Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fcdmvafv2v Structured version   Visualization version   GIF version

Theorem fcdmvafv2v 44786
Description: If the codomain of a function is a set, the alternate function value is always also a set. (Contributed by AV, 4-Sep-2022.)
Assertion
Ref Expression
fcdmvafv2v ((𝐹:𝐴𝐵𝐵𝑉) → (𝐹''''𝐶) ∈ V)

Proof of Theorem fcdmvafv2v
StepHypRef Expression
1 df-f 6462 . . . 4 (𝐹:𝐴𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹𝐵))
2 ssexg 5256 . . . . 5 ((ran 𝐹𝐵𝐵𝑉) → ran 𝐹 ∈ V)
32ex 414 . . . 4 (ran 𝐹𝐵 → (𝐵𝑉 → ran 𝐹 ∈ V))
41, 3simplbiim 506 . . 3 (𝐹:𝐴𝐵 → (𝐵𝑉 → ran 𝐹 ∈ V))
54imp 408 . 2 ((𝐹:𝐴𝐵𝐵𝑉) → ran 𝐹 ∈ V)
6 afv2ex 44764 . 2 (ran 𝐹 ∈ V → (𝐹''''𝐶) ∈ V)
75, 6syl 17 1 ((𝐹:𝐴𝐵𝐵𝑉) → (𝐹''''𝐶) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  wcel 2104  Vcvv 3437  wss 3892  ran crn 5601   Fn wfn 6453  wf 6454  ''''cafv2 44758
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-un 7620
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-tru 1542  df-fal 1552  df-ex 1780  df-sb 2066  df-clab 2714  df-cleq 2728  df-clel 2814  df-ne 2942  df-rab 3287  df-v 3439  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-uni 4845  df-iota 6410  df-f 6462  df-afv2 44759
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator