![]() |
Mathbox for ML |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > isbasisrelowl | Structured version Visualization version GIF version |
Description: The set of all closed-below, open-above intervals of reals form a basis. (Contributed by ML, 27-Jul-2020.) |
Ref | Expression |
---|---|
isbasisrelowl.1 | ⊢ 𝐼 = ([,) “ (ℝ × ℝ)) |
Ref | Expression |
---|---|
isbasisrelowl | ⊢ 𝐼 ∈ TopBases |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isbasisrelowl.1 | . . 3 ⊢ 𝐼 = ([,) “ (ℝ × ℝ)) | |
2 | df-ico 13335 | . . . . 5 ⊢ [,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)}) | |
3 | 2 | ixxex 13340 | . . . 4 ⊢ [,) ∈ V |
4 | imaexg 7910 | . . . 4 ⊢ ([,) ∈ V → ([,) “ (ℝ × ℝ)) ∈ V) | |
5 | 3, 4 | ax-mp 5 | . . 3 ⊢ ([,) “ (ℝ × ℝ)) ∈ V |
6 | 1, 5 | eqeltri 2828 | . 2 ⊢ 𝐼 ∈ V |
7 | 1 | icoreclin 36542 | . . 3 ⊢ ((𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐼) → (𝑥 ∩ 𝑦) ∈ 𝐼) |
8 | 7 | rgen2 3196 | . 2 ⊢ ∀𝑥 ∈ 𝐼 ∀𝑦 ∈ 𝐼 (𝑥 ∩ 𝑦) ∈ 𝐼 |
9 | fiinbas 22676 | . 2 ⊢ ((𝐼 ∈ V ∧ ∀𝑥 ∈ 𝐼 ∀𝑦 ∈ 𝐼 (𝑥 ∩ 𝑦) ∈ 𝐼) → 𝐼 ∈ TopBases) | |
10 | 6, 8, 9 | mp2an 689 | 1 ⊢ 𝐼 ∈ TopBases |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1540 ∈ wcel 2105 ∀wral 3060 Vcvv 3473 ∩ cin 3947 × cxp 5674 “ cima 5679 ℝcr 11113 < clt 11253 ≤ cle 11254 [,)cico 13331 TopBasesctb 22669 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11170 ax-resscn 11171 ax-pre-lttri 11188 ax-pre-lttrn 11189 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-po 5588 df-so 5589 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7415 df-oprab 7416 df-mpo 7417 df-1st 7979 df-2nd 7980 df-er 8707 df-en 8944 df-dom 8945 df-sdom 8946 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-ico 13335 df-bases 22670 |
This theorem is referenced by: istoprelowl 36545 |
Copyright terms: Public domain | W3C validator |