| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpanr2 | Structured version Visualization version GIF version | ||
| Description: An inference based on modus ponens. (Contributed by NM, 3-May-1994.) (Proof shortened by Andrew Salmon, 7-May-2011.) (Proof shortened by Wolf Lammen, 7-Apr-2013.) |
| Ref | Expression |
|---|---|
| mpanr2.1 | ⊢ 𝜒 |
| mpanr2.2 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
| Ref | Expression |
|---|---|
| mpanr2 | ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpanr2.1 | . . 3 ⊢ 𝜒 | |
| 2 | 1 | jctr 524 | . 2 ⊢ (𝜓 → (𝜓 ∧ 𝜒)) |
| 3 | mpanr2.2 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) | |
| 4 | 2, 3 | sylan2 593 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: fvreseq1 7011 op1steq 8012 fpmg 8841 pmresg 8843 pw2f1o 9046 pm54.43 9954 dfac2b 10084 ttukeylem6 10467 gruina 10771 muleqadd 11822 divdiv1 11893 addltmul 12418 elfzp1b 13562 elfzm1b 13563 expp1z 14076 expm1 14077 oddvdsnn0 19474 efgi0 19650 efgi1 19651 fiinbas 22839 opnneissb 23001 fclscf 23912 blssec 24323 iimulcl 24833 itg2lr 25631 blocnilem 30733 lnopmul 31896 opsqrlem6 32074 gsumle 33038 gsumvsca1 33179 gsumvsca2 33180 locfinreflem 33830 fvray 36129 fvline 36132 fneref 36338 poimirlem3 37617 poimirlem16 37630 fdc 37739 linepmap 39769 rmyeq0 42942 omssaxinf2 44978 |
| Copyright terms: Public domain | W3C validator |