| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpanr2 | Structured version Visualization version GIF version | ||
| Description: An inference based on modus ponens. (Contributed by NM, 3-May-1994.) (Proof shortened by Andrew Salmon, 7-May-2011.) (Proof shortened by Wolf Lammen, 7-Apr-2013.) |
| Ref | Expression |
|---|---|
| mpanr2.1 | ⊢ 𝜒 |
| mpanr2.2 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
| Ref | Expression |
|---|---|
| mpanr2 | ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpanr2.1 | . . 3 ⊢ 𝜒 | |
| 2 | 1 | jctr 524 | . 2 ⊢ (𝜓 → (𝜓 ∧ 𝜒)) |
| 3 | mpanr2.2 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) | |
| 4 | 2, 3 | sylan2 593 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: fvreseq1 7034 op1steq 8037 fpmg 8887 pmresg 8889 pw2f1o 9096 pm54.43 10020 dfac2b 10150 ttukeylem6 10533 gruina 10837 muleqadd 11886 divdiv1 11957 addltmul 12482 elfzp1b 13623 elfzm1b 13624 expp1z 14134 expm1 14135 oddvdsnn0 19530 efgi0 19706 efgi1 19707 fiinbas 22895 opnneissb 23057 fclscf 23968 blssec 24379 iimulcl 24889 itg2lr 25688 blocnilem 30790 lnopmul 31953 opsqrlem6 32131 gsumle 33097 gsumvsca1 33228 gsumvsca2 33229 locfinreflem 33876 fvray 36164 fvline 36167 fneref 36373 poimirlem3 37652 poimirlem16 37665 fdc 37774 linepmap 39799 rmyeq0 42944 omssaxinf2 44980 |
| Copyright terms: Public domain | W3C validator |