Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fcdmvafv2v Structured version   Visualization version   GIF version

Theorem fcdmvafv2v 46849
Description: If the codomain of a function is a set, the alternate function value is always also a set. (Contributed by AV, 4-Sep-2022.)
Assertion
Ref Expression
fcdmvafv2v ((𝐹:𝐴𝐵𝐵𝑉) → (𝐹''''𝐶) ∈ V)

Proof of Theorem fcdmvafv2v
StepHypRef Expression
1 df-f 6558 . . . 4 (𝐹:𝐴𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹𝐵))
2 ssexg 5328 . . . . 5 ((ran 𝐹𝐵𝐵𝑉) → ran 𝐹 ∈ V)
32ex 411 . . . 4 (ran 𝐹𝐵 → (𝐵𝑉 → ran 𝐹 ∈ V))
41, 3simplbiim 503 . . 3 (𝐹:𝐴𝐵 → (𝐵𝑉 → ran 𝐹 ∈ V))
54imp 405 . 2 ((𝐹:𝐴𝐵𝐵𝑉) → ran 𝐹 ∈ V)
6 afv2ex 46827 . 2 (ran 𝐹 ∈ V → (𝐹''''𝐶) ∈ V)
75, 6syl 17 1 ((𝐹:𝐴𝐵𝐵𝑉) → (𝐹''''𝐶) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  wcel 2099  Vcvv 3462  wss 3947  ran crn 5683   Fn wfn 6549  wf 6550  ''''cafv2 46821
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2697  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-un 7746
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-sb 2061  df-clab 2704  df-cleq 2718  df-clel 2803  df-ne 2931  df-rab 3420  df-v 3464  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-uni 4914  df-iota 6506  df-f 6558  df-afv2 46822
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator