Step | Hyp | Ref
| Expression |
1 | | iooex 13031 |
. . 3
⊢ (,)
∈ V |
2 | 1 | imaex 7737 |
. 2
⊢ ((,)
“ (𝑆 × 𝑆)) ∈ V |
3 | | qtopbas.1 |
. . . . . . . . 9
⊢ 𝑆 ⊆
ℝ* |
4 | 3 | sseli 3913 |
. . . . . . . 8
⊢ (𝑧 ∈ 𝑆 → 𝑧 ∈ ℝ*) |
5 | 3 | sseli 3913 |
. . . . . . . 8
⊢ (𝑤 ∈ 𝑆 → 𝑤 ∈ ℝ*) |
6 | 4, 5 | anim12i 612 |
. . . . . . 7
⊢ ((𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) → (𝑧 ∈ ℝ* ∧ 𝑤 ∈
ℝ*)) |
7 | 3 | sseli 3913 |
. . . . . . . 8
⊢ (𝑣 ∈ 𝑆 → 𝑣 ∈ ℝ*) |
8 | 3 | sseli 3913 |
. . . . . . . 8
⊢ (𝑢 ∈ 𝑆 → 𝑢 ∈ ℝ*) |
9 | 7, 8 | anim12i 612 |
. . . . . . 7
⊢ ((𝑣 ∈ 𝑆 ∧ 𝑢 ∈ 𝑆) → (𝑣 ∈ ℝ* ∧ 𝑢 ∈
ℝ*)) |
10 | | iooin 13042 |
. . . . . . 7
⊢ (((𝑧 ∈ ℝ*
∧ 𝑤 ∈
ℝ*) ∧ (𝑣 ∈ ℝ* ∧ 𝑢 ∈ ℝ*))
→ ((𝑧(,)𝑤) ∩ (𝑣(,)𝑢)) = (if(𝑧 ≤ 𝑣, 𝑣, 𝑧)(,)if(𝑤 ≤ 𝑢, 𝑤, 𝑢))) |
11 | 6, 9, 10 | syl2an 595 |
. . . . . 6
⊢ (((𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ (𝑣 ∈ 𝑆 ∧ 𝑢 ∈ 𝑆)) → ((𝑧(,)𝑤) ∩ (𝑣(,)𝑢)) = (if(𝑧 ≤ 𝑣, 𝑣, 𝑧)(,)if(𝑤 ≤ 𝑢, 𝑤, 𝑢))) |
12 | | ifcl 4501 |
. . . . . . . . 9
⊢ ((𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) → if(𝑧 ≤ 𝑣, 𝑣, 𝑧) ∈ 𝑆) |
13 | 12 | ancoms 458 |
. . . . . . . 8
⊢ ((𝑧 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆) → if(𝑧 ≤ 𝑣, 𝑣, 𝑧) ∈ 𝑆) |
14 | | ifcl 4501 |
. . . . . . . 8
⊢ ((𝑤 ∈ 𝑆 ∧ 𝑢 ∈ 𝑆) → if(𝑤 ≤ 𝑢, 𝑤, 𝑢) ∈ 𝑆) |
15 | | df-ov 7258 |
. . . . . . . . 9
⊢ (if(𝑧 ≤ 𝑣, 𝑣, 𝑧)(,)if(𝑤 ≤ 𝑢, 𝑤, 𝑢)) = ((,)‘〈if(𝑧 ≤ 𝑣, 𝑣, 𝑧), if(𝑤 ≤ 𝑢, 𝑤, 𝑢)〉) |
16 | | opelxpi 5617 |
. . . . . . . . . 10
⊢
((if(𝑧 ≤ 𝑣, 𝑣, 𝑧) ∈ 𝑆 ∧ if(𝑤 ≤ 𝑢, 𝑤, 𝑢) ∈ 𝑆) → 〈if(𝑧 ≤ 𝑣, 𝑣, 𝑧), if(𝑤 ≤ 𝑢, 𝑤, 𝑢)〉 ∈ (𝑆 × 𝑆)) |
17 | | ioof 13108 |
. . . . . . . . . . . 12
⊢
(,):(ℝ* × ℝ*)⟶𝒫
ℝ |
18 | | ffun 6587 |
. . . . . . . . . . . 12
⊢
((,):(ℝ* × ℝ*)⟶𝒫
ℝ → Fun (,)) |
19 | 17, 18 | ax-mp 5 |
. . . . . . . . . . 11
⊢ Fun
(,) |
20 | | xpss12 5595 |
. . . . . . . . . . . . 13
⊢ ((𝑆 ⊆ ℝ*
∧ 𝑆 ⊆
ℝ*) → (𝑆 × 𝑆) ⊆ (ℝ* ×
ℝ*)) |
21 | 3, 3, 20 | mp2an 688 |
. . . . . . . . . . . 12
⊢ (𝑆 × 𝑆) ⊆ (ℝ* ×
ℝ*) |
22 | 17 | fdmi 6596 |
. . . . . . . . . . . 12
⊢ dom (,) =
(ℝ* × ℝ*) |
23 | 21, 22 | sseqtrri 3954 |
. . . . . . . . . . 11
⊢ (𝑆 × 𝑆) ⊆ dom (,) |
24 | | funfvima2 7089 |
. . . . . . . . . . 11
⊢ ((Fun (,)
∧ (𝑆 × 𝑆) ⊆ dom (,)) →
(〈if(𝑧 ≤ 𝑣, 𝑣, 𝑧), if(𝑤 ≤ 𝑢, 𝑤, 𝑢)〉 ∈ (𝑆 × 𝑆) → ((,)‘〈if(𝑧 ≤ 𝑣, 𝑣, 𝑧), if(𝑤 ≤ 𝑢, 𝑤, 𝑢)〉) ∈ ((,) “ (𝑆 × 𝑆)))) |
25 | 19, 23, 24 | mp2an 688 |
. . . . . . . . . 10
⊢
(〈if(𝑧 ≤
𝑣, 𝑣, 𝑧), if(𝑤 ≤ 𝑢, 𝑤, 𝑢)〉 ∈ (𝑆 × 𝑆) → ((,)‘〈if(𝑧 ≤ 𝑣, 𝑣, 𝑧), if(𝑤 ≤ 𝑢, 𝑤, 𝑢)〉) ∈ ((,) “ (𝑆 × 𝑆))) |
26 | 16, 25 | syl 17 |
. . . . . . . . 9
⊢
((if(𝑧 ≤ 𝑣, 𝑣, 𝑧) ∈ 𝑆 ∧ if(𝑤 ≤ 𝑢, 𝑤, 𝑢) ∈ 𝑆) → ((,)‘〈if(𝑧 ≤ 𝑣, 𝑣, 𝑧), if(𝑤 ≤ 𝑢, 𝑤, 𝑢)〉) ∈ ((,) “ (𝑆 × 𝑆))) |
27 | 15, 26 | eqeltrid 2843 |
. . . . . . . 8
⊢
((if(𝑧 ≤ 𝑣, 𝑣, 𝑧) ∈ 𝑆 ∧ if(𝑤 ≤ 𝑢, 𝑤, 𝑢) ∈ 𝑆) → (if(𝑧 ≤ 𝑣, 𝑣, 𝑧)(,)if(𝑤 ≤ 𝑢, 𝑤, 𝑢)) ∈ ((,) “ (𝑆 × 𝑆))) |
28 | 13, 14, 27 | syl2an 595 |
. . . . . . 7
⊢ (((𝑧 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆) ∧ (𝑤 ∈ 𝑆 ∧ 𝑢 ∈ 𝑆)) → (if(𝑧 ≤ 𝑣, 𝑣, 𝑧)(,)if(𝑤 ≤ 𝑢, 𝑤, 𝑢)) ∈ ((,) “ (𝑆 × 𝑆))) |
29 | 28 | an4s 656 |
. . . . . 6
⊢ (((𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ (𝑣 ∈ 𝑆 ∧ 𝑢 ∈ 𝑆)) → (if(𝑧 ≤ 𝑣, 𝑣, 𝑧)(,)if(𝑤 ≤ 𝑢, 𝑤, 𝑢)) ∈ ((,) “ (𝑆 × 𝑆))) |
30 | 11, 29 | eqeltrd 2839 |
. . . . 5
⊢ (((𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ (𝑣 ∈ 𝑆 ∧ 𝑢 ∈ 𝑆)) → ((𝑧(,)𝑤) ∩ (𝑣(,)𝑢)) ∈ ((,) “ (𝑆 × 𝑆))) |
31 | 30 | ralrimivva 3114 |
. . . 4
⊢ ((𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) → ∀𝑣 ∈ 𝑆 ∀𝑢 ∈ 𝑆 ((𝑧(,)𝑤) ∩ (𝑣(,)𝑢)) ∈ ((,) “ (𝑆 × 𝑆))) |
32 | 31 | rgen2 3126 |
. . 3
⊢
∀𝑧 ∈
𝑆 ∀𝑤 ∈ 𝑆 ∀𝑣 ∈ 𝑆 ∀𝑢 ∈ 𝑆 ((𝑧(,)𝑤) ∩ (𝑣(,)𝑢)) ∈ ((,) “ (𝑆 × 𝑆)) |
33 | | ffn 6584 |
. . . . . 6
⊢
((,):(ℝ* × ℝ*)⟶𝒫
ℝ → (,) Fn (ℝ* ×
ℝ*)) |
34 | 17, 33 | ax-mp 5 |
. . . . 5
⊢ (,) Fn
(ℝ* × ℝ*) |
35 | | ineq1 4136 |
. . . . . . . 8
⊢ (𝑥 = ((,)‘𝑡) → (𝑥 ∩ 𝑦) = (((,)‘𝑡) ∩ 𝑦)) |
36 | 35 | eleq1d 2823 |
. . . . . . 7
⊢ (𝑥 = ((,)‘𝑡) → ((𝑥 ∩ 𝑦) ∈ ((,) “ (𝑆 × 𝑆)) ↔ (((,)‘𝑡) ∩ 𝑦) ∈ ((,) “ (𝑆 × 𝑆)))) |
37 | 36 | ralbidv 3120 |
. . . . . 6
⊢ (𝑥 = ((,)‘𝑡) → (∀𝑦 ∈ ((,) “ (𝑆 × 𝑆))(𝑥 ∩ 𝑦) ∈ ((,) “ (𝑆 × 𝑆)) ↔ ∀𝑦 ∈ ((,) “ (𝑆 × 𝑆))(((,)‘𝑡) ∩ 𝑦) ∈ ((,) “ (𝑆 × 𝑆)))) |
38 | 37 | ralima 7096 |
. . . . 5
⊢ (((,) Fn
(ℝ* × ℝ*) ∧ (𝑆 × 𝑆) ⊆ (ℝ* ×
ℝ*)) → (∀𝑥 ∈ ((,) “ (𝑆 × 𝑆))∀𝑦 ∈ ((,) “ (𝑆 × 𝑆))(𝑥 ∩ 𝑦) ∈ ((,) “ (𝑆 × 𝑆)) ↔ ∀𝑡 ∈ (𝑆 × 𝑆)∀𝑦 ∈ ((,) “ (𝑆 × 𝑆))(((,)‘𝑡) ∩ 𝑦) ∈ ((,) “ (𝑆 × 𝑆)))) |
39 | 34, 21, 38 | mp2an 688 |
. . . 4
⊢
(∀𝑥 ∈
((,) “ (𝑆 ×
𝑆))∀𝑦 ∈ ((,) “ (𝑆 × 𝑆))(𝑥 ∩ 𝑦) ∈ ((,) “ (𝑆 × 𝑆)) ↔ ∀𝑡 ∈ (𝑆 × 𝑆)∀𝑦 ∈ ((,) “ (𝑆 × 𝑆))(((,)‘𝑡) ∩ 𝑦) ∈ ((,) “ (𝑆 × 𝑆))) |
40 | | fveq2 6756 |
. . . . . . . . . 10
⊢ (𝑡 = 〈𝑧, 𝑤〉 → ((,)‘𝑡) = ((,)‘〈𝑧, 𝑤〉)) |
41 | | df-ov 7258 |
. . . . . . . . . 10
⊢ (𝑧(,)𝑤) = ((,)‘〈𝑧, 𝑤〉) |
42 | 40, 41 | eqtr4di 2797 |
. . . . . . . . 9
⊢ (𝑡 = 〈𝑧, 𝑤〉 → ((,)‘𝑡) = (𝑧(,)𝑤)) |
43 | 42 | ineq1d 4142 |
. . . . . . . 8
⊢ (𝑡 = 〈𝑧, 𝑤〉 → (((,)‘𝑡) ∩ 𝑦) = ((𝑧(,)𝑤) ∩ 𝑦)) |
44 | 43 | eleq1d 2823 |
. . . . . . 7
⊢ (𝑡 = 〈𝑧, 𝑤〉 → ((((,)‘𝑡) ∩ 𝑦) ∈ ((,) “ (𝑆 × 𝑆)) ↔ ((𝑧(,)𝑤) ∩ 𝑦) ∈ ((,) “ (𝑆 × 𝑆)))) |
45 | 44 | ralbidv 3120 |
. . . . . 6
⊢ (𝑡 = 〈𝑧, 𝑤〉 → (∀𝑦 ∈ ((,) “ (𝑆 × 𝑆))(((,)‘𝑡) ∩ 𝑦) ∈ ((,) “ (𝑆 × 𝑆)) ↔ ∀𝑦 ∈ ((,) “ (𝑆 × 𝑆))((𝑧(,)𝑤) ∩ 𝑦) ∈ ((,) “ (𝑆 × 𝑆)))) |
46 | | ineq2 4137 |
. . . . . . . . . 10
⊢ (𝑦 = ((,)‘𝑡) → ((𝑧(,)𝑤) ∩ 𝑦) = ((𝑧(,)𝑤) ∩ ((,)‘𝑡))) |
47 | 46 | eleq1d 2823 |
. . . . . . . . 9
⊢ (𝑦 = ((,)‘𝑡) → (((𝑧(,)𝑤) ∩ 𝑦) ∈ ((,) “ (𝑆 × 𝑆)) ↔ ((𝑧(,)𝑤) ∩ ((,)‘𝑡)) ∈ ((,) “ (𝑆 × 𝑆)))) |
48 | 47 | ralima 7096 |
. . . . . . . 8
⊢ (((,) Fn
(ℝ* × ℝ*) ∧ (𝑆 × 𝑆) ⊆ (ℝ* ×
ℝ*)) → (∀𝑦 ∈ ((,) “ (𝑆 × 𝑆))((𝑧(,)𝑤) ∩ 𝑦) ∈ ((,) “ (𝑆 × 𝑆)) ↔ ∀𝑡 ∈ (𝑆 × 𝑆)((𝑧(,)𝑤) ∩ ((,)‘𝑡)) ∈ ((,) “ (𝑆 × 𝑆)))) |
49 | 34, 21, 48 | mp2an 688 |
. . . . . . 7
⊢
(∀𝑦 ∈
((,) “ (𝑆 ×
𝑆))((𝑧(,)𝑤) ∩ 𝑦) ∈ ((,) “ (𝑆 × 𝑆)) ↔ ∀𝑡 ∈ (𝑆 × 𝑆)((𝑧(,)𝑤) ∩ ((,)‘𝑡)) ∈ ((,) “ (𝑆 × 𝑆))) |
50 | | fveq2 6756 |
. . . . . . . . . . 11
⊢ (𝑡 = 〈𝑣, 𝑢〉 → ((,)‘𝑡) = ((,)‘〈𝑣, 𝑢〉)) |
51 | | df-ov 7258 |
. . . . . . . . . . 11
⊢ (𝑣(,)𝑢) = ((,)‘〈𝑣, 𝑢〉) |
52 | 50, 51 | eqtr4di 2797 |
. . . . . . . . . 10
⊢ (𝑡 = 〈𝑣, 𝑢〉 → ((,)‘𝑡) = (𝑣(,)𝑢)) |
53 | 52 | ineq2d 4143 |
. . . . . . . . 9
⊢ (𝑡 = 〈𝑣, 𝑢〉 → ((𝑧(,)𝑤) ∩ ((,)‘𝑡)) = ((𝑧(,)𝑤) ∩ (𝑣(,)𝑢))) |
54 | 53 | eleq1d 2823 |
. . . . . . . 8
⊢ (𝑡 = 〈𝑣, 𝑢〉 → (((𝑧(,)𝑤) ∩ ((,)‘𝑡)) ∈ ((,) “ (𝑆 × 𝑆)) ↔ ((𝑧(,)𝑤) ∩ (𝑣(,)𝑢)) ∈ ((,) “ (𝑆 × 𝑆)))) |
55 | 54 | ralxp 5739 |
. . . . . . 7
⊢
(∀𝑡 ∈
(𝑆 × 𝑆)((𝑧(,)𝑤) ∩ ((,)‘𝑡)) ∈ ((,) “ (𝑆 × 𝑆)) ↔ ∀𝑣 ∈ 𝑆 ∀𝑢 ∈ 𝑆 ((𝑧(,)𝑤) ∩ (𝑣(,)𝑢)) ∈ ((,) “ (𝑆 × 𝑆))) |
56 | 49, 55 | bitri 274 |
. . . . . 6
⊢
(∀𝑦 ∈
((,) “ (𝑆 ×
𝑆))((𝑧(,)𝑤) ∩ 𝑦) ∈ ((,) “ (𝑆 × 𝑆)) ↔ ∀𝑣 ∈ 𝑆 ∀𝑢 ∈ 𝑆 ((𝑧(,)𝑤) ∩ (𝑣(,)𝑢)) ∈ ((,) “ (𝑆 × 𝑆))) |
57 | 45, 56 | bitrdi 286 |
. . . . 5
⊢ (𝑡 = 〈𝑧, 𝑤〉 → (∀𝑦 ∈ ((,) “ (𝑆 × 𝑆))(((,)‘𝑡) ∩ 𝑦) ∈ ((,) “ (𝑆 × 𝑆)) ↔ ∀𝑣 ∈ 𝑆 ∀𝑢 ∈ 𝑆 ((𝑧(,)𝑤) ∩ (𝑣(,)𝑢)) ∈ ((,) “ (𝑆 × 𝑆)))) |
58 | 57 | ralxp 5739 |
. . . 4
⊢
(∀𝑡 ∈
(𝑆 × 𝑆)∀𝑦 ∈ ((,) “ (𝑆 × 𝑆))(((,)‘𝑡) ∩ 𝑦) ∈ ((,) “ (𝑆 × 𝑆)) ↔ ∀𝑧 ∈ 𝑆 ∀𝑤 ∈ 𝑆 ∀𝑣 ∈ 𝑆 ∀𝑢 ∈ 𝑆 ((𝑧(,)𝑤) ∩ (𝑣(,)𝑢)) ∈ ((,) “ (𝑆 × 𝑆))) |
59 | 39, 58 | bitri 274 |
. . 3
⊢
(∀𝑥 ∈
((,) “ (𝑆 ×
𝑆))∀𝑦 ∈ ((,) “ (𝑆 × 𝑆))(𝑥 ∩ 𝑦) ∈ ((,) “ (𝑆 × 𝑆)) ↔ ∀𝑧 ∈ 𝑆 ∀𝑤 ∈ 𝑆 ∀𝑣 ∈ 𝑆 ∀𝑢 ∈ 𝑆 ((𝑧(,)𝑤) ∩ (𝑣(,)𝑢)) ∈ ((,) “ (𝑆 × 𝑆))) |
60 | 32, 59 | mpbir 230 |
. 2
⊢
∀𝑥 ∈
((,) “ (𝑆 ×
𝑆))∀𝑦 ∈ ((,) “ (𝑆 × 𝑆))(𝑥 ∩ 𝑦) ∈ ((,) “ (𝑆 × 𝑆)) |
61 | | fiinbas 22010 |
. 2
⊢ ((((,)
“ (𝑆 × 𝑆)) ∈ V ∧ ∀𝑥 ∈ ((,) “ (𝑆 × 𝑆))∀𝑦 ∈ ((,) “ (𝑆 × 𝑆))(𝑥 ∩ 𝑦) ∈ ((,) “ (𝑆 × 𝑆))) → ((,) “ (𝑆 × 𝑆)) ∈ TopBases) |
62 | 2, 60, 61 | mp2an 688 |
1
⊢ ((,)
“ (𝑆 × 𝑆)) ∈
TopBases |