Step | Hyp | Ref
| Expression |
1 | | ssid 3947 |
. . . . . . . 8
⊢ (𝑥 ∩ 𝑦) ⊆ (𝑥 ∩ 𝑦) |
2 | | eleq2 2828 |
. . . . . . . . . 10
⊢ (𝑤 = (𝑥 ∩ 𝑦) → (𝑧 ∈ 𝑤 ↔ 𝑧 ∈ (𝑥 ∩ 𝑦))) |
3 | | sseq1 3950 |
. . . . . . . . . 10
⊢ (𝑤 = (𝑥 ∩ 𝑦) → (𝑤 ⊆ (𝑥 ∩ 𝑦) ↔ (𝑥 ∩ 𝑦) ⊆ (𝑥 ∩ 𝑦))) |
4 | 2, 3 | anbi12d 630 |
. . . . . . . . 9
⊢ (𝑤 = (𝑥 ∩ 𝑦) → ((𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ (𝑥 ∩ 𝑦)) ↔ (𝑧 ∈ (𝑥 ∩ 𝑦) ∧ (𝑥 ∩ 𝑦) ⊆ (𝑥 ∩ 𝑦)))) |
5 | 4 | rspcev 3560 |
. . . . . . . 8
⊢ (((𝑥 ∩ 𝑦) ∈ 𝐵 ∧ (𝑧 ∈ (𝑥 ∩ 𝑦) ∧ (𝑥 ∩ 𝑦) ⊆ (𝑥 ∩ 𝑦))) → ∃𝑤 ∈ 𝐵 (𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ (𝑥 ∩ 𝑦))) |
6 | 1, 5 | mpanr2 700 |
. . . . . . 7
⊢ (((𝑥 ∩ 𝑦) ∈ 𝐵 ∧ 𝑧 ∈ (𝑥 ∩ 𝑦)) → ∃𝑤 ∈ 𝐵 (𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ (𝑥 ∩ 𝑦))) |
7 | 6 | ralrimiva 3109 |
. . . . . 6
⊢ ((𝑥 ∩ 𝑦) ∈ 𝐵 → ∀𝑧 ∈ (𝑥 ∩ 𝑦)∃𝑤 ∈ 𝐵 (𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ (𝑥 ∩ 𝑦))) |
8 | 7 | a1i 11 |
. . . . 5
⊢ (𝐵 ∈ 𝐶 → ((𝑥 ∩ 𝑦) ∈ 𝐵 → ∀𝑧 ∈ (𝑥 ∩ 𝑦)∃𝑤 ∈ 𝐵 (𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ (𝑥 ∩ 𝑦)))) |
9 | 8 | ralimdv 3105 |
. . . 4
⊢ (𝐵 ∈ 𝐶 → (∀𝑦 ∈ 𝐵 (𝑥 ∩ 𝑦) ∈ 𝐵 → ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ (𝑥 ∩ 𝑦)∃𝑤 ∈ 𝐵 (𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ (𝑥 ∩ 𝑦)))) |
10 | 9 | ralimdv 3105 |
. . 3
⊢ (𝐵 ∈ 𝐶 → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ∩ 𝑦) ∈ 𝐵 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ (𝑥 ∩ 𝑦)∃𝑤 ∈ 𝐵 (𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ (𝑥 ∩ 𝑦)))) |
11 | | isbasis2g 22079 |
. . 3
⊢ (𝐵 ∈ 𝐶 → (𝐵 ∈ TopBases ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ (𝑥 ∩ 𝑦)∃𝑤 ∈ 𝐵 (𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ (𝑥 ∩ 𝑦)))) |
12 | 10, 11 | sylibrd 258 |
. 2
⊢ (𝐵 ∈ 𝐶 → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ∩ 𝑦) ∈ 𝐵 → 𝐵 ∈ TopBases)) |
13 | 12 | imp 406 |
1
⊢ ((𝐵 ∈ 𝐶 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ∩ 𝑦) ∈ 𝐵) → 𝐵 ∈ TopBases) |