MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qtopbaslem Structured version   Visualization version   GIF version

Theorem qtopbaslem 23628
Description: The set of open intervals with endpoints in a subset forms a basis for a topology. (Contributed by Mario Carneiro, 17-Jun-2014.)
Hypothesis
Ref Expression
qtopbas.1 𝑆 ⊆ ℝ*
Assertion
Ref Expression
qtopbaslem ((,) “ (𝑆 × 𝑆)) ∈ TopBases

Proof of Theorem qtopbaslem
Dummy variables 𝑢 𝑡 𝑣 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iooex 12941 . . 3 (,) ∈ V
21imaex 7683 . 2 ((,) “ (𝑆 × 𝑆)) ∈ V
3 qtopbas.1 . . . . . . . . 9 𝑆 ⊆ ℝ*
43sseli 3887 . . . . . . . 8 (𝑧𝑆𝑧 ∈ ℝ*)
53sseli 3887 . . . . . . . 8 (𝑤𝑆𝑤 ∈ ℝ*)
64, 5anim12i 616 . . . . . . 7 ((𝑧𝑆𝑤𝑆) → (𝑧 ∈ ℝ*𝑤 ∈ ℝ*))
73sseli 3887 . . . . . . . 8 (𝑣𝑆𝑣 ∈ ℝ*)
83sseli 3887 . . . . . . . 8 (𝑢𝑆𝑢 ∈ ℝ*)
97, 8anim12i 616 . . . . . . 7 ((𝑣𝑆𝑢𝑆) → (𝑣 ∈ ℝ*𝑢 ∈ ℝ*))
10 iooin 12952 . . . . . . 7 (((𝑧 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑣 ∈ ℝ*𝑢 ∈ ℝ*)) → ((𝑧(,)𝑤) ∩ (𝑣(,)𝑢)) = (if(𝑧𝑣, 𝑣, 𝑧)(,)if(𝑤𝑢, 𝑤, 𝑢)))
116, 9, 10syl2an 599 . . . . . 6 (((𝑧𝑆𝑤𝑆) ∧ (𝑣𝑆𝑢𝑆)) → ((𝑧(,)𝑤) ∩ (𝑣(,)𝑢)) = (if(𝑧𝑣, 𝑣, 𝑧)(,)if(𝑤𝑢, 𝑤, 𝑢)))
12 ifcl 4474 . . . . . . . . 9 ((𝑣𝑆𝑧𝑆) → if(𝑧𝑣, 𝑣, 𝑧) ∈ 𝑆)
1312ancoms 462 . . . . . . . 8 ((𝑧𝑆𝑣𝑆) → if(𝑧𝑣, 𝑣, 𝑧) ∈ 𝑆)
14 ifcl 4474 . . . . . . . 8 ((𝑤𝑆𝑢𝑆) → if(𝑤𝑢, 𝑤, 𝑢) ∈ 𝑆)
15 df-ov 7205 . . . . . . . . 9 (if(𝑧𝑣, 𝑣, 𝑧)(,)if(𝑤𝑢, 𝑤, 𝑢)) = ((,)‘⟨if(𝑧𝑣, 𝑣, 𝑧), if(𝑤𝑢, 𝑤, 𝑢)⟩)
16 opelxpi 5577 . . . . . . . . . 10 ((if(𝑧𝑣, 𝑣, 𝑧) ∈ 𝑆 ∧ if(𝑤𝑢, 𝑤, 𝑢) ∈ 𝑆) → ⟨if(𝑧𝑣, 𝑣, 𝑧), if(𝑤𝑢, 𝑤, 𝑢)⟩ ∈ (𝑆 × 𝑆))
