Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isbasisrelowl Structured version   Visualization version   GIF version

Theorem isbasisrelowl 37398
Description: The set of all closed-below, open-above intervals of reals form a basis. (Contributed by ML, 27-Jul-2020.)
Hypothesis
Ref Expression
isbasisrelowl.1 𝐼 = ([,) “ (ℝ × ℝ))
Assertion
Ref Expression
isbasisrelowl 𝐼 ∈ TopBases

Proof of Theorem isbasisrelowl
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isbasisrelowl.1 . . 3 𝐼 = ([,) “ (ℝ × ℝ))
2 df-ico 13251 . . . . 5 [,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)})
32ixxex 13256 . . . 4 [,) ∈ V
4 imaexg 7843 . . . 4 ([,) ∈ V → ([,) “ (ℝ × ℝ)) ∈ V)
53, 4ax-mp 5 . . 3 ([,) “ (ℝ × ℝ)) ∈ V
61, 5eqeltri 2827 . 2 𝐼 ∈ V
71icoreclin 37397 . . 3 ((𝑥𝐼𝑦𝐼) → (𝑥𝑦) ∈ 𝐼)
87rgen2 3172 . 2 𝑥𝐼𝑦𝐼 (𝑥𝑦) ∈ 𝐼
9 fiinbas 22868 . 2 ((𝐼 ∈ V ∧ ∀𝑥𝐼𝑦𝐼 (𝑥𝑦) ∈ 𝐼) → 𝐼 ∈ TopBases)
106, 8, 9mp2an 692 1 𝐼 ∈ TopBases
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wcel 2111  wral 3047  Vcvv 3436  cin 3901   × cxp 5614  cima 5619  cr 11005   < clt 11146  cle 11147  [,)cico 13247  TopBasesctb 22861
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-pre-lttri 11080  ax-pre-lttrn 11081
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-po 5524  df-so 5525  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-ico 13251  df-bases 22862
This theorem is referenced by:  istoprelowl  37400
  Copyright terms: Public domain W3C validator