MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qtopbaslem Structured version   Visualization version   GIF version

Theorem qtopbaslem 23828
Description: The set of open intervals with endpoints in a subset forms a basis for a topology. (Contributed by Mario Carneiro, 17-Jun-2014.)
Hypothesis
Ref Expression
qtopbas.1 𝑆 ⊆ ℝ*
Assertion
Ref Expression
qtopbaslem ((,) “ (𝑆 × 𝑆)) ∈ TopBases

Proof of Theorem qtopbaslem
Dummy variables 𝑢 𝑡 𝑣 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iooex 13031 . . 3 (,) ∈ V
21imaex 7737 . 2 ((,) “ (𝑆 × 𝑆)) ∈ V
3 qtopbas.1 . . . . . . . . 9 𝑆 ⊆ ℝ*
43sseli 3913 . . . . . . . 8 (𝑧𝑆𝑧 ∈ ℝ*)
53sseli 3913 . . . . . . . 8 (𝑤𝑆𝑤 ∈ ℝ*)
64, 5anim12i 612 . . . . . . 7 ((𝑧𝑆𝑤𝑆) → (𝑧 ∈ ℝ*𝑤 ∈ ℝ*))
73sseli 3913 . . . . . . . 8 (𝑣𝑆𝑣 ∈ ℝ*)
83sseli 3913 . . . . . . . 8 (𝑢𝑆𝑢 ∈ ℝ*)
97, 8anim12i 612 . . . . . . 7 ((𝑣𝑆𝑢𝑆) → (𝑣 ∈ ℝ*𝑢 ∈ ℝ*))
10 iooin 13042 . . . . . . 7 (((𝑧 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑣 ∈ ℝ*𝑢 ∈ ℝ*)) → ((𝑧(,)𝑤) ∩ (𝑣(,)𝑢)) = (if(𝑧𝑣, 𝑣, 𝑧)(,)if(𝑤𝑢, 𝑤, 𝑢)))
116, 9, 10syl2an 595 . . . . . 6 (((𝑧𝑆𝑤𝑆) ∧ (𝑣𝑆𝑢𝑆)) → ((𝑧(,)𝑤) ∩ (𝑣(,)𝑢)) = (if(𝑧𝑣, 𝑣, 𝑧)(,)if(𝑤𝑢, 𝑤, 𝑢)))
12 ifcl 4501 . . . . . . . . 9 ((𝑣𝑆𝑧𝑆) → if(𝑧𝑣, 𝑣, 𝑧) ∈ 𝑆)
1312ancoms 458 . . . . . . . 8 ((𝑧𝑆𝑣𝑆) → if(𝑧𝑣, 𝑣, 𝑧) ∈ 𝑆)
14 ifcl 4501 . . . . . . . 8 ((𝑤𝑆𝑢𝑆) → if(𝑤𝑢, 𝑤, 𝑢) ∈ 𝑆)
15 df-ov 7258 . . . . . . . . 9 (if(𝑧𝑣, 𝑣, 𝑧)(,)if(𝑤𝑢, 𝑤, 𝑢)) = ((,)‘⟨if(𝑧𝑣, 𝑣, 𝑧), if(𝑤𝑢, 𝑤, 𝑢)⟩)
16 opelxpi 5617 . . . . . . . . . 10 ((if(𝑧𝑣, 𝑣, 𝑧) ∈ 𝑆 ∧ if(𝑤𝑢, 𝑤, 𝑢) ∈ 𝑆) → ⟨if(𝑧𝑣, 𝑣, 𝑧), if(𝑤𝑢, 𝑤, 𝑢)⟩ ∈ (𝑆 × 𝑆))
17 ioof 13108 . . . . . . . . . . . 12 (,):(ℝ* × ℝ*)⟶𝒫 ℝ
18 ffun 6587 . . . . . . . . . . . 12 ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → Fun (,))
1917, 18ax-mp 5 . . . . . . . . . . 11 Fun (,)
