Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mpanr2 | Structured version Visualization version GIF version |
Description: An inference based on modus ponens. (Contributed by NM, 3-May-1994.) (Proof shortened by Andrew Salmon, 7-May-2011.) (Proof shortened by Wolf Lammen, 7-Apr-2013.) |
Ref | Expression |
---|---|
mpanr2.1 | ⊢ 𝜒 |
mpanr2.2 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
Ref | Expression |
---|---|
mpanr2 | ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpanr2.1 | . . 3 ⊢ 𝜒 | |
2 | 1 | jctr 525 | . 2 ⊢ (𝜓 → (𝜓 ∧ 𝜒)) |
3 | mpanr2.2 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) | |
4 | 2, 3 | sylan2 593 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: fvreseq1 6916 op1steq 7875 fpmg 8656 pmresg 8658 pw2f1o 8864 pm54.43 9759 dfac2b 9886 ttukeylem6 10270 gruina 10574 muleqadd 11619 divdiv1 11686 addltmul 12209 elfzp1b 13333 elfzm1b 13334 expp1z 13832 expm1 13833 oddvdsnn0 19152 efgi0 19326 efgi1 19327 fiinbas 22102 opnneissb 22265 fclscf 23176 blssec 23588 iimulcl 24100 itg2lr 24895 blocnilem 29166 lnopmul 30329 opsqrlem6 30507 gsumle 31350 gsumvsca1 31479 gsumvsca2 31480 locfinreflem 31790 fvray 34443 fvline 34446 fneref 34539 poimirlem3 35780 poimirlem16 35793 fdc 35903 linepmap 37789 rmyeq0 40775 |
Copyright terms: Public domain | W3C validator |