| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fibas | Structured version Visualization version GIF version | ||
| Description: A collection of finite intersections is a basis. The initial set is a subbasis for the topology. (Contributed by Jeff Hankins, 25-Aug-2009.) (Revised by Mario Carneiro, 24-Nov-2013.) |
| Ref | Expression |
|---|---|
| fibas | ⊢ (fi‘𝐴) ∈ TopBases |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvex 6839 | . 2 ⊢ (fi‘𝐴) ∈ V | |
| 2 | fiin 9331 | . . 3 ⊢ ((𝑥 ∈ (fi‘𝐴) ∧ 𝑦 ∈ (fi‘𝐴)) → (𝑥 ∩ 𝑦) ∈ (fi‘𝐴)) | |
| 3 | 2 | rgen2 3169 | . 2 ⊢ ∀𝑥 ∈ (fi‘𝐴)∀𝑦 ∈ (fi‘𝐴)(𝑥 ∩ 𝑦) ∈ (fi‘𝐴) |
| 4 | fiinbas 22855 | . 2 ⊢ (((fi‘𝐴) ∈ V ∧ ∀𝑥 ∈ (fi‘𝐴)∀𝑦 ∈ (fi‘𝐴)(𝑥 ∩ 𝑦) ∈ (fi‘𝐴)) → (fi‘𝐴) ∈ TopBases) | |
| 5 | 1, 3, 4 | mp2an 692 | 1 ⊢ (fi‘𝐴) ∈ TopBases |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 ∀wral 3044 Vcvv 3438 ∩ cin 3904 ‘cfv 6486 ficfi 9319 TopBasesctb 22848 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-om 7807 df-en 8880 df-fin 8883 df-fi 9320 df-bases 22849 |
| This theorem is referenced by: restbas 23061 ordttopon 23096 ordtopn1 23097 ordtopn2 23098 ordtrest2 23107 leordtval2 23115 2ndcsb 23352 ptbas 23482 xkotop 23491 alexsublem 23947 alexsub 23948 alexsubb 23949 alexsubALTlem3 23952 alexsubALTlem4 23953 alexsubALT 23954 ptcmplem1 23955 ordtrest2NEW 33889 topjoin 36338 |
| Copyright terms: Public domain | W3C validator |