Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > fcdmvafv2v | Structured version Visualization version GIF version |
Description: If the codomain of a function is a set, the alternate function value is always also a set. (Contributed by AV, 4-Sep-2022.) |
Ref | Expression |
---|---|
fcdmvafv2v | ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐵 ∈ 𝑉) → (𝐹''''𝐶) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-f 6462 | . . . 4 ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) | |
2 | ssexg 5256 | . . . . 5 ⊢ ((ran 𝐹 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉) → ran 𝐹 ∈ V) | |
3 | 2 | ex 414 | . . . 4 ⊢ (ran 𝐹 ⊆ 𝐵 → (𝐵 ∈ 𝑉 → ran 𝐹 ∈ V)) |
4 | 1, 3 | simplbiim 506 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → (𝐵 ∈ 𝑉 → ran 𝐹 ∈ V)) |
5 | 4 | imp 408 | . 2 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐵 ∈ 𝑉) → ran 𝐹 ∈ V) |
6 | afv2ex 44764 | . 2 ⊢ (ran 𝐹 ∈ V → (𝐹''''𝐶) ∈ V) | |
7 | 5, 6 | syl 17 | 1 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐵 ∈ 𝑉) → (𝐹''''𝐶) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∈ wcel 2104 Vcvv 3437 ⊆ wss 3892 ran crn 5601 Fn wfn 6453 ⟶wf 6454 ''''cafv2 44758 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-un 7620 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-tru 1542 df-fal 1552 df-ex 1780 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-ne 2942 df-rab 3287 df-v 3439 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-uni 4845 df-iota 6410 df-f 6462 df-afv2 44759 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |