![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mpanr2 | Structured version Visualization version GIF version |
Description: An inference based on modus ponens. (Contributed by NM, 3-May-1994.) (Proof shortened by Andrew Salmon, 7-May-2011.) (Proof shortened by Wolf Lammen, 7-Apr-2013.) |
Ref | Expression |
---|---|
mpanr2.1 | ⊢ 𝜒 |
mpanr2.2 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
Ref | Expression |
---|---|
mpanr2 | ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpanr2.1 | . . 3 ⊢ 𝜒 | |
2 | 1 | jctr 524 | . 2 ⊢ (𝜓 → (𝜓 ∧ 𝜒)) |
3 | mpanr2.2 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) | |
4 | 2, 3 | sylan2 593 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: fvreseq1 7059 op1steq 8057 fpmg 8907 pmresg 8909 pw2f1o 9116 pm54.43 10039 dfac2b 10169 ttukeylem6 10552 gruina 10856 muleqadd 11905 divdiv1 11976 addltmul 12500 elfzp1b 13638 elfzm1b 13639 expp1z 14149 expm1 14150 oddvdsnn0 19577 efgi0 19753 efgi1 19754 fiinbas 22975 opnneissb 23138 fclscf 24049 blssec 24461 iimulcl 24980 itg2lr 25780 blocnilem 30833 lnopmul 31996 opsqrlem6 32174 gsumle 33084 gsumvsca1 33215 gsumvsca2 33216 locfinreflem 33801 fvray 36123 fvline 36126 fneref 36333 poimirlem3 37610 poimirlem16 37623 fdc 37732 linepmap 39758 rmyeq0 42942 |
Copyright terms: Public domain | W3C validator |