Mathbox for ML |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > isbasisrelowl | Structured version Visualization version GIF version |
Description: The set of all closed-below, open-above intervals of reals form a basis. (Contributed by ML, 27-Jul-2020.) |
Ref | Expression |
---|---|
isbasisrelowl.1 | ⊢ 𝐼 = ([,) “ (ℝ × ℝ)) |
Ref | Expression |
---|---|
isbasisrelowl | ⊢ 𝐼 ∈ TopBases |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isbasisrelowl.1 | . . 3 ⊢ 𝐼 = ([,) “ (ℝ × ℝ)) | |
2 | df-ico 13084 | . . . . 5 ⊢ [,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)}) | |
3 | 2 | ixxex 13089 | . . . 4 ⊢ [,) ∈ V |
4 | imaexg 7756 | . . . 4 ⊢ ([,) ∈ V → ([,) “ (ℝ × ℝ)) ∈ V) | |
5 | 3, 4 | ax-mp 5 | . . 3 ⊢ ([,) “ (ℝ × ℝ)) ∈ V |
6 | 1, 5 | eqeltri 2837 | . 2 ⊢ 𝐼 ∈ V |
7 | 1 | icoreclin 35524 | . . 3 ⊢ ((𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐼) → (𝑥 ∩ 𝑦) ∈ 𝐼) |
8 | 7 | rgen2 3129 | . 2 ⊢ ∀𝑥 ∈ 𝐼 ∀𝑦 ∈ 𝐼 (𝑥 ∩ 𝑦) ∈ 𝐼 |
9 | fiinbas 22100 | . 2 ⊢ ((𝐼 ∈ V ∧ ∀𝑥 ∈ 𝐼 ∀𝑦 ∈ 𝐼 (𝑥 ∩ 𝑦) ∈ 𝐼) → 𝐼 ∈ TopBases) | |
10 | 6, 8, 9 | mp2an 689 | 1 ⊢ 𝐼 ∈ TopBases |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1542 ∈ wcel 2110 ∀wral 3066 Vcvv 3431 ∩ cin 3891 × cxp 5588 “ cima 5593 ℝcr 10871 < clt 11010 ≤ cle 11011 [,)cico 13080 TopBasesctb 22093 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7582 ax-cnex 10928 ax-resscn 10929 ax-pre-lttri 10946 ax-pre-lttrn 10947 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-nel 3052 df-ral 3071 df-rex 3072 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-id 5490 df-po 5504 df-so 5505 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-ov 7274 df-oprab 7275 df-mpo 7276 df-1st 7824 df-2nd 7825 df-er 8481 df-en 8717 df-dom 8718 df-sdom 8719 df-pnf 11012 df-mnf 11013 df-xr 11014 df-ltxr 11015 df-le 11016 df-ico 13084 df-bases 22094 |
This theorem is referenced by: istoprelowl 35527 |
Copyright terms: Public domain | W3C validator |