Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fafv2elrnb Structured version   Visualization version   GIF version

Theorem fafv2elrnb 44614
Description: An alternate function value is defined, i.e., belongs to the range of the function, iff its argument is in the domain of the function. (Contributed by AV, 3-Sep-2022.)
Assertion
Ref Expression
fafv2elrnb (𝐹:𝐴𝐵 → (𝐶𝐴 ↔ (𝐹''''𝐶) ∈ ran 𝐹))

Proof of Theorem fafv2elrnb
StepHypRef Expression
1 ffn 6584 . . . 4 (𝐹:𝐴𝐵𝐹 Fn 𝐴)
2 fnafv2elrn 44612 . . . 4 ((𝐹 Fn 𝐴𝐶𝐴) → (𝐹''''𝐶) ∈ ran 𝐹)
31, 2sylan 579 . . 3 ((𝐹:𝐴𝐵𝐶𝐴) → (𝐹''''𝐶) ∈ ran 𝐹)
43ex 412 . 2 (𝐹:𝐴𝐵 → (𝐶𝐴 → (𝐹''''𝐶) ∈ ran 𝐹))
5 fdm 6593 . . 3 (𝐹:𝐴𝐵 → dom 𝐹 = 𝐴)
6 ndmafv2nrn 44601 . . . . . 6 𝐶 ∈ dom 𝐹 → (𝐹''''𝐶) ∉ ran 𝐹)
7 df-nel 3049 . . . . . 6 ((𝐹''''𝐶) ∉ ran 𝐹 ↔ ¬ (𝐹''''𝐶) ∈ ran 𝐹)
86, 7sylib 217 . . . . 5 𝐶 ∈ dom 𝐹 → ¬ (𝐹''''𝐶) ∈ ran 𝐹)
98con4i 114 . . . 4 ((𝐹''''𝐶) ∈ ran 𝐹𝐶 ∈ dom 𝐹)
10 eleq2 2827 . . . 4 (dom 𝐹 = 𝐴 → (𝐶 ∈ dom 𝐹𝐶𝐴))
119, 10syl5ib 243 . . 3 (dom 𝐹 = 𝐴 → ((𝐹''''𝐶) ∈ ran 𝐹𝐶𝐴))
125, 11syl 17 . 2 (𝐹:𝐴𝐵 → ((𝐹''''𝐶) ∈ ran 𝐹𝐶𝐴))
134, 12impbid 211 1 (𝐹:𝐴𝐵 → (𝐶𝐴 ↔ (𝐹''''𝐶) ∈ ran 𝐹))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205   = wceq 1539  wcel 2108  wnel 3048  dom cdm 5580  ran crn 5581   Fn wfn 6413  wf 6414  ''''cafv2 44587
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-nel 3049  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-dfat 44498  df-afv2 44588
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator