MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fibas Structured version   Visualization version   GIF version

Theorem fibas 22879
Description: A collection of finite intersections is a basis. The initial set is a subbasis for the topology. (Contributed by Jeff Hankins, 25-Aug-2009.) (Revised by Mario Carneiro, 24-Nov-2013.)
Assertion
Ref Expression
fibas (fi‘𝐴) ∈ TopBases

Proof of Theorem fibas
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvex 6910 . 2 (fi‘𝐴) ∈ V
2 fiin 9445 . . 3 ((𝑥 ∈ (fi‘𝐴) ∧ 𝑦 ∈ (fi‘𝐴)) → (𝑥𝑦) ∈ (fi‘𝐴))
32rgen2 3194 . 2 𝑥 ∈ (fi‘𝐴)∀𝑦 ∈ (fi‘𝐴)(𝑥𝑦) ∈ (fi‘𝐴)
4 fiinbas 22854 . 2 (((fi‘𝐴) ∈ V ∧ ∀𝑥 ∈ (fi‘𝐴)∀𝑦 ∈ (fi‘𝐴)(𝑥𝑦) ∈ (fi‘𝐴)) → (fi‘𝐴) ∈ TopBases)
51, 3, 4mp2an 691 1 (fi‘𝐴) ∈ TopBases
Colors of variables: wff setvar class
Syntax hints:  wcel 2099  wral 3058  Vcvv 3471  cin 3946  cfv 6548  ficfi 9433  TopBasesctb 22847
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-int 4950  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-om 7871  df-en 8964  df-fin 8967  df-fi 9434  df-bases 22848
This theorem is referenced by:  restbas  23061  ordttopon  23096  ordtopn1  23097  ordtopn2  23098  ordtrest2  23107  leordtval2  23115  2ndcsb  23352  ptbas  23482  xkotop  23491  alexsublem  23947  alexsub  23948  alexsubb  23949  alexsubALTlem3  23952  alexsubALTlem4  23953  alexsubALT  23954  ptcmplem1  23955  ordtrest2NEW  33524  topjoin  35849
  Copyright terms: Public domain W3C validator