| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpanr2 | Structured version Visualization version GIF version | ||
| Description: An inference based on modus ponens. (Contributed by NM, 3-May-1994.) (Proof shortened by Andrew Salmon, 7-May-2011.) (Proof shortened by Wolf Lammen, 7-Apr-2013.) |
| Ref | Expression |
|---|---|
| mpanr2.1 | ⊢ 𝜒 |
| mpanr2.2 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
| Ref | Expression |
|---|---|
| mpanr2 | ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpanr2.1 | . . 3 ⊢ 𝜒 | |
| 2 | 1 | jctr 524 | . 2 ⊢ (𝜓 → (𝜓 ∧ 𝜒)) |
| 3 | mpanr2.2 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) | |
| 4 | 2, 3 | sylan2 593 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: fvreseq1 6972 op1steq 7965 fpmg 8792 pmresg 8794 pw2f1o 8995 pm54.43 9894 dfac2b 10022 ttukeylem6 10405 gruina 10709 muleqadd 11761 divdiv1 11832 addltmul 12357 elfzp1b 13501 elfzm1b 13502 expp1z 14018 expm1 14019 oddvdsnn0 19457 efgi0 19633 efgi1 19634 gsumle 20058 fiinbas 22868 opnneissb 23030 fclscf 23941 blssec 24351 iimulcl 24861 itg2lr 25659 blocnilem 30782 lnopmul 31945 opsqrlem6 32123 gsumvsca1 33193 gsumvsca2 33194 locfinreflem 33851 fvray 36181 fvline 36184 fneref 36390 poimirlem3 37669 poimirlem16 37682 fdc 37791 linepmap 39820 rmyeq0 42992 omssaxinf2 45027 |
| Copyright terms: Public domain | W3C validator |