| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpanr2 | Structured version Visualization version GIF version | ||
| Description: An inference based on modus ponens. (Contributed by NM, 3-May-1994.) (Proof shortened by Andrew Salmon, 7-May-2011.) (Proof shortened by Wolf Lammen, 7-Apr-2013.) |
| Ref | Expression |
|---|---|
| mpanr2.1 | ⊢ 𝜒 |
| mpanr2.2 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
| Ref | Expression |
|---|---|
| mpanr2 | ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpanr2.1 | . . 3 ⊢ 𝜒 | |
| 2 | 1 | jctr 524 | . 2 ⊢ (𝜓 → (𝜓 ∧ 𝜒)) |
| 3 | mpanr2.2 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) | |
| 4 | 2, 3 | sylan2 593 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: fvreseq1 7014 op1steq 8015 fpmg 8844 pmresg 8846 pw2f1o 9051 pm54.43 9961 dfac2b 10091 ttukeylem6 10474 gruina 10778 muleqadd 11829 divdiv1 11900 addltmul 12425 elfzp1b 13569 elfzm1b 13570 expp1z 14083 expm1 14084 oddvdsnn0 19481 efgi0 19657 efgi1 19658 fiinbas 22846 opnneissb 23008 fclscf 23919 blssec 24330 iimulcl 24840 itg2lr 25638 blocnilem 30740 lnopmul 31903 opsqrlem6 32081 gsumle 33045 gsumvsca1 33186 gsumvsca2 33187 locfinreflem 33837 fvray 36136 fvline 36139 fneref 36345 poimirlem3 37624 poimirlem16 37637 fdc 37746 linepmap 39776 rmyeq0 42949 omssaxinf2 44985 |
| Copyright terms: Public domain | W3C validator |