20 xpss12 5595 . . . . . . . . . . . . 13 ((𝑆 ⊆ ℝ*𝑆 ⊆ ℝ*) → (𝑆 × 𝑆) ⊆ (ℝ* × ℝ*))
213, 3, 20mp2an 688 . . . . . . . . . . . 12 (𝑆 × 𝑆) ⊆ (ℝ* × ℝ*)
2217fdmi 6596 . . . . . . . . . . . 12 dom (,) = (ℝ* × ℝ*)
2321, 22sseqtrri 3954 . . . . . . . . . . 11 (𝑆 × 𝑆) ⊆ dom (,)
24 funfvima2 7089 . . . . . . . . . . 11 ((Fun (,) ∧ (𝑆 × 𝑆) ⊆ dom (,)) → (⟨if(𝑧𝑣, 𝑣, 𝑧), if(𝑤𝑢, 𝑤, 𝑢)⟩ ∈ (𝑆 × 𝑆) → ((,)‘⟨if(𝑧𝑣, 𝑣, 𝑧), if(𝑤𝑢, 𝑤, 𝑢)⟩) ∈ ((,) “ (𝑆 × 𝑆))))
2519, 23, 24mp2an 688 . . . . . . . . . 10 (⟨if(𝑧𝑣, 𝑣, 𝑧), if(𝑤𝑢, 𝑤, 𝑢)⟩ ∈ (𝑆 × 𝑆) → ((,)‘⟨if(𝑧𝑣, 𝑣, 𝑧), if(𝑤𝑢, 𝑤, 𝑢)⟩) ∈ ((,) “ (𝑆 × 𝑆)))
2616, 25syl 17 . . . . . . . . 9 ((if(𝑧𝑣, 𝑣, 𝑧) ∈ 𝑆 ∧ if(𝑤𝑢, 𝑤, 𝑢) ∈ 𝑆) → ((,)‘⟨if(𝑧𝑣, 𝑣, 𝑧), if(𝑤𝑢, 𝑤, 𝑢)⟩) ∈ ((,) “ (𝑆 × 𝑆)))
2715, 26eqeltrid 2843 . . . . . . . 8 ((if(𝑧𝑣, 𝑣, 𝑧) ∈ 𝑆 ∧ if(𝑤𝑢, 𝑤, 𝑢) ∈ 𝑆) → (if(𝑧𝑣, 𝑣, 𝑧)(,)if(𝑤𝑢, 𝑤, 𝑢)) ∈ ((,) “ (𝑆 × 𝑆)))
2813, 14, 27syl2an 595 . . . . . . 7 (((𝑧𝑆𝑣𝑆) ∧ (𝑤𝑆𝑢𝑆)) → (if(𝑧𝑣, 𝑣, 𝑧)(,)if(𝑤𝑢, 𝑤, 𝑢)) ∈ ((,) “ (𝑆 × 𝑆)))
2928an4s 656 . . . . . 6 (((𝑧𝑆𝑤𝑆) ∧ (𝑣𝑆𝑢𝑆)) → (if(𝑧𝑣, 𝑣, 𝑧)(,)if(𝑤𝑢, 𝑤, 𝑢)) ∈ ((,) “ (𝑆 × 𝑆)))
3011, 29eqeltrd 2839 . . . . 5 (((𝑧𝑆𝑤𝑆) ∧ (𝑣𝑆𝑢𝑆)) → ((𝑧(,)𝑤) ∩ (𝑣(,)𝑢)) ∈ ((,) “ (𝑆 × 𝑆)))
3130ralrimivva 3114 . . . 4 ((𝑧𝑆𝑤𝑆) → ∀𝑣𝑆𝑢𝑆 ((𝑧(,)𝑤) ∩ (𝑣(,)𝑢)) ∈ ((,) “ (𝑆 × 𝑆)))
3231rgen2 3126 . . 3 𝑧𝑆𝑤𝑆𝑣𝑆𝑢𝑆 ((𝑧(,)𝑤) ∩ (𝑣(,)𝑢)) ∈ ((,) “ (𝑆 × 𝑆))
33 ffn 6584 . . . . . 6 ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → (,) Fn (ℝ* × ℝ*))
3417, 33ax-mp 5 . . . . 5 (,) Fn (ℝ* × ℝ*)
35 ineq1 4136 . . . . . . . 8 (𝑥 = ((,)‘𝑡) → (𝑥𝑦) = (((,)‘𝑡) ∩ 𝑦))
3635eleq1d 2823 . . . . . . 7 (𝑥 = ((,)‘𝑡) → ((𝑥𝑦) ∈ ((,) “ (𝑆 × 𝑆)) ↔ (((,)‘𝑡) ∩ 𝑦) ∈ ((,) “ (𝑆 × 𝑆))))
3736ralbidv 3120 . . . . . 6 (𝑥 = ((,)‘𝑡) → (∀𝑦 ∈ ((,) “ (𝑆 × 𝑆))(𝑥𝑦) ∈ ((,) “ (𝑆 × 𝑆)) ↔ ∀𝑦 ∈ ((,) “ (𝑆 × 𝑆))(((,)‘𝑡) ∩ 𝑦) ∈ ((,) “ (𝑆 × 𝑆))))
