![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mpanr2 | Structured version Visualization version GIF version |
Description: An inference based on modus ponens. (Contributed by NM, 3-May-1994.) (Proof shortened by Andrew Salmon, 7-May-2011.) (Proof shortened by Wolf Lammen, 7-Apr-2013.) |
Ref | Expression |
---|---|
mpanr2.1 | ⊢ 𝜒 |
mpanr2.2 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
Ref | Expression |
---|---|
mpanr2 | ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpanr2.1 | . . 3 ⊢ 𝜒 | |
2 | 1 | jctr 526 | . 2 ⊢ (𝜓 → (𝜓 ∧ 𝜒)) |
3 | mpanr2.2 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) | |
4 | 2, 3 | sylan2 594 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 |
This theorem is referenced by: fvreseq1 7041 op1steq 8019 fpmg 8862 pmresg 8864 pw2f1o 9077 pm54.43 9996 dfac2b 10125 ttukeylem6 10509 gruina 10813 muleqadd 11858 divdiv1 11925 addltmul 12448 elfzp1b 13578 elfzm1b 13579 expp1z 14077 expm1 14078 oddvdsnn0 19412 efgi0 19588 efgi1 19589 fiinbas 22455 opnneissb 22618 fclscf 23529 blssec 23941 iimulcl 24453 itg2lr 25248 blocnilem 30088 lnopmul 31251 opsqrlem6 31429 gsumle 32273 gsumvsca1 32402 gsumvsca2 32403 locfinreflem 32851 fvray 35144 fvline 35147 fneref 35283 poimirlem3 36539 poimirlem16 36552 fdc 36661 linepmap 38694 rmyeq0 41740 |
Copyright terms: Public domain | W3C validator |