![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mpanr2 | Structured version Visualization version GIF version |
Description: An inference based on modus ponens. (Contributed by NM, 3-May-1994.) (Proof shortened by Andrew Salmon, 7-May-2011.) (Proof shortened by Wolf Lammen, 7-Apr-2013.) |
Ref | Expression |
---|---|
mpanr2.1 | ⊢ 𝜒 |
mpanr2.2 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
Ref | Expression |
---|---|
mpanr2 | ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpanr2.1 | . . 3 ⊢ 𝜒 | |
2 | 1 | jctr 524 | . 2 ⊢ (𝜓 → (𝜓 ∧ 𝜒)) |
3 | mpanr2.2 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) | |
4 | 2, 3 | sylan2 592 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: fvreseq1 7072 op1steq 8074 fpmg 8926 pmresg 8928 pw2f1o 9143 pm54.43 10070 dfac2b 10200 ttukeylem6 10583 gruina 10887 muleqadd 11934 divdiv1 12005 addltmul 12529 elfzp1b 13661 elfzm1b 13662 expp1z 14162 expm1 14163 oddvdsnn0 19586 efgi0 19762 efgi1 19763 fiinbas 22980 opnneissb 23143 fclscf 24054 blssec 24466 iimulcl 24985 itg2lr 25785 blocnilem 30836 lnopmul 31999 opsqrlem6 32177 gsumle 33074 gsumvsca1 33205 gsumvsca2 33206 locfinreflem 33786 fvray 36105 fvline 36108 fneref 36316 poimirlem3 37583 poimirlem16 37596 fdc 37705 linepmap 39732 rmyeq0 42910 |
Copyright terms: Public domain | W3C validator |