| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fafv2elrnb | Structured version Visualization version GIF version | ||
| Description: An alternate function value is defined, i.e., belongs to the range of the function, iff its argument is in the domain of the function. (Contributed by AV, 3-Sep-2022.) |
| Ref | Expression |
|---|---|
| fafv2elrnb | ⊢ (𝐹:𝐴⟶𝐵 → (𝐶 ∈ 𝐴 ↔ (𝐹''''𝐶) ∈ ran 𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffn 6656 | . . . 4 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | |
| 2 | fnafv2elrn 47221 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐶 ∈ 𝐴) → (𝐹''''𝐶) ∈ ran 𝐹) | |
| 3 | 1, 2 | sylan 580 | . . 3 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐶 ∈ 𝐴) → (𝐹''''𝐶) ∈ ran 𝐹) |
| 4 | 3 | ex 412 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → (𝐶 ∈ 𝐴 → (𝐹''''𝐶) ∈ ran 𝐹)) |
| 5 | fdm 6665 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → dom 𝐹 = 𝐴) | |
| 6 | ndmafv2nrn 47210 | . . . . . 6 ⊢ (¬ 𝐶 ∈ dom 𝐹 → (𝐹''''𝐶) ∉ ran 𝐹) | |
| 7 | df-nel 3030 | . . . . . 6 ⊢ ((𝐹''''𝐶) ∉ ran 𝐹 ↔ ¬ (𝐹''''𝐶) ∈ ran 𝐹) | |
| 8 | 6, 7 | sylib 218 | . . . . 5 ⊢ (¬ 𝐶 ∈ dom 𝐹 → ¬ (𝐹''''𝐶) ∈ ran 𝐹) |
| 9 | 8 | con4i 114 | . . . 4 ⊢ ((𝐹''''𝐶) ∈ ran 𝐹 → 𝐶 ∈ dom 𝐹) |
| 10 | eleq2 2817 | . . . 4 ⊢ (dom 𝐹 = 𝐴 → (𝐶 ∈ dom 𝐹 ↔ 𝐶 ∈ 𝐴)) | |
| 11 | 9, 10 | imbitrid 244 | . . 3 ⊢ (dom 𝐹 = 𝐴 → ((𝐹''''𝐶) ∈ ran 𝐹 → 𝐶 ∈ 𝐴)) |
| 12 | 5, 11 | syl 17 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → ((𝐹''''𝐶) ∈ ran 𝐹 → 𝐶 ∈ 𝐴)) |
| 13 | 4, 12 | impbid 212 | 1 ⊢ (𝐹:𝐴⟶𝐵 → (𝐶 ∈ 𝐴 ↔ (𝐹''''𝐶) ∈ ran 𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ∉ wnel 3029 dom cdm 5623 ran crn 5624 Fn wfn 6481 ⟶wf 6482 ''''cafv2 47196 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-dfat 47107 df-afv2 47197 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |