MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qtopbaslem Structured version   Visualization version   GIF version

Theorem qtopbaslem 24674
Description: The set of open intervals with endpoints in a subset forms a basis for a topology. (Contributed by Mario Carneiro, 17-Jun-2014.)
Hypothesis
Ref Expression
qtopbas.1 𝑆 ⊆ ℝ*
Assertion
Ref Expression
qtopbaslem ((,) “ (𝑆 × 𝑆)) ∈ TopBases

Proof of Theorem qtopbaslem
Dummy variables 𝑢 𝑡 𝑣 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iooex 13268 . . 3 (,) ∈ V
21imaex 7844 . 2 ((,) “ (𝑆 × 𝑆)) ∈ V
3 qtopbas.1 . . . . . . . . 9 𝑆 ⊆ ℝ*
43sseli 3930 . . . . . . . 8 (𝑧𝑆𝑧 ∈ ℝ*)
53sseli 3930 . . . . . . . 8 (𝑤𝑆𝑤 ∈ ℝ*)
64, 5anim12i 613 . . . . . . 7 ((𝑧𝑆𝑤𝑆) → (𝑧 ∈ ℝ*𝑤 ∈ ℝ*))
73sseli 3930 . . . . . . . 8 (𝑣𝑆𝑣 ∈ ℝ*)
83sseli 3930 . . . . . . . 8 (𝑢𝑆𝑢 ∈ ℝ*)
97, 8anim12i 613 . . . . . . 7 ((𝑣𝑆𝑢𝑆) → (𝑣 ∈ ℝ*𝑢 ∈ ℝ*))
10 iooin 13279 . . . . . . 7 (((𝑧 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑣 ∈ ℝ*𝑢 ∈ ℝ*)) → ((𝑧(,)𝑤) ∩ (𝑣(,)𝑢)) = (if(𝑧𝑣, 𝑣, 𝑧)(,)if(𝑤𝑢, 𝑤, 𝑢)))
116, 9, 10syl2an 596 . . . . . 6 (((𝑧𝑆𝑤𝑆) ∧ (𝑣𝑆𝑢𝑆)) → ((𝑧(,)𝑤) ∩ (𝑣(,)𝑢)) = (if(𝑧𝑣, 𝑣, 𝑧)(,)if(𝑤𝑢, 𝑤, 𝑢)))
12 ifcl 4521 . . . . . . . . 9 ((𝑣𝑆𝑧𝑆) → if(𝑧𝑣, 𝑣, 𝑧) ∈ 𝑆)
1312ancoms 458 . . . . . . . 8 ((𝑧𝑆𝑣𝑆) → if(𝑧𝑣, 𝑣, 𝑧) ∈ 𝑆)
14 ifcl 4521 . . . . . . . 8 ((𝑤𝑆𝑢𝑆) → if(𝑤𝑢, 𝑤, 𝑢) ∈ 𝑆)
15 df-ov 7349 . . . . . . . . 9 (if(𝑧𝑣, 𝑣, 𝑧)(,)if(𝑤𝑢, 𝑤, 𝑢)) = ((,)‘⟨if(𝑧𝑣, 𝑣, 𝑧), if(𝑤𝑢, 𝑤, 𝑢)⟩)
16 opelxpi 5653 . . . . . . . . . 10 ((if(𝑧𝑣, 𝑣, 𝑧) ∈ 𝑆 ∧ if(𝑤𝑢, 𝑤, 𝑢) ∈ 𝑆) → ⟨if(𝑧𝑣, 𝑣, 𝑧), if(𝑤𝑢, 𝑤, 𝑢)⟩ ∈ (𝑆 × 𝑆))
17 ioof 13347 . . . . . . . . . . . 12 (,):(ℝ* × ℝ*)⟶𝒫 ℝ
18 ffun 6654 . . . . . . . . . . . 12 ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → Fun (,))
1917, 18ax-mp 5 . . . . . . . . . . 11 Fun (,)
20 xpss12 5631 . . . . . . . . . . . . 13 ((𝑆 ⊆ ℝ*𝑆 ⊆ ℝ*) → (𝑆 × 𝑆) ⊆ (ℝ* × ℝ*))
213, 3, 20mp2an 692 . . . . . . . . . . . 12 (𝑆 × 𝑆) ⊆ (ℝ* × ℝ*)
2217fdmi 6662 . . . . . . . . . . . 12 dom (,) = (ℝ* × ℝ*)
2321, 22sseqtrri 3984 . . . . . . . . . . 11 (𝑆 × 𝑆) ⊆ dom (,)
24 funfvima2 7165 . . . . . . . . . . 11 ((Fun (,) ∧ (𝑆 × 𝑆) ⊆ dom (,)) → (⟨if(𝑧𝑣, 𝑣, 𝑧), if(𝑤𝑢, 𝑤, 𝑢)⟩ ∈ (𝑆 × 𝑆) → ((,)‘⟨if(𝑧𝑣, 𝑣, 𝑧), if(𝑤𝑢, 𝑤, 𝑢)⟩) ∈ ((,) “ (𝑆 × 𝑆))))
2519, 23, 24mp2an 692 . . . . . . . . . 10 (⟨if(𝑧𝑣, 𝑣, 𝑧), if(𝑤𝑢, 𝑤, 𝑢)⟩ ∈ (𝑆 × 𝑆) → ((,)‘⟨if(𝑧𝑣, 𝑣, 𝑧), if(𝑤𝑢, 𝑤, 𝑢)⟩) ∈ ((,) “ (𝑆 × 𝑆)))
2616, 25syl 17 . . . . . . . . 9 ((if(𝑧𝑣, 𝑣, 𝑧) ∈ 𝑆 ∧ if(𝑤𝑢, 𝑤, 𝑢) ∈ 𝑆) → ((,)‘⟨if(𝑧𝑣, 𝑣, 𝑧), if(𝑤𝑢, 𝑤, 𝑢)⟩) ∈ ((,) “ (𝑆 × 𝑆)))
2715, 26eqeltrid 2835 . . . . . . . 8 ((if(𝑧𝑣, 𝑣, 𝑧) ∈ 𝑆 ∧ if(𝑤𝑢, 𝑤, 𝑢) ∈ 𝑆) → (if(𝑧𝑣, 𝑣, 𝑧)(,)if(𝑤𝑢, 𝑤, 𝑢)) ∈ ((,) “ (𝑆 × 𝑆)))
2813, 14, 27syl2an 596 . . . . . . 7 (((𝑧𝑆𝑣𝑆) ∧ (𝑤𝑆𝑢𝑆)) → (if(𝑧𝑣, 𝑣, 𝑧)(,)if(𝑤𝑢, 𝑤, 𝑢)) ∈ ((,) “ (𝑆 × 𝑆)))
2928an4s 660 . . . . . 6 (((𝑧𝑆𝑤𝑆) ∧ (𝑣𝑆𝑢𝑆)) → (if(𝑧𝑣, 𝑣, 𝑧)(,)if(𝑤𝑢, 𝑤, 𝑢)) ∈ ((,) “ (𝑆 × 𝑆)))
3011, 29eqeltrd 2831 . . . . 5 (((𝑧𝑆𝑤𝑆) ∧ (𝑣𝑆𝑢𝑆)) → ((𝑧(,)𝑤) ∩ (𝑣(,)𝑢)) ∈ ((,) “ (𝑆 × 𝑆)))
3130ralrimivva 3175 . . . 4 ((𝑧𝑆𝑤𝑆) → ∀𝑣𝑆𝑢𝑆 ((𝑧(,)𝑤) ∩ (𝑣(,)𝑢)) ∈ ((,) “ (𝑆 × 𝑆)))
3231rgen2 3172 . . 3 𝑧𝑆𝑤𝑆𝑣𝑆𝑢𝑆 ((𝑧(,)𝑤) ∩ (𝑣(,)𝑢)) ∈ ((,) “ (𝑆 × 𝑆))
33 ffn 6651 . . . . . 6 ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → (,) Fn (ℝ* × ℝ*))
3417, 33ax-mp 5 . . . . 5 (,) Fn (ℝ* × ℝ*)
35 ineq1 4163 . . . . . . . 8 (𝑥 = ((,)‘𝑡) → (𝑥𝑦) = (((,)‘𝑡) ∩ 𝑦))
3635eleq1d 2816 . . . . . . 7 (𝑥 = ((,)‘𝑡) → ((𝑥𝑦) ∈ ((,) “ (𝑆 × 𝑆)) ↔ (((,)‘𝑡) ∩ 𝑦) ∈ ((,) “ (𝑆 × 𝑆))))
3736ralbidv 3155 . . . . . 6 (𝑥 = ((,)‘𝑡) → (∀𝑦 ∈ ((,) “ (𝑆 × 𝑆))(𝑥𝑦) ∈ ((,) “ (𝑆 × 𝑆)) ↔ ∀𝑦 ∈ ((,) “ (𝑆 × 𝑆))(((,)‘𝑡) ∩ 𝑦) ∈ ((,) “ (𝑆 × 𝑆))))
