MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fiinbas Structured version   Visualization version   GIF version

Theorem fiinbas 21248
Description: If a set is closed under finite intersection, then it is a basis for a topology. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
fiinbas ((𝐵𝐶 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥𝑦) ∈ 𝐵) → 𝐵 ∈ TopBases)
Distinct variable groups:   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦

Proof of Theorem fiinbas
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssid 3916 . . . . . . . 8 (𝑥𝑦) ⊆ (𝑥𝑦)
2 eleq2 2873 . . . . . . . . . 10 (𝑤 = (𝑥𝑦) → (𝑧𝑤𝑧 ∈ (𝑥𝑦)))
3 sseq1 3919 . . . . . . . . . 10 (𝑤 = (𝑥𝑦) → (𝑤 ⊆ (𝑥𝑦) ↔ (𝑥𝑦) ⊆ (𝑥𝑦)))
42, 3anbi12d 630 . . . . . . . . 9 (𝑤 = (𝑥𝑦) → ((𝑧𝑤𝑤 ⊆ (𝑥𝑦)) ↔ (𝑧 ∈ (𝑥𝑦) ∧ (𝑥𝑦) ⊆ (𝑥𝑦))))
54rspcev 3561 . . . . . . . 8 (((𝑥𝑦) ∈ 𝐵 ∧ (𝑧 ∈ (𝑥𝑦) ∧ (𝑥𝑦) ⊆ (𝑥𝑦))) → ∃𝑤𝐵 (𝑧𝑤𝑤 ⊆ (𝑥𝑦)))
61, 5mpanr2 700 . . . . . . 7 (((𝑥𝑦) ∈ 𝐵𝑧 ∈ (𝑥𝑦)) → ∃𝑤𝐵 (𝑧𝑤𝑤 ⊆ (𝑥𝑦)))
76ralrimiva 3151 . . . . . 6 ((𝑥𝑦) ∈ 𝐵 → ∀𝑧 ∈ (𝑥𝑦)∃𝑤𝐵 (𝑧𝑤𝑤 ⊆ (𝑥𝑦)))
87a1i 11 . . . . 5 (𝐵𝐶 → ((𝑥𝑦) ∈ 𝐵 → ∀𝑧 ∈ (𝑥𝑦)∃𝑤𝐵 (𝑧𝑤𝑤 ⊆ (𝑥𝑦))))
98ralimdv 3147 . . . 4 (𝐵𝐶 → (∀𝑦𝐵 (𝑥𝑦) ∈ 𝐵 → ∀𝑦𝐵𝑧 ∈ (𝑥𝑦)∃𝑤𝐵 (𝑧𝑤𝑤 ⊆ (𝑥𝑦))))
109ralimdv 3147 . . 3 (𝐵𝐶 → (∀𝑥𝐵𝑦𝐵 (𝑥𝑦) ∈ 𝐵 → ∀𝑥𝐵𝑦𝐵𝑧 ∈ (𝑥𝑦)∃𝑤𝐵 (𝑧𝑤𝑤 ⊆ (𝑥𝑦))))
11 isbasis2g 21244 . . 3 (𝐵𝐶 → (𝐵 ∈ TopBases ↔ ∀𝑥𝐵𝑦𝐵𝑧 ∈ (𝑥𝑦)∃𝑤𝐵 (𝑧𝑤𝑤 ⊆ (𝑥𝑦))))
1210, 11sylibrd 260 . 2 (𝐵𝐶 → (∀𝑥𝐵𝑦𝐵 (𝑥𝑦) ∈ 𝐵𝐵 ∈ TopBases))
1312imp 407 1 ((𝐵𝐶 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥𝑦) ∈ 𝐵) → 𝐵 ∈ TopBases)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1525  wcel 2083  wral 3107  wrex 3108  cin 3864  wss 3865  TopBasesctb 21241
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1781  ax-4 1795  ax-5 1892  ax-6 1951  ax-7 1996  ax-8 2085  ax-9 2093  ax-10 2114  ax-11 2128  ax-12 2143  ax-ext 2771
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-tru 1528  df-ex 1766  df-nf 1770  df-sb 2045  df-clab 2778  df-cleq 2790  df-clel 2865  df-nfc 2937  df-ral 3112  df-rex 3113  df-rab 3116  df-v 3442  df-in 3872  df-ss 3880  df-pw 4461  df-uni 4752  df-bases 21242
This theorem is referenced by:  fibas  21273  qtopbaslem  23054  ontopbas  33387  isbasisrelowl  34191
  Copyright terms: Public domain W3C validator