3837ralima 7096 . . . . 5 (((,) Fn (ℝ* × ℝ*) ∧ (𝑆 × 𝑆) ⊆ (ℝ* × ℝ*)) → (∀𝑥 ∈ ((,) “ (𝑆 × 𝑆))∀𝑦 ∈ ((,) “ (𝑆 × 𝑆))(𝑥𝑦) ∈ ((,) “ (𝑆 × 𝑆)) ↔ ∀𝑡 ∈ (𝑆 × 𝑆)∀𝑦 ∈ ((,) “ (𝑆 × 𝑆))(((,)‘𝑡) ∩ 𝑦) ∈ ((,) “ (𝑆 × 𝑆))))
3934, 21, 38mp2an 688 . . . 4 (∀𝑥 ∈ ((,) “ (𝑆 × 𝑆))∀𝑦 ∈ ((,) “ (𝑆 × 𝑆))(𝑥𝑦) ∈ ((,) “ (𝑆 × 𝑆)) ↔ ∀𝑡 ∈ (𝑆 × 𝑆)∀𝑦 ∈ ((,) “ (𝑆 × 𝑆))(((,)‘𝑡) ∩ 𝑦) ∈ ((,) “ (𝑆 × 𝑆)))
40 fveq2 6756 . . . . . . . . . 10 (𝑡 = ⟨𝑧, 𝑤⟩ → ((,)‘𝑡) = ((,)‘⟨𝑧, 𝑤⟩))
41 df-ov 7258 . . . . . . . . . 10 (𝑧(,)𝑤) = ((,)‘⟨𝑧, 𝑤⟩)
4240, 41eqtr4di 2797 . . . . . . . . 9 (𝑡 = ⟨𝑧, 𝑤⟩ → ((,)‘𝑡) = (𝑧(,)𝑤))
4342ineq1d 4142 . . . . . . . 8 (𝑡 = ⟨𝑧, 𝑤⟩ → (((,)‘𝑡) ∩ 𝑦) = ((𝑧(,)𝑤) ∩ 𝑦))
4443eleq1d 2823 . . . . . . 7 (𝑡 = ⟨𝑧, 𝑤⟩ → ((((,)‘𝑡) ∩ 𝑦) ∈ ((,) “ (𝑆 × 𝑆)) ↔ ((𝑧(,)𝑤) ∩ 𝑦) ∈ ((,) “ (𝑆 × 𝑆))))
4544ralbidv 3120 . . . . . 6 (𝑡 = ⟨𝑧, 𝑤⟩ → (∀𝑦 ∈ ((,) “ (𝑆 × 𝑆))(((,)‘𝑡) ∩ 𝑦) ∈ ((,) “ (𝑆 × 𝑆)) ↔ ∀𝑦 ∈ ((,) “ (𝑆 × 𝑆))((𝑧(,)𝑤) ∩ 𝑦) ∈ ((,) “ (𝑆 × 𝑆))))
46 ineq2 4137 . . . . . . . . . 10 (𝑦 = ((,)‘𝑡) → ((𝑧(,)𝑤) ∩ 𝑦) = ((𝑧(,)𝑤) ∩ ((,)‘𝑡)))
4746eleq1d 2823 . . . . . . . . 9 (𝑦 = ((,)‘𝑡) → (((𝑧(,)𝑤) ∩ 𝑦) ∈ ((,) “ (𝑆 × 𝑆)) ↔ ((𝑧(,)𝑤) ∩ ((,)‘𝑡)) ∈ ((,) “ (𝑆 × 𝑆))))
4847ralima 7096 . . . . . . . 8 (((,) Fn (ℝ* × ℝ*) ∧ (𝑆 × 𝑆) ⊆ (ℝ* × ℝ*)) → (∀𝑦 ∈ ((,) “ (𝑆 × 𝑆))((𝑧(,)𝑤) ∩ 𝑦) ∈ ((,) “ (𝑆 × 𝑆)) ↔ ∀𝑡 ∈ (𝑆 × 𝑆)((𝑧(,)𝑤) ∩ ((,)‘𝑡)) ∈ ((,) “ (𝑆 × 𝑆))))
4934, 21, 48mp2an 688 . . . . . . 7 (∀𝑦 ∈ ((,) “ (𝑆 × 𝑆))((𝑧(,)𝑤) ∩ 𝑦) ∈ ((,) “ (𝑆 × 𝑆)) ↔ ∀𝑡 ∈ (𝑆 × 𝑆)((𝑧(,)𝑤) ∩ ((,)‘𝑡)) ∈ ((,) “ (𝑆 × 𝑆)))
50 fveq2 6756 . . . . . . . . . . 11 (𝑡 = ⟨𝑣, 𝑢⟩ → ((,)‘𝑡) = ((,)‘⟨𝑣, 𝑢⟩))
51 df-ov 7258 . . . . . . . . . . 11 (𝑣(,)𝑢) = ((,)‘⟨𝑣, 𝑢⟩)
5250, 51eqtr4di 2797 . . . . . . . . . 10 (𝑡 = ⟨𝑣, 𝑢⟩ → ((,)‘𝑡) = (𝑣(,)𝑢))
5352ineq2d 4143 . . . . . . . . 9 (𝑡 = ⟨𝑣, 𝑢⟩ → ((𝑧(,)𝑤) ∩ ((,)‘𝑡)) = ((𝑧(,)𝑤) ∩ (𝑣(,)𝑢)))
5453eleq1d 2823 . . . . . . . 8 (𝑡 = ⟨𝑣, 𝑢⟩ → (((𝑧(,)𝑤) ∩ ((,)‘𝑡)) ∈ ((,) “ (𝑆 × 𝑆)) ↔ ((𝑧(,)𝑤) ∩ (𝑣(,)𝑢)) ∈ ((,) “ (𝑆 × 𝑆))))
5554ralxp 5739 . . . . . . 7 (∀𝑡 ∈ (𝑆 × 𝑆)((𝑧(,)𝑤) ∩ ((,)‘𝑡)) ∈ ((,) “ (𝑆 × 𝑆)) ↔ ∀𝑣𝑆𝑢𝑆 ((𝑧(,)𝑤) ∩ (𝑣(,)𝑢)) ∈ ((,) “ (𝑆 × 𝑆)))
5649, 55bitri 274 . . . . . 6 (∀𝑦 ∈ ((,) “ (𝑆 × 𝑆))((𝑧(,)𝑤) ∩ 𝑦) ∈ ((,) “ (𝑆 × 𝑆)) ↔ ∀𝑣𝑆𝑢𝑆 ((𝑧(,)𝑤) ∩ (𝑣(,)𝑢)) ∈ ((,) “ (𝑆 × 𝑆)))
5745, 56bitrdi 286 . . . . 5 (𝑡 = ⟨𝑧, 𝑤⟩ → (∀𝑦 ∈ ((,) “ (𝑆 × 𝑆))(((,)‘𝑡) ∩ 𝑦) ∈ ((,) “ (𝑆 × 𝑆)) ↔ ∀𝑣𝑆𝑢𝑆 ((𝑧(,)𝑤) ∩ (𝑣(,)𝑢)) ∈ ((,) “ (𝑆 × 𝑆))))
5857ralxp 5739 . . . 4 (∀𝑡 ∈ (𝑆 × 𝑆)∀𝑦 ∈ ((,) “ (𝑆 × 𝑆))(((,)‘𝑡) ∩ 𝑦) ∈ ((,) “ (𝑆 × 𝑆)) ↔ ∀𝑧𝑆𝑤𝑆𝑣𝑆𝑢𝑆 ((𝑧(,)𝑤) ∩ (𝑣(,)𝑢)) ∈ ((,) “ (𝑆 × 𝑆)))
5939, 58bitri 274 . . 3 (∀𝑥 ∈ ((,) “ (𝑆 × 𝑆))∀𝑦 ∈ ((,) “ (𝑆 × 𝑆))(𝑥𝑦) ∈ ((,) “ (𝑆 × 𝑆)) ↔ ∀𝑧𝑆𝑤𝑆𝑣𝑆𝑢𝑆 ((𝑧(,)𝑤) ∩ (𝑣(,)𝑢)) ∈ ((,) “ (𝑆 × 𝑆)))
6032, 59mpbir 230 . 2 𝑥 ∈ ((,) “ (𝑆 × 𝑆))∀𝑦 ∈ ((,) “ (𝑆 × 𝑆))(𝑥𝑦) ∈ ((,) “ (𝑆 × 𝑆))
61 fiinbas 22010 . 2 ((((,) “ (𝑆 × 𝑆)) ∈ V ∧ ∀𝑥 ∈ ((,) “ (𝑆 × 𝑆))∀𝑦 ∈ ((,) “ (𝑆 × 𝑆))(𝑥𝑦) ∈ ((,) “ (𝑆 × 𝑆))) → ((,) “ (𝑆 × 𝑆)) ∈ TopBases)
622, 60, 61mp2an 688 1 ((,) “ (𝑆 × 𝑆)) ∈ TopBases
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wral 3063  Vcvv 3422  cin 3882  wss 3883  ifcif 4456  𝒫 cpw 4530  cop 4564   class class class wbr 5070   × cxp 5578  dom cdm 5580  cima 5583  Fun wfun 6412   Fn wfn 6413  wf 6414  cfv 6418  (class class class)co 7255  cr 10801  *cxr 10939  cle 10941  (,)cioo 13008  TopBasesctb 22003
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-pre-lttri 10876  ax-pre-lttrn 10877
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-po 5494  df-so 5495  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-ioo 13012  df-bases 22004
This theorem is referenced by:  qtopbas  23829  retopbas  23830
  Copyright terms: Public domain W3C validator