3837ralima 7171 . . . . 5 (((,) Fn (ℝ* × ℝ*) ∧ (𝑆 × 𝑆) ⊆ (ℝ* × ℝ*)) → (∀𝑥 ∈ ((,) “ (𝑆 × 𝑆))∀𝑦 ∈ ((,) “ (𝑆 × 𝑆))(𝑥𝑦) ∈ ((,) “ (𝑆 × 𝑆)) ↔ ∀𝑡 ∈ (𝑆 × 𝑆)∀𝑦 ∈ ((,) “ (𝑆 × 𝑆))(((,)‘𝑡) ∩ 𝑦) ∈ ((,) “ (𝑆 × 𝑆))))
3934, 21, 38mp2an 692 . . . 4 (∀𝑥 ∈ ((,) “ (𝑆 × 𝑆))∀𝑦 ∈ ((,) “ (𝑆 × 𝑆))(𝑥𝑦) ∈ ((,) “ (𝑆 × 𝑆)) ↔ ∀𝑡 ∈ (𝑆 × 𝑆)∀𝑦 ∈ ((,) “ (𝑆 × 𝑆))(((,)‘𝑡) ∩ 𝑦) ∈ ((,) “ (𝑆 × 𝑆)))
40 fveq2 6822 . . . . . . . . . 10 (𝑡 = ⟨𝑧, 𝑤⟩ → ((,)‘𝑡) = ((,)‘⟨𝑧, 𝑤⟩))
41 df-ov 7349 . . . . . . . . . 10 (𝑧(,)𝑤) = ((,)‘⟨𝑧, 𝑤⟩)
4240, 41eqtr4di 2784 . . . . . . . . 9 (𝑡 = ⟨𝑧, 𝑤⟩ → ((,)‘𝑡) = (𝑧(,)𝑤))
4342ineq1d 4169 . . . . . . . 8 (𝑡 = ⟨𝑧, 𝑤⟩ → (((,)‘𝑡) ∩ 𝑦) = ((𝑧(,)𝑤) ∩ 𝑦))
4443eleq1d 2816 . . . . . . 7 (𝑡 = ⟨𝑧, 𝑤⟩ → ((((,)‘𝑡) ∩ 𝑦) ∈ ((,) “ (𝑆 × 𝑆)) ↔ ((𝑧(,)𝑤) ∩ 𝑦) ∈ ((,) “ (𝑆 × 𝑆))))
4544ralbidv 3155 . . . . . 6 (𝑡 = ⟨𝑧, 𝑤⟩ → (∀𝑦 ∈ ((,) “ (𝑆 × 𝑆))(((,)‘𝑡) ∩ 𝑦) ∈ ((,) “ (𝑆 × 𝑆)) ↔ ∀𝑦 ∈ ((,) “ (𝑆 × 𝑆))((𝑧(,)𝑤) ∩ 𝑦) ∈ ((,) “ (𝑆 × 𝑆))))
46 ineq2 4164 . . . . . . . . . 10 (𝑦 = ((,)‘𝑡) → ((𝑧(,)𝑤) ∩ 𝑦) = ((𝑧(,)𝑤) ∩ ((,)‘𝑡)))
4746eleq1d 2816 . . . . . . . . 9 (𝑦 = ((,)‘𝑡) → (((𝑧(,)𝑤) ∩ 𝑦) ∈ ((,) “ (𝑆 × 𝑆)) ↔ ((𝑧(,)𝑤) ∩ ((,)‘𝑡)) ∈ ((,) “ (𝑆 × 𝑆))))
4847ralima 7171 . . . . . . . 8 (((,) Fn (ℝ* × ℝ*) ∧ (𝑆 × 𝑆) ⊆ (ℝ* × ℝ*)) → (∀𝑦 ∈ ((,) “ (𝑆 × 𝑆))((𝑧(,)𝑤) ∩ 𝑦) ∈ ((,) “ (𝑆 × 𝑆)) ↔ ∀𝑡 ∈ (𝑆 × 𝑆)((𝑧(,)𝑤) ∩ ((,)‘𝑡)) ∈ ((,) “ (𝑆 × 𝑆))))
4934, 21, 48mp2an 692 . . . . . . 7 (∀𝑦 ∈ ((,) “ (𝑆 × 𝑆))((𝑧(,)𝑤) ∩ 𝑦) ∈ ((,) “ (𝑆 × 𝑆)) ↔ ∀𝑡 ∈ (𝑆 × 𝑆)((𝑧(,)𝑤) ∩ ((,)‘𝑡)) ∈ ((,) “ (𝑆 × 𝑆)))
50 fveq2 6822 . . . . . . . . . . 11 (𝑡 = ⟨𝑣, 𝑢⟩ → ((,)‘𝑡) = ((,)‘⟨𝑣, 𝑢⟩))
51 df-ov 7349 . . . . . . . . . . 11 (𝑣(,)𝑢) = ((,)‘⟨𝑣, 𝑢⟩)
5250, 51eqtr4di 2784 . . . . . . . . . 10 (𝑡 = ⟨𝑣, 𝑢⟩ → ((,)‘𝑡) = (𝑣(,)𝑢))
5352ineq2d 4170 . . . . . . . . 9 (𝑡 = ⟨𝑣, 𝑢⟩ → ((𝑧(,)𝑤) ∩ ((,)‘𝑡)) = ((𝑧(,)𝑤) ∩ (𝑣(,)𝑢)))
