Mathbox for ML |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > isbasisrelowl | Structured version Visualization version GIF version |
Description: The set of all closed-below, open-above intervals of reals form a basis. (Contributed by ML, 27-Jul-2020.) |
Ref | Expression |
---|---|
isbasisrelowl.1 | ⊢ 𝐼 = ([,) “ (ℝ × ℝ)) |
Ref | Expression |
---|---|
isbasisrelowl | ⊢ 𝐼 ∈ TopBases |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isbasisrelowl.1 | . . 3 ⊢ 𝐼 = ([,) “ (ℝ × ℝ)) | |
2 | df-ico 13085 | . . . . 5 ⊢ [,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)}) | |
3 | 2 | ixxex 13090 | . . . 4 ⊢ [,) ∈ V |
4 | imaexg 7762 | . . . 4 ⊢ ([,) ∈ V → ([,) “ (ℝ × ℝ)) ∈ V) | |
5 | 3, 4 | ax-mp 5 | . . 3 ⊢ ([,) “ (ℝ × ℝ)) ∈ V |
6 | 1, 5 | eqeltri 2835 | . 2 ⊢ 𝐼 ∈ V |
7 | 1 | icoreclin 35528 | . . 3 ⊢ ((𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐼) → (𝑥 ∩ 𝑦) ∈ 𝐼) |
8 | 7 | rgen2 3120 | . 2 ⊢ ∀𝑥 ∈ 𝐼 ∀𝑦 ∈ 𝐼 (𝑥 ∩ 𝑦) ∈ 𝐼 |
9 | fiinbas 22102 | . 2 ⊢ ((𝐼 ∈ V ∧ ∀𝑥 ∈ 𝐼 ∀𝑦 ∈ 𝐼 (𝑥 ∩ 𝑦) ∈ 𝐼) → 𝐼 ∈ TopBases) | |
10 | 6, 8, 9 | mp2an 689 | 1 ⊢ 𝐼 ∈ TopBases |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2106 ∀wral 3064 Vcvv 3432 ∩ cin 3886 × cxp 5587 “ cima 5592 ℝcr 10870 < clt 11009 ≤ cle 11010 [,)cico 13081 TopBasesctb 22095 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-pre-lttri 10945 ax-pre-lttrn 10946 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-po 5503 df-so 5504 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-1st 7831 df-2nd 7832 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-ico 13085 df-bases 22096 |
This theorem is referenced by: istoprelowl 35531 |
Copyright terms: Public domain | W3C validator |