| Mathbox for ML |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > isbasisrelowl | Structured version Visualization version GIF version | ||
| Description: The set of all closed-below, open-above intervals of reals form a basis. (Contributed by ML, 27-Jul-2020.) |
| Ref | Expression |
|---|---|
| isbasisrelowl.1 | ⊢ 𝐼 = ([,) “ (ℝ × ℝ)) |
| Ref | Expression |
|---|---|
| isbasisrelowl | ⊢ 𝐼 ∈ TopBases |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isbasisrelowl.1 | . . 3 ⊢ 𝐼 = ([,) “ (ℝ × ℝ)) | |
| 2 | df-ico 13251 | . . . . 5 ⊢ [,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)}) | |
| 3 | 2 | ixxex 13256 | . . . 4 ⊢ [,) ∈ V |
| 4 | imaexg 7843 | . . . 4 ⊢ ([,) ∈ V → ([,) “ (ℝ × ℝ)) ∈ V) | |
| 5 | 3, 4 | ax-mp 5 | . . 3 ⊢ ([,) “ (ℝ × ℝ)) ∈ V |
| 6 | 1, 5 | eqeltri 2827 | . 2 ⊢ 𝐼 ∈ V |
| 7 | 1 | icoreclin 37397 | . . 3 ⊢ ((𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐼) → (𝑥 ∩ 𝑦) ∈ 𝐼) |
| 8 | 7 | rgen2 3172 | . 2 ⊢ ∀𝑥 ∈ 𝐼 ∀𝑦 ∈ 𝐼 (𝑥 ∩ 𝑦) ∈ 𝐼 |
| 9 | fiinbas 22868 | . 2 ⊢ ((𝐼 ∈ V ∧ ∀𝑥 ∈ 𝐼 ∀𝑦 ∈ 𝐼 (𝑥 ∩ 𝑦) ∈ 𝐼) → 𝐼 ∈ TopBases) | |
| 10 | 6, 8, 9 | mp2an 692 | 1 ⊢ 𝐼 ∈ TopBases |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2111 ∀wral 3047 Vcvv 3436 ∩ cin 3901 × cxp 5614 “ cima 5619 ℝcr 11005 < clt 11146 ≤ cle 11147 [,)cico 13247 TopBasesctb 22861 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-pre-lttri 11080 ax-pre-lttrn 11081 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-po 5524 df-so 5525 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-ico 13251 df-bases 22862 |
| This theorem is referenced by: istoprelowl 37400 |
| Copyright terms: Public domain | W3C validator |