17 ioof 13018 . . . . . . . . . . . 12 (,):(ℝ* × ℝ*)⟶𝒫 ℝ
18 ffun 6537 . . . . . . . . . . . 12 ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → Fun (,))
1917, 18ax-mp 5 . . . . . . . . . . 11 Fun (,)
20 xpss12 5555 . . . . . . . . . . . . 13 ((𝑆 ⊆ ℝ*𝑆 ⊆ ℝ*) → (𝑆 × 𝑆) ⊆ (ℝ* × ℝ*))
213, 3, 20mp2an 692 . . . . . . . . . . . 12 (𝑆 × 𝑆) ⊆ (ℝ* × ℝ*)
2217fdmi 6546 . . . . . . . . . . . 12 dom (,) = (ℝ* × ℝ*)
2321, 22sseqtrri 3928 . . . . . . . . . . 11 (𝑆 × 𝑆) ⊆ dom (,)
24 funfvima2 7036 . . . . . . . . . . 11 ((Fun (,) ∧ (𝑆 × 𝑆) ⊆ dom (,)) → (⟨if(𝑧𝑣, 𝑣, 𝑧), if(𝑤𝑢, 𝑤, 𝑢)⟩ ∈ (𝑆 × 𝑆) → ((,)‘⟨if(𝑧𝑣, 𝑣, 𝑧), if(𝑤𝑢, 𝑤, 𝑢)⟩) ∈ ((,) “ (𝑆 × 𝑆))))
2519, 23, 24mp2an 692 . . . . . . . . . 10 (⟨if(𝑧𝑣, 𝑣, 𝑧), if(𝑤𝑢, 𝑤, 𝑢)⟩ ∈ (𝑆 × 𝑆) → ((,)‘⟨if(𝑧𝑣, 𝑣, 𝑧), if(𝑤𝑢, 𝑤, 𝑢)⟩) ∈ ((,) “ (𝑆 × 𝑆)))
2616, 25syl 17 . . . . . . . . 9 ((if(𝑧𝑣, 𝑣, 𝑧) ∈ 𝑆 ∧ if(𝑤𝑢, 𝑤, 𝑢) ∈ 𝑆) → ((,)‘⟨if(𝑧𝑣, 𝑣, 𝑧), if(𝑤𝑢, 𝑤, 𝑢)⟩) ∈ ((,) “ (𝑆 × 𝑆)))
2715, 26eqeltrid 2838 . . . . . . . 8 ((if(𝑧𝑣, 𝑣, 𝑧) ∈ 𝑆 ∧ if(𝑤𝑢, 𝑤, 𝑢) ∈ 𝑆) → (if(𝑧𝑣, 𝑣, 𝑧)(,)if(𝑤𝑢, 𝑤, 𝑢)) ∈ ((,) “ (𝑆 × 𝑆)))
2813, 14, 27syl2an 599 . . . . . . 7 (((𝑧𝑆𝑣𝑆) ∧ (𝑤𝑆𝑢𝑆)) → (if(𝑧𝑣, 𝑣, 𝑧)(,)if(𝑤𝑢, 𝑤, 𝑢)) ∈ ((,) “ (𝑆 × 𝑆)))
2928an4s 660 . . . . . 6 (((𝑧𝑆𝑤𝑆) ∧ (𝑣𝑆𝑢𝑆)) → (if(𝑧𝑣, 𝑣, 𝑧)(,)if(𝑤𝑢, 𝑤, 𝑢)) ∈ ((,) “ (𝑆 × 𝑆)))
3011, 29eqeltrd 2834 . . . . 5 (((𝑧𝑆𝑤𝑆) ∧ (𝑣𝑆𝑢𝑆)) → ((𝑧(,)𝑤) ∩ (𝑣(,)𝑢)) ∈ ((,) “ (𝑆 × 𝑆)))
3130ralrimivva 3105 . . . 4 ((𝑧𝑆𝑤𝑆) → ∀𝑣𝑆𝑢𝑆 ((𝑧(,)𝑤) ∩ (𝑣(,)𝑢)) ∈ ((,) “ (𝑆 × 𝑆)))
3231rgen2 3117 . . 3 𝑧𝑆𝑤𝑆𝑣𝑆𝑢𝑆 ((𝑧(,)𝑤) ∩ (𝑣(,)𝑢)) ∈ ((,) “ (𝑆 × 𝑆))
33 ffn 6534 . . . . . 6 ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → (,) Fn (ℝ* × ℝ*))
