Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fibas | Structured version Visualization version GIF version |
Description: A collection of finite intersections is a basis. The initial set is a subbasis for the topology. (Contributed by Jeff Hankins, 25-Aug-2009.) (Revised by Mario Carneiro, 24-Nov-2013.) |
Ref | Expression |
---|---|
fibas | ⊢ (fi‘𝐴) ∈ TopBases |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvex 6769 | . 2 ⊢ (fi‘𝐴) ∈ V | |
2 | fiin 9111 | . . 3 ⊢ ((𝑥 ∈ (fi‘𝐴) ∧ 𝑦 ∈ (fi‘𝐴)) → (𝑥 ∩ 𝑦) ∈ (fi‘𝐴)) | |
3 | 2 | rgen2 3126 | . 2 ⊢ ∀𝑥 ∈ (fi‘𝐴)∀𝑦 ∈ (fi‘𝐴)(𝑥 ∩ 𝑦) ∈ (fi‘𝐴) |
4 | fiinbas 22010 | . 2 ⊢ (((fi‘𝐴) ∈ V ∧ ∀𝑥 ∈ (fi‘𝐴)∀𝑦 ∈ (fi‘𝐴)(𝑥 ∩ 𝑦) ∈ (fi‘𝐴)) → (fi‘𝐴) ∈ TopBases) | |
5 | 1, 3, 4 | mp2an 688 | 1 ⊢ (fi‘𝐴) ∈ TopBases |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 ∀wral 3063 Vcvv 3422 ∩ cin 3882 ‘cfv 6418 ficfi 9099 TopBasesctb 22003 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-om 7688 df-en 8692 df-fin 8695 df-fi 9100 df-bases 22004 |
This theorem is referenced by: restbas 22217 ordttopon 22252 ordtopn1 22253 ordtopn2 22254 ordtrest2 22263 leordtval2 22271 2ndcsb 22508 ptbas 22638 xkotop 22647 alexsublem 23103 alexsub 23104 alexsubb 23105 alexsubALTlem3 23108 alexsubALTlem4 23109 alexsubALT 23110 ptcmplem1 23111 ordtrest2NEW 31775 topjoin 34481 |
Copyright terms: Public domain | W3C validator |