![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fibas | Structured version Visualization version GIF version |
Description: A collection of finite intersections is a basis. The initial set is a subbasis for the topology. (Contributed by Jeff Hankins, 25-Aug-2009.) (Revised by Mario Carneiro, 24-Nov-2013.) |
Ref | Expression |
---|---|
fibas | ⊢ (fi‘𝐴) ∈ TopBases |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvex 6933 | . 2 ⊢ (fi‘𝐴) ∈ V | |
2 | fiin 9491 | . . 3 ⊢ ((𝑥 ∈ (fi‘𝐴) ∧ 𝑦 ∈ (fi‘𝐴)) → (𝑥 ∩ 𝑦) ∈ (fi‘𝐴)) | |
3 | 2 | rgen2 3205 | . 2 ⊢ ∀𝑥 ∈ (fi‘𝐴)∀𝑦 ∈ (fi‘𝐴)(𝑥 ∩ 𝑦) ∈ (fi‘𝐴) |
4 | fiinbas 22980 | . 2 ⊢ (((fi‘𝐴) ∈ V ∧ ∀𝑥 ∈ (fi‘𝐴)∀𝑦 ∈ (fi‘𝐴)(𝑥 ∩ 𝑦) ∈ (fi‘𝐴)) → (fi‘𝐴) ∈ TopBases) | |
5 | 1, 3, 4 | mp2an 691 | 1 ⊢ (fi‘𝐴) ∈ TopBases |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 ∀wral 3067 Vcvv 3488 ∩ cin 3975 ‘cfv 6573 ficfi 9479 TopBasesctb 22973 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-om 7904 df-en 9004 df-fin 9007 df-fi 9480 df-bases 22974 |
This theorem is referenced by: restbas 23187 ordttopon 23222 ordtopn1 23223 ordtopn2 23224 ordtrest2 23233 leordtval2 23241 2ndcsb 23478 ptbas 23608 xkotop 23617 alexsublem 24073 alexsub 24074 alexsubb 24075 alexsubALTlem3 24078 alexsubALTlem4 24079 alexsubALT 24080 ptcmplem1 24081 ordtrest2NEW 33869 topjoin 36331 |
Copyright terms: Public domain | W3C validator |