Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mpanr2 | Structured version Visualization version GIF version |
Description: An inference based on modus ponens. (Contributed by NM, 3-May-1994.) (Proof shortened by Andrew Salmon, 7-May-2011.) (Proof shortened by Wolf Lammen, 7-Apr-2013.) |
Ref | Expression |
---|---|
mpanr2.1 | ⊢ 𝜒 |
mpanr2.2 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
Ref | Expression |
---|---|
mpanr2 | ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpanr2.1 | . . 3 ⊢ 𝜒 | |
2 | 1 | jctr 525 | . 2 ⊢ (𝜓 → (𝜓 ∧ 𝜒)) |
3 | mpanr2.2 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) | |
4 | 2, 3 | sylan2 593 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: fvreseq1 6966 op1steq 7935 fpmg 8719 pmresg 8721 pw2f1o 8934 pm54.43 9850 dfac2b 9979 ttukeylem6 10363 gruina 10667 muleqadd 11712 divdiv1 11779 addltmul 12302 elfzp1b 13426 elfzm1b 13427 expp1z 13925 expm1 13926 oddvdsnn0 19240 efgi0 19413 efgi1 19414 fiinbas 22200 opnneissb 22363 fclscf 23274 blssec 23686 iimulcl 24198 itg2lr 24993 blocnilem 29395 lnopmul 30558 opsqrlem6 30736 gsumle 31578 gsumvsca1 31707 gsumvsca2 31708 locfinreflem 32029 fvray 34534 fvline 34537 fneref 34630 poimirlem3 35878 poimirlem16 35891 fdc 36001 linepmap 38036 rmyeq0 41026 |
Copyright terms: Public domain | W3C validator |