3417, 33ax-mp 5 . . . . 5 (,) Fn (ℝ* × ℝ*)
35 ineq1 4110 . . . . . . . 8 (𝑥 = ((,)‘𝑡) → (𝑥𝑦) = (((,)‘𝑡) ∩ 𝑦))
3635eleq1d 2818 . . . . . . 7 (𝑥 = ((,)‘𝑡) → ((𝑥𝑦) ∈ ((,) “ (𝑆 × 𝑆)) ↔ (((,)‘𝑡) ∩ 𝑦) ∈ ((,) “ (𝑆 × 𝑆))))
3736ralbidv 3111 . . . . . 6 (𝑥 = ((,)‘𝑡) → (∀𝑦 ∈ ((,) “ (𝑆 × 𝑆))(𝑥𝑦) ∈ ((,) “ (𝑆 × 𝑆)) ↔ ∀𝑦 ∈ ((,) “ (𝑆 × 𝑆))(((,)‘𝑡) ∩ 𝑦) ∈ ((,) “ (𝑆 × 𝑆))))
3837ralima 7043 . . . . 5 (((,) Fn (ℝ* × ℝ*) ∧ (𝑆 × 𝑆) ⊆ (ℝ* × ℝ*)) → (∀𝑥 ∈ ((,) “ (𝑆 × 𝑆))∀𝑦 ∈ ((,) “ (𝑆 × 𝑆))(𝑥𝑦) ∈ ((,) “ (𝑆 × 𝑆)) ↔ ∀𝑡 ∈ (𝑆 × 𝑆)∀𝑦 ∈ ((,) “ (𝑆 × 𝑆))(((,)‘𝑡) ∩ 𝑦) ∈ ((,) “ (𝑆 × 𝑆))))
3934, 21, 38mp2an 692 . . . 4 (∀𝑥 ∈ ((,) “ (𝑆 × 𝑆))∀𝑦 ∈ ((,) “ (𝑆 × 𝑆))(𝑥𝑦) ∈ ((,) “ (𝑆 × 𝑆)) ↔ ∀𝑡 ∈ (𝑆 × 𝑆)∀𝑦 ∈ ((,) “ (𝑆 × 𝑆))(((,)‘𝑡) ∩ 𝑦) ∈ ((,) “ (𝑆 × 𝑆)))
40 fveq2 6706 . . . . . . . . . 10 (𝑡 = ⟨𝑧, 𝑤⟩ → ((,)‘𝑡) = ((,)‘⟨𝑧, 𝑤⟩))
41 df-ov 7205 . . . . . . . . . 10 (𝑧(,)𝑤) = ((,)‘⟨𝑧, 𝑤⟩)
4240, 41eqtr4di 2792 . . . . . . . . 9 (𝑡 = ⟨𝑧, 𝑤⟩ → ((,)‘𝑡) = (𝑧(,)𝑤))
4342ineq1d 4116 . . . . . . . 8 (𝑡 = ⟨𝑧, 𝑤⟩ → (((,)‘𝑡) ∩ 𝑦) = ((𝑧(,)𝑤) ∩ 𝑦))
4443eleq1d 2818 . . . . . . 7 (𝑡 = ⟨𝑧, 𝑤⟩ → ((((,)‘𝑡) ∩ 𝑦) ∈ ((,) “ (𝑆 × 𝑆)) ↔ ((𝑧(,)𝑤) ∩ 𝑦) ∈ ((,) “ (𝑆 × 𝑆))))
4544ralbidv 3111 . . . . . 6 (𝑡 = ⟨𝑧, 𝑤⟩ → (∀𝑦 ∈ ((,) “ (𝑆 × 𝑆))(((,)‘𝑡) ∩ 𝑦) ∈ ((,) “ (𝑆 × 𝑆)) ↔ ∀𝑦 ∈ ((,) “ (𝑆 × 𝑆))((𝑧(,)𝑤) ∩ 𝑦) ∈ ((,) “ (𝑆 × 𝑆))))
46 ineq2 4111 . . . . . . . . . 10 (𝑦 = ((,)‘𝑡) → ((𝑧(,)𝑤) ∩ 𝑦) = ((𝑧(,)𝑤) ∩ ((,)‘𝑡)))
4746eleq1d 2818 . . . . . . . . 9 (𝑦 = ((,)‘𝑡) → (((𝑧(,)𝑤) ∩ 𝑦) ∈ ((,) “ (𝑆 × 𝑆)) ↔ ((𝑧(,)𝑤) ∩ ((,)‘𝑡)) ∈ ((,) “ (𝑆 × 𝑆))))
