MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpanr2 Structured version   Visualization version   GIF version

Theorem mpanr2 703
Description: An inference based on modus ponens. (Contributed by NM, 3-May-1994.) (Proof shortened by Andrew Salmon, 7-May-2011.) (Proof shortened by Wolf Lammen, 7-Apr-2013.)
Hypotheses
Ref Expression
mpanr2.1 𝜒
mpanr2.2 ((𝜑 ∧ (𝜓𝜒)) → 𝜃)
Assertion
Ref Expression
mpanr2 ((𝜑𝜓) → 𝜃)

Proof of Theorem mpanr2
StepHypRef Expression
1 mpanr2.1 . . 3 𝜒
21jctr 526 . 2 (𝜓 → (𝜓𝜒))
3 mpanr2.2 . 2 ((𝜑 ∧ (𝜓𝜒)) → 𝜃)
42, 3sylan2 594 1 ((𝜑𝜓) → 𝜃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 398
This theorem is referenced by:  fvreseq1  7041  op1steq  8019  fpmg  8862  pmresg  8864  pw2f1o  9077  pm54.43  9996  dfac2b  10125  ttukeylem6  10509  gruina  10813  muleqadd  11858  divdiv1  11925  addltmul  12448  elfzp1b  13578  elfzm1b  13579  expp1z  14077  expm1  14078  oddvdsnn0  19412  efgi0  19588  efgi1  19589  fiinbas  22455  opnneissb  22618  fclscf  23529  blssec  23941  iimulcl  24453  itg2lr  25248  blocnilem  30088  lnopmul  31251  opsqrlem6  31429  gsumle  32273  gsumvsca1  32402  gsumvsca2  32403  locfinreflem  32851  fvray  35144  fvline  35147  fneref  35283  poimirlem3  36539  poimirlem16  36552  fdc  36661  linepmap  38694  rmyeq0  41740
  Copyright terms: Public domain W3C validator