MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fibas Structured version   Visualization version   GIF version

Theorem fibas 22880
Description: A collection of finite intersections is a basis. The initial set is a subbasis for the topology. (Contributed by Jeff Hankins, 25-Aug-2009.) (Revised by Mario Carneiro, 24-Nov-2013.)
Assertion
Ref Expression
fibas (fi‘𝐴) ∈ TopBases

Proof of Theorem fibas
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvex 6839 . 2 (fi‘𝐴) ∈ V
2 fiin 9331 . . 3 ((𝑥 ∈ (fi‘𝐴) ∧ 𝑦 ∈ (fi‘𝐴)) → (𝑥𝑦) ∈ (fi‘𝐴))
32rgen2 3169 . 2 𝑥 ∈ (fi‘𝐴)∀𝑦 ∈ (fi‘𝐴)(𝑥𝑦) ∈ (fi‘𝐴)
4 fiinbas 22855 . 2 (((fi‘𝐴) ∈ V ∧ ∀𝑥 ∈ (fi‘𝐴)∀𝑦 ∈ (fi‘𝐴)(𝑥𝑦) ∈ (fi‘𝐴)) → (fi‘𝐴) ∈ TopBases)
51, 3, 4mp2an 692 1 (fi‘𝐴) ∈ TopBases
Colors of variables: wff setvar class
Syntax hints:  wcel 2109  wral 3044  Vcvv 3438  cin 3904  cfv 6486  ficfi 9319  TopBasesctb 22848
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-om 7807  df-en 8880  df-fin 8883  df-fi 9320  df-bases 22849
This theorem is referenced by:  restbas  23061  ordttopon  23096  ordtopn1  23097  ordtopn2  23098  ordtrest2  23107  leordtval2  23115  2ndcsb  23352  ptbas  23482  xkotop  23491  alexsublem  23947  alexsub  23948  alexsubb  23949  alexsubALTlem3  23952  alexsubALTlem4  23953  alexsubALT  23954  ptcmplem1  23955  ordtrest2NEW  33889  topjoin  36338
  Copyright terms: Public domain W3C validator