| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fibas | Structured version Visualization version GIF version | ||
| Description: A collection of finite intersections is a basis. The initial set is a subbasis for the topology. (Contributed by Jeff Hankins, 25-Aug-2009.) (Revised by Mario Carneiro, 24-Nov-2013.) |
| Ref | Expression |
|---|---|
| fibas | ⊢ (fi‘𝐴) ∈ TopBases |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvex 6894 | . 2 ⊢ (fi‘𝐴) ∈ V | |
| 2 | fiin 9439 | . . 3 ⊢ ((𝑥 ∈ (fi‘𝐴) ∧ 𝑦 ∈ (fi‘𝐴)) → (𝑥 ∩ 𝑦) ∈ (fi‘𝐴)) | |
| 3 | 2 | rgen2 3185 | . 2 ⊢ ∀𝑥 ∈ (fi‘𝐴)∀𝑦 ∈ (fi‘𝐴)(𝑥 ∩ 𝑦) ∈ (fi‘𝐴) |
| 4 | fiinbas 22895 | . 2 ⊢ (((fi‘𝐴) ∈ V ∧ ∀𝑥 ∈ (fi‘𝐴)∀𝑦 ∈ (fi‘𝐴)(𝑥 ∩ 𝑦) ∈ (fi‘𝐴)) → (fi‘𝐴) ∈ TopBases) | |
| 5 | 1, 3, 4 | mp2an 692 | 1 ⊢ (fi‘𝐴) ∈ TopBases |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 ∀wral 3052 Vcvv 3464 ∩ cin 3930 ‘cfv 6536 ficfi 9427 TopBasesctb 22888 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-int 4928 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-om 7867 df-en 8965 df-fin 8968 df-fi 9428 df-bases 22889 |
| This theorem is referenced by: restbas 23101 ordttopon 23136 ordtopn1 23137 ordtopn2 23138 ordtrest2 23147 leordtval2 23155 2ndcsb 23392 ptbas 23522 xkotop 23531 alexsublem 23987 alexsub 23988 alexsubb 23989 alexsubALTlem3 23992 alexsubALTlem4 23993 alexsubALT 23994 ptcmplem1 23995 ordtrest2NEW 33959 topjoin 36388 |
| Copyright terms: Public domain | W3C validator |