![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fcdmvafv2v | Structured version Visualization version GIF version |
Description: If the codomain of a function is a set, the alternate function value is always also a set. (Contributed by AV, 4-Sep-2022.) |
Ref | Expression |
---|---|
fcdmvafv2v | ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐵 ∈ 𝑉) → (𝐹''''𝐶) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-f 6567 | . . . 4 ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) | |
2 | ssexg 5329 | . . . . 5 ⊢ ((ran 𝐹 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉) → ran 𝐹 ∈ V) | |
3 | 2 | ex 412 | . . . 4 ⊢ (ran 𝐹 ⊆ 𝐵 → (𝐵 ∈ 𝑉 → ran 𝐹 ∈ V)) |
4 | 1, 3 | simplbiim 504 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → (𝐵 ∈ 𝑉 → ran 𝐹 ∈ V)) |
5 | 4 | imp 406 | . 2 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐵 ∈ 𝑉) → ran 𝐹 ∈ V) |
6 | afv2ex 47164 | . 2 ⊢ (ran 𝐹 ∈ V → (𝐹''''𝐶) ∈ V) | |
7 | 5, 6 | syl 17 | 1 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐵 ∈ 𝑉) → (𝐹''''𝐶) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2106 Vcvv 3478 ⊆ wss 3963 ran crn 5690 Fn wfn 6558 ⟶wf 6559 ''''cafv2 47158 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ne 2939 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-uni 4913 df-iota 6516 df-f 6567 df-afv2 47159 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |