Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fafv2elrnb Structured version   Visualization version   GIF version

Theorem fafv2elrnb 44727
Description: An alternate function value is defined, i.e., belongs to the range of the function, iff its argument is in the domain of the function. (Contributed by AV, 3-Sep-2022.)
Assertion
Ref Expression
fafv2elrnb (𝐹:𝐴𝐵 → (𝐶𝐴 ↔ (𝐹''''𝐶) ∈ ran 𝐹))

Proof of Theorem fafv2elrnb
StepHypRef Expression
1 ffn 6600 . . . 4 (𝐹:𝐴𝐵𝐹 Fn 𝐴)
2 fnafv2elrn 44725 . . . 4 ((𝐹 Fn 𝐴𝐶𝐴) → (𝐹''''𝐶) ∈ ran 𝐹)
31, 2sylan 580 . . 3 ((𝐹:𝐴𝐵𝐶𝐴) → (𝐹''''𝐶) ∈ ran 𝐹)
43ex 413 . 2 (𝐹:𝐴𝐵 → (𝐶𝐴 → (𝐹''''𝐶) ∈ ran 𝐹))
5 fdm 6609 . . 3 (𝐹:𝐴𝐵 → dom 𝐹 = 𝐴)
6 ndmafv2nrn 44714 . . . . . 6 𝐶 ∈ dom 𝐹 → (𝐹''''𝐶) ∉ ran 𝐹)
7 df-nel 3050 . . . . . 6 ((𝐹''''𝐶) ∉ ran 𝐹 ↔ ¬ (𝐹''''𝐶) ∈ ran 𝐹)
86, 7sylib 217 . . . . 5 𝐶 ∈ dom 𝐹 → ¬ (𝐹''''𝐶) ∈ ran 𝐹)
98con4i 114 . . . 4 ((𝐹''''𝐶) ∈ ran 𝐹𝐶 ∈ dom 𝐹)
10 eleq2 2827 . . . 4 (dom 𝐹 = 𝐴 → (𝐶 ∈ dom 𝐹𝐶𝐴))
119, 10syl5ib 243 . . 3 (dom 𝐹 = 𝐴 → ((𝐹''''𝐶) ∈ ran 𝐹𝐶𝐴))
125, 11syl 17 . 2 (𝐹:𝐴𝐵 → ((𝐹''''𝐶) ∈ ran 𝐹𝐶𝐴))
134, 12impbid 211 1 (𝐹:𝐴𝐵 → (𝐶𝐴 ↔ (𝐹''''𝐶) ∈ ran 𝐹))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205   = wceq 1539  wcel 2106  wnel 3049  dom cdm 5589  ran crn 5590   Fn wfn 6428  wf 6429  ''''cafv2 44700
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-nel 3050  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-dfat 44611  df-afv2 44701
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator