| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpanr2 | Structured version Visualization version GIF version | ||
| Description: An inference based on modus ponens. (Contributed by NM, 3-May-1994.) (Proof shortened by Andrew Salmon, 7-May-2011.) (Proof shortened by Wolf Lammen, 7-Apr-2013.) |
| Ref | Expression |
|---|---|
| mpanr2.1 | ⊢ 𝜒 |
| mpanr2.2 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
| Ref | Expression |
|---|---|
| mpanr2 | ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpanr2.1 | . . 3 ⊢ 𝜒 | |
| 2 | 1 | jctr 524 | . 2 ⊢ (𝜓 → (𝜓 ∧ 𝜒)) |
| 3 | mpanr2.2 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) | |
| 4 | 2, 3 | sylan2 593 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: fvreseq1 6978 op1steq 7971 fpmg 8798 pmresg 8800 pw2f1o 9002 pm54.43 9901 dfac2b 10029 ttukeylem6 10412 gruina 10716 muleqadd 11768 divdiv1 11839 addltmul 12364 elfzp1b 13503 elfzm1b 13504 expp1z 14020 expm1 14021 oddvdsnn0 19458 efgi0 19634 efgi1 19635 gsumle 20059 fiinbas 22868 opnneissb 23030 fclscf 23941 blssec 24351 iimulcl 24861 itg2lr 25659 blocnilem 30786 lnopmul 31949 opsqrlem6 32127 gsumvsca1 33202 gsumvsca2 33203 locfinreflem 33874 fvray 36206 fvline 36209 fneref 36415 poimirlem3 37684 poimirlem16 37697 fdc 37806 linepmap 39895 rmyeq0 43071 omssaxinf2 45106 |
| Copyright terms: Public domain | W3C validator |