusg 17169  df-mulr 17170  df-sca 17172  df-vsca 17173  df-ip 17174  df-0g 17340  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-grp 18844  df-minusg 18845  df-sbg 18846  df-subg 19031  df-cmn 19689  df-abl 19690  df-mgp 20054  df-rng 20066  df-ur 20095  df-ring 20148  df-nzr 20423  df-subrg 20480  df-lmod 20790  df-lss 20860  df-sra 21102  df-rgmod 21103  df-lidl 21140  df-mxidl 33417
This theorem is referenced by:  mxidlnzrb  33437  krullndrng  33438
  Copyright terms: Public domain W3C validator