![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fafv2elrnb | Structured version Visualization version GIF version |
Description: An alternate function value is defined, i.e., belongs to the range of the function, iff its argument is in the domain of the function. (Contributed by AV, 3-Sep-2022.) |
Ref | Expression |
---|---|
fafv2elrnb | ⊢ (𝐹:𝐴⟶𝐵 → (𝐶 ∈ 𝐴 ↔ (𝐹''''𝐶) ∈ ran 𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ffn 6717 | . . . 4 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | |
2 | fnafv2elrn 45931 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐶 ∈ 𝐴) → (𝐹''''𝐶) ∈ ran 𝐹) | |
3 | 1, 2 | sylan 580 | . . 3 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐶 ∈ 𝐴) → (𝐹''''𝐶) ∈ ran 𝐹) |
4 | 3 | ex 413 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → (𝐶 ∈ 𝐴 → (𝐹''''𝐶) ∈ ran 𝐹)) |
5 | fdm 6726 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → dom 𝐹 = 𝐴) | |
6 | ndmafv2nrn 45920 | . . . . . 6 ⊢ (¬ 𝐶 ∈ dom 𝐹 → (𝐹''''𝐶) ∉ ran 𝐹) | |
7 | df-nel 3047 | . . . . . 6 ⊢ ((𝐹''''𝐶) ∉ ran 𝐹 ↔ ¬ (𝐹''''𝐶) ∈ ran 𝐹) | |
8 | 6, 7 | sylib 217 | . . . . 5 ⊢ (¬ 𝐶 ∈ dom 𝐹 → ¬ (𝐹''''𝐶) ∈ ran 𝐹) |
9 | 8 | con4i 114 | . . . 4 ⊢ ((𝐹''''𝐶) ∈ ran 𝐹 → 𝐶 ∈ dom 𝐹) |
10 | eleq2 2822 | . . . 4 ⊢ (dom 𝐹 = 𝐴 → (𝐶 ∈ dom 𝐹 ↔ 𝐶 ∈ 𝐴)) | |
11 | 9, 10 | imbitrid 243 | . . 3 ⊢ (dom 𝐹 = 𝐴 → ((𝐹''''𝐶) ∈ ran 𝐹 → 𝐶 ∈ 𝐴)) |
12 | 5, 11 | syl 17 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → ((𝐹''''𝐶) ∈ ran 𝐹 → 𝐶 ∈ 𝐴)) |
13 | 4, 12 | impbid 211 | 1 ⊢ (𝐹:𝐴⟶𝐵 → (𝐶 ∈ 𝐴 ↔ (𝐹''''𝐶) ∈ ran 𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 = wceq 1541 ∈ wcel 2106 ∉ wnel 3046 dom cdm 5676 ran crn 5677 Fn wfn 6538 ⟶wf 6539 ''''cafv2 45906 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-un 7724 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-dfat 45817 df-afv2 45907 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |