| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fin2inf | Structured version Visualization version GIF version | ||
| Description: This (useless) theorem, which was proved without the Axiom of Infinity, demonstrates an artifact of our definition of binary relation, which is meaningful only when its arguments exist. In particular, the antecedent cannot be satisfied unless ω exists. (Contributed by NM, 13-Nov-2003.) |
| Ref | Expression |
|---