Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mpanr2 | Structured version Visualization version GIF version |
Description: An inference based on modus ponens. (Contributed by NM, 3-May-1994.) (Proof shortened by Andrew Salmon, 7-May-2011.) (Proof shortened by Wolf Lammen, 7-Apr-2013.) |
Ref | Expression |
---|---|
mpanr2.1 | ⊢ 𝜒 |
mpanr2.2 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
Ref | Expression |
---|---|
mpanr2 | ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpanr2.1 | . . 3 ⊢ 𝜒 | |
2 | 1 | jctr 524 | . 2 ⊢ (𝜓 → (𝜓 ∧ 𝜒)) |
3 | mpanr2.2 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) | |
4 | 2, 3 | sylan2 592 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: fvreseq1 6898 op1steq 7848 fpmg 8614 pmresg 8616 pw2f1o 8817 pm54.43 9690 dfac2b 9817 ttukeylem6 10201 gruina 10505 muleqadd 11549 divdiv1 11616 addltmul 12139 elfzp1b 13262 elfzm1b 13263 expp1z 13760 expm1 13761 oddvdsnn0 19067 efgi0 19241 efgi1 19242 fiinbas 22010 opnneissb 22173 fclscf 23084 blssec 23496 iimulcl 24006 itg2lr 24800 blocnilem 29067 lnopmul 30230 opsqrlem6 30408 gsumle 31252 gsumvsca1 31381 gsumvsca2 31382 locfinreflem 31692 fvray 34370 fvline 34373 fneref 34466 poimirlem3 35707 poimirlem16 35720 fdc 35830 linepmap 37716 rmyeq0 40691 |
Copyright terms: Public domain | W3C validator |