Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > fafv2elrnb | Structured version Visualization version GIF version |
Description: An alternate function value is defined, i.e., belongs to the range of the function, iff its argument is in the domain of the function. (Contributed by AV, 3-Sep-2022.) |
Ref | Expression |
---|---|
fafv2elrnb | ⊢ (𝐹:𝐴⟶𝐵 → (𝐶 ∈ 𝐴 ↔ (𝐹''''𝐶) ∈ ran 𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ffn 6596 | . . . 4 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | |
2 | fnafv2elrn 44676 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐶 ∈ 𝐴) → (𝐹''''𝐶) ∈ ran 𝐹) | |
3 | 1, 2 | sylan 579 | . . 3 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐶 ∈ 𝐴) → (𝐹''''𝐶) ∈ ran 𝐹) |
4 | 3 | ex 412 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → (𝐶 ∈ 𝐴 → (𝐹''''𝐶) ∈ ran 𝐹)) |
5 | fdm 6605 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → dom 𝐹 = 𝐴) | |
6 | ndmafv2nrn 44665 | . . . . . 6 ⊢ (¬ 𝐶 ∈ dom 𝐹 → (𝐹''''𝐶) ∉ ran 𝐹) | |
7 | df-nel 3051 | . . . . . 6 ⊢ ((𝐹''''𝐶) ∉ ran 𝐹 ↔ ¬ (𝐹''''𝐶) ∈ ran 𝐹) | |
8 | 6, 7 | sylib 217 | . . . . 5 ⊢ (¬ 𝐶 ∈ dom 𝐹 → ¬ (𝐹''''𝐶) ∈ ran 𝐹) |
9 | 8 | con4i 114 | . . . 4 ⊢ ((𝐹''''𝐶) ∈ ran 𝐹 → 𝐶 ∈ dom 𝐹) |
10 | eleq2 2828 | . . . 4 ⊢ (dom 𝐹 = 𝐴 → (𝐶 ∈ dom 𝐹 ↔ 𝐶 ∈ 𝐴)) | |
11 | 9, 10 | syl5ib 243 | . . 3 ⊢ (dom 𝐹 = 𝐴 → ((𝐹''''𝐶) ∈ ran 𝐹 → 𝐶 ∈ 𝐴)) |
12 | 5, 11 | syl 17 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → ((𝐹''''𝐶) ∈ ran 𝐹 → 𝐶 ∈ 𝐴)) |
13 | 4, 12 | impbid 211 | 1 ⊢ (𝐹:𝐴⟶𝐵 → (𝐶 ∈ 𝐴 ↔ (𝐹''''𝐶) ∈ ran 𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 = wceq 1541 ∈ wcel 2109 ∉ wnel 3050 dom cdm 5588 ran crn 5589 Fn wfn 6425 ⟶wf 6426 ''''cafv2 44651 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 ax-un 7579 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-nel 3051 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-br 5079 df-opab 5141 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-dfat 44562 df-afv2 44652 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |