| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpanr2 | Structured version Visualization version GIF version | ||
| Description: An inference based on modus ponens. (Contributed by NM, 3-May-1994.) (Proof shortened by Andrew Salmon, 7-May-2011.) (Proof shortened by Wolf Lammen, 7-Apr-2013.) |
| Ref | Expression |
|---|---|
| mpanr2.1 | ⊢ 𝜒 |
| mpanr2.2 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
| Ref | Expression |
|---|---|
| mpanr2 | ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpanr2.1 | . . 3 ⊢ 𝜒 | |
| 2 | 1 | jctr 524 | . 2 ⊢ (𝜓 → (𝜓 ∧ 𝜒)) |
| 3 | mpanr2.2 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) | |
| 4 | 2, 3 | sylan2 593 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: fvreseq1 6977 op1steq 7975 fpmg 8802 pmresg 8804 pw2f1o 9006 pm54.43 9916 dfac2b 10044 ttukeylem6 10427 gruina 10731 muleqadd 11782 divdiv1 11853 addltmul 12378 elfzp1b 13522 elfzm1b 13523 expp1z 14036 expm1 14037 oddvdsnn0 19441 efgi0 19617 efgi1 19618 gsumle 20042 fiinbas 22855 opnneissb 23017 fclscf 23928 blssec 24339 iimulcl 24849 itg2lr 25647 blocnilem 30766 lnopmul 31929 opsqrlem6 32107 gsumvsca1 33181 gsumvsca2 33182 locfinreflem 33809 fvray 36117 fvline 36120 fneref 36326 poimirlem3 37605 poimirlem16 37618 fdc 37727 linepmap 39757 rmyeq0 42929 omssaxinf2 44965 |
| Copyright terms: Public domain | W3C validator |