| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fibas | Structured version Visualization version GIF version | ||
| Description: A collection of finite intersections is a basis. The initial set is a subbasis for the topology. (Contributed by Jeff Hankins, 25-Aug-2009.) (Revised by Mario Carneiro, 24-Nov-2013.) |
| Ref | Expression |
|---|---|
| fibas | ⊢ (fi‘𝐴) ∈ TopBases |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvex 6841 | . 2 ⊢ (fi‘𝐴) ∈ V | |
| 2 | fiin 9313 | . . 3 ⊢ ((𝑥 ∈ (fi‘𝐴) ∧ 𝑦 ∈ (fi‘𝐴)) → (𝑥 ∩ 𝑦) ∈ (fi‘𝐴)) | |
| 3 | 2 | rgen2 3173 | . 2 ⊢ ∀𝑥 ∈ (fi‘𝐴)∀𝑦 ∈ (fi‘𝐴)(𝑥 ∩ 𝑦) ∈ (fi‘𝐴) |
| 4 | fiinbas 22868 | . 2 ⊢ (((fi‘𝐴) ∈ V ∧ ∀𝑥 ∈ (fi‘𝐴)∀𝑦 ∈ (fi‘𝐴)(𝑥 ∩ 𝑦) ∈ (fi‘𝐴)) → (fi‘𝐴) ∈ TopBases) | |
| 5 | 1, 3, 4 | mp2an 692 | 1 ⊢ (fi‘𝐴) ∈ TopBases |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2113 ∀wral 3048 Vcvv 3437 ∩ cin 3897 ‘cfv 6486 ficfi 9301 TopBasesctb 22861 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-om 7803 df-en 8876 df-fin 8879 df-fi 9302 df-bases 22862 |
| This theorem is referenced by: restbas 23074 ordttopon 23109 ordtopn1 23110 ordtopn2 23111 ordtrest2 23120 leordtval2 23128 2ndcsb 23365 ptbas 23495 xkotop 23504 alexsublem 23960 alexsub 23961 alexsubb 23962 alexsubALTlem3 23965 alexsubALTlem4 23966 alexsubALT 23967 ptcmplem1 23968 ordtrest2NEW 33957 topjoin 36430 |
| Copyright terms: Public domain | W3C validator |