5453eleq1d 2816 . . . . . . . 8 (𝑡 = ⟨𝑣, 𝑢⟩ → (((𝑧(,)𝑤) ∩ ((,)‘𝑡)) ∈ ((,) “ (𝑆 × 𝑆)) ↔ ((𝑧(,)𝑤) ∩ (𝑣(,)𝑢)) ∈ ((,) “ (𝑆 × 𝑆))))
5554ralxp 5781 . . . . . . 7 (∀𝑡 ∈ (𝑆 × 𝑆)((𝑧(,)𝑤) ∩ ((,)‘𝑡)) ∈ ((,) “ (𝑆 × 𝑆)) ↔ ∀𝑣𝑆𝑢𝑆 ((𝑧(,)𝑤) ∩ (𝑣(,)𝑢)) ∈ ((,) “ (𝑆 × 𝑆)))
5649, 55bitri 275 . . . . . 6 (∀𝑦 ∈ ((,) “ (𝑆 × 𝑆))((𝑧(,)𝑤) ∩ 𝑦) ∈ ((,) “ (𝑆 × 𝑆)) ↔ ∀𝑣𝑆𝑢𝑆 ((𝑧(,)𝑤) ∩ (𝑣(,)𝑢)) ∈ ((,) “ (𝑆 × 𝑆)))
5745, 56bitrdi 287 . . . . 5 (𝑡 = ⟨𝑧, 𝑤⟩ → (∀𝑦 ∈ ((,) “ (𝑆 × 𝑆))(((,)‘𝑡) ∩ 𝑦) ∈ ((,) “ (𝑆 × 𝑆)) ↔ ∀𝑣𝑆𝑢𝑆 ((𝑧(,)𝑤) ∩ (𝑣(,)𝑢)) ∈ ((,) “ (𝑆 × 𝑆))))
5857ralxp 5781 . . . 4 (∀𝑡 ∈ (𝑆 × 𝑆)∀𝑦 ∈ ((,) “ (𝑆 × 𝑆))(((,)‘𝑡) ∩ 𝑦) ∈ ((,) “ (𝑆 × 𝑆)) ↔ ∀𝑧𝑆𝑤𝑆𝑣𝑆𝑢𝑆 ((𝑧(,)𝑤) ∩ (𝑣(,)𝑢)) ∈ ((,) “ (𝑆 × 𝑆)))
5939, 58bitri 275 . . 3 (∀𝑥 ∈ ((,) “ (𝑆 × 𝑆))∀𝑦 ∈ ((,) “ (𝑆 × 𝑆))(𝑥𝑦) ∈ ((,) “ (𝑆 × 𝑆)) ↔ ∀𝑧𝑆𝑤𝑆𝑣𝑆𝑢𝑆 ((𝑧(,)𝑤) ∩ (𝑣(,)𝑢)) ∈ ((,) “ (𝑆 × 𝑆)))
6032, 59mpbir 231 . 2 𝑥 ∈ ((,) “ (𝑆 × 𝑆))∀𝑦 ∈ ((,) “ (𝑆 × 𝑆))(𝑥𝑦) ∈ ((,) “ (𝑆 × 𝑆))
61 fiinbas 22868 . 2 ((((,) “ (𝑆 × 𝑆)) ∈ V ∧ ∀𝑥 ∈ ((,) “ (𝑆 × 𝑆))∀𝑦 ∈ ((,) “ (𝑆 × 𝑆))(𝑥𝑦) ∈ ((,) “ (𝑆 × 𝑆))) → ((,) “ (𝑆 × 𝑆)) ∈ TopBases)
622, 60, 61mp2an 692 1 ((,) “ (𝑆 × 𝑆)) ∈ TopBases
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wral 3047  Vcvv 3436  cin 3901  wss 3902  ifcif 4475  𝒫 cpw 4550  cop 4582   class class class wbr 5091   × cxp 5614  dom cdm 5616  cima 5619  Fun wfun 6475   Fn wfn 6476  wf 6477  cfv 6481  (class class class)co 7346  cr 11005  *cxr 11145  cle 11147  (,)cioo 13245  TopBasesctb 22861
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-pre-lttri 11080  ax-pre-lttrn 11081
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-po 5524  df-so 5525  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-ioo 13249  df-bases 22862
This theorem is referenced by:  qtopbas  24675  retopbas  24676
  Copyright terms: Public domain W3C validator