Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fafv2elrnb Structured version   Visualization version   GIF version

Theorem fafv2elrnb 44678
Description: An alternate function value is defined, i.e., belongs to the range of the function, iff its argument is in the domain of the function. (Contributed by AV, 3-Sep-2022.)
Assertion
Ref Expression
fafv2elrnb (𝐹:𝐴𝐵 → (𝐶𝐴 ↔ (𝐹''''𝐶) ∈ ran 𝐹))

Proof of Theorem fafv2elrnb
StepHypRef Expression
1 ffn 6596 . . . 4 (𝐹:𝐴𝐵𝐹 Fn 𝐴)
2 fnafv2elrn 44676 . . . 4 ((𝐹 Fn 𝐴𝐶𝐴) → (𝐹''''𝐶) ∈ ran 𝐹)
31, 2sylan 579 . . 3 ((𝐹:𝐴𝐵𝐶𝐴) → (𝐹''''𝐶) ∈ ran 𝐹)
43ex 412 . 2 (𝐹:𝐴𝐵 → (𝐶𝐴 → (𝐹''''𝐶) ∈ ran 𝐹))
5 fdm 6605 . . 3 (𝐹:𝐴𝐵 → dom 𝐹 = 𝐴)
6 ndmafv2nrn 44665 . . . . . 6 𝐶 ∈ dom 𝐹 → (𝐹''''𝐶) ∉ ran 𝐹)
7 df-nel 3051 . . . . . 6 ((𝐹''''𝐶) ∉ ran 𝐹 ↔ ¬ (𝐹''''𝐶) ∈ ran 𝐹)
86, 7sylib 217 . . . . 5 𝐶 ∈ dom 𝐹 → ¬ (𝐹''''𝐶) ∈ ran 𝐹)
98con4i 114 . . . 4 ((𝐹''''𝐶) ∈ ran 𝐹𝐶 ∈ dom 𝐹)
10 eleq2 2828 . . . 4 (dom 𝐹 = 𝐴 → (𝐶 ∈ dom 𝐹𝐶𝐴))
119, 10syl5ib 243 . . 3 (dom 𝐹 = 𝐴 → ((𝐹''''𝐶) ∈ ran 𝐹𝐶𝐴))
125, 11syl 17 . 2 (𝐹:𝐴𝐵 → ((𝐹''''𝐶) ∈ ran 𝐹𝐶𝐴))
134, 12impbid 211 1 (𝐹:𝐴𝐵 → (𝐶𝐴 ↔ (𝐹''''𝐶) ∈ ran 𝐹))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205   = wceq 1541  wcel 2109  wnel 3050  dom cdm 5588  ran crn 5589   Fn wfn 6425  wf 6426  ''''cafv2 44651
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pr 5355  ax-un 7579
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-nel 3051  df-ral 3070  df-rex 3071  df-rab 3074  df-v 3432  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-br 5079  df-opab 5141  df-id 5488  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-dfat 44562  df-afv2 44652
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator