Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mpanr2 | Structured version Visualization version GIF version |
Description: An inference based on modus ponens. (Contributed by NM, 3-May-1994.) (Proof shortened by Andrew Salmon, 7-May-2011.) (Proof shortened by Wolf Lammen, 7-Apr-2013.) |
Ref | Expression |
---|---|
mpanr2.1 | ⊢ 𝜒 |
mpanr2.2 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
Ref | Expression |
---|---|
mpanr2 | ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpanr2.1 | . . 3 ⊢ 𝜒 | |
2 | 1 | jctr 528 | . 2 ⊢ (𝜓 → (𝜓 ∧ 𝜒)) |
3 | mpanr2.2 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) | |
4 | 2, 3 | sylan2 596 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 df-an 400 |
This theorem is referenced by: fvreseq1 6859 op1steq 7805 fpmg 8549 pmresg 8551 pw2f1o 8750 pm54.43 9617 dfac2b 9744 ttukeylem6 10128 gruina 10432 muleqadd 11476 divdiv1 11543 addltmul 12066 elfzp1b 13189 elfzm1b 13190 expp1z 13684 expm1 13685 oddvdsnn0 18936 efgi0 19110 efgi1 19111 fiinbas 21849 opnneissb 22011 fclscf 22922 blssec 23333 iimulcl 23834 itg2lr 24628 blocnilem 28885 lnopmul 30048 opsqrlem6 30226 gsumle 31069 gsumvsca1 31198 gsumvsca2 31199 locfinreflem 31504 fvray 34180 fvline 34183 fneref 34276 poimirlem3 35517 poimirlem16 35530 fdc 35640 linepmap 37526 rmyeq0 40478 |
Copyright terms: Public domain | W3C validator |