4847ralima 7043 . . . . . . . 8 (((,) Fn (ℝ* × ℝ*) ∧ (𝑆 × 𝑆) ⊆ (ℝ* × ℝ*)) → (∀𝑦 ∈ ((,) “ (𝑆 × 𝑆))((𝑧(,)𝑤) ∩ 𝑦) ∈ ((,) “ (𝑆 × 𝑆)) ↔ ∀𝑡 ∈ (𝑆 × 𝑆)((𝑧(,)𝑤) ∩ ((,)‘𝑡)) ∈ ((,) “ (𝑆 × 𝑆))))
4934, 21, 48mp2an 692 . . . . . . 7 (∀𝑦 ∈ ((,) “ (𝑆 × 𝑆))((𝑧(,)𝑤) ∩ 𝑦) ∈ ((,) “ (𝑆 × 𝑆)) ↔ ∀𝑡 ∈ (𝑆 × 𝑆)((𝑧(,)𝑤) ∩ ((,)‘𝑡)) ∈ ((,) “ (𝑆 × 𝑆)))
50 fveq2 6706 . . . . . . . . . . 11 (𝑡 = ⟨𝑣, 𝑢⟩ → ((,)‘𝑡) = ((,)‘⟨𝑣, 𝑢⟩))
51 df-ov 7205 . . . . . . . . . . 11 (𝑣(,)𝑢) = ((,)‘⟨𝑣, 𝑢⟩)
5250, 51eqtr4di 2792 . . . . . . . . . 10 (𝑡 = ⟨𝑣, 𝑢⟩ → ((,)‘𝑡) = (𝑣(,)𝑢))
5352ineq2d 4117 . . . . . . . . 9 (𝑡 = ⟨𝑣, 𝑢⟩ → ((𝑧(,)𝑤) ∩ ((,)‘𝑡)) = ((𝑧(,)𝑤) ∩ (𝑣(,)𝑢)))
5453eleq1d 2818 . . . . . . . 8 (𝑡 = ⟨𝑣, 𝑢⟩ → (((𝑧(,)𝑤) ∩ ((,)‘𝑡)) ∈ ((,) “ (𝑆 × 𝑆)) ↔ ((𝑧(,)𝑤) ∩ (𝑣(,)𝑢)) ∈ ((,) “ (𝑆 × 𝑆))))
5554ralxp 5699 . . . . . . 7 (∀𝑡 ∈ (𝑆 × 𝑆)((𝑧(,)𝑤) ∩ ((,)‘𝑡)) ∈ ((,) “ (𝑆 × 𝑆)) ↔ ∀𝑣𝑆𝑢𝑆 ((𝑧(,)𝑤) ∩ (𝑣(,)𝑢)) ∈ ((,) “ (𝑆 × 𝑆)))
5649, 55bitri 278 . . . . . 6 (∀𝑦 ∈ ((,) “ (𝑆 × 𝑆))((𝑧(,)𝑤) ∩ 𝑦) ∈ ((,) “ (𝑆 × 𝑆)) ↔ ∀𝑣𝑆𝑢𝑆 ((𝑧(,)𝑤) ∩ (𝑣(,)𝑢)) ∈ ((,) “ (𝑆 × 𝑆)))
5745, 56bitrdi 290 . . . . 5 (𝑡 = ⟨𝑧, 𝑤⟩ → (∀𝑦 ∈ ((,) “ (𝑆 × 𝑆))(((,)‘𝑡) ∩ 𝑦) ∈ ((,) “ (𝑆 × 𝑆)) ↔ ∀𝑣𝑆𝑢𝑆 ((𝑧(,)𝑤) ∩ (𝑣(,)𝑢)) ∈ ((,) “ (𝑆 × 𝑆))))
5857ralxp 5699 . . . 4 (∀𝑡 ∈ (𝑆 × 𝑆)∀𝑦 ∈ ((,) “ (𝑆 × 𝑆))(((,)‘𝑡) ∩ 𝑦) ∈ ((,) “ (𝑆 × 𝑆)) ↔ ∀𝑧𝑆𝑤𝑆𝑣𝑆𝑢𝑆 ((𝑧(,)𝑤) ∩ (𝑣(,)𝑢)) ∈ ((,) “ (𝑆 × 𝑆)))
5939, 58bitri 278 . . 3 (∀𝑥 ∈ ((,) “ (𝑆 × 𝑆))∀𝑦 ∈ ((,) “ (𝑆 × 𝑆))(𝑥𝑦) ∈ ((,) “ (𝑆 × 𝑆)) ↔ ∀𝑧𝑆𝑤𝑆𝑣𝑆𝑢𝑆 ((𝑧(,)𝑤) ∩ (𝑣(,)𝑢)) ∈ ((,) “ (𝑆 × 𝑆)))
6032, 59mpbir 234 . 2 𝑥 ∈ ((,) “ (𝑆 × 𝑆))∀𝑦 ∈ ((,) “ (𝑆 × 𝑆))(𝑥𝑦) ∈ ((,) “ (𝑆 × 𝑆))
61 fiinbas 21821 . 2 ((((,) “ (𝑆 × 𝑆)) ∈ V ∧ ∀𝑥 ∈ ((,) “ (𝑆 × 𝑆))∀𝑦 ∈ ((,) “ (𝑆 × 𝑆))(𝑥𝑦) ∈ ((,) “ (𝑆 × 𝑆))) → ((,) “ (𝑆 × 𝑆)) ∈ TopBases)
622, 60, 61mp2an 692 1 ((,) “ (𝑆 × 𝑆)) ∈ TopBases
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1543  wcel 2110  wral 3054  Vcvv 3401  cin 3856  wss 3857  ifcif 4429  𝒫 cpw 4503  cop 4537   class class class wbr 5043   × cxp 5538  dom cdm 5540  cima 5543  Fun wfun 6363   Fn wfn 6364  wf 6365  cfv 6369  (class class class)co 7202  cr 10711  *cxr 10849  cle 10851  (,)cioo 12918  TopBasesctb 21814
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2706  ax-sep 5181  ax-nul 5188  ax-pow 5247  ax-pr 5311  ax-un 7512  ax-cnex 10768  ax-resscn 10769  ax-pre-lttri 10786  ax-pre-lttrn 10787
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2537  df-eu 2566  df-clab 2713  df-cleq 2726  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-rab 3063  df-v 3403  df-sbc 3688  df-csb 3803  df-dif 3860  df-un 3862  df-in 3864  df-ss 3874  df-nul 4228  df-if 4430  df-pw 4505  df-sn 4532  df-pr 4534  df-op 4538  df-uni 4810  df-iun 4896  df-br 5044  df-opab 5106  df-mpt 5125  df-id 5444  df-po 5457  df-so 5458  df-xp 5546  df-rel 5547  df-cnv 5548  df-co 5549  df-dm 5550  df-rn 5551  df-res 5552  df-ima 5553  df-iota 6327  df-fun 6371  df-fn 6372  df-f 6373  df-f1 6374  df-fo 6375  df-f1o 6376  df-fv 6377  df-ov 7205  df-oprab 7206  df-mpo 7207  df-1st 7750  df-2nd 7751  df-er 8380  df-en 8616  df-dom 8617  df-sdom 8618  df-pnf 10852  df-mnf 10853  df-xr 10854  df-ltxr 10855  df-le 10856  df-ioo 12922  df-bases 21815
This theorem is referenced by:  qtopbas  23629  retopbas  23630
  Copyright terms: Public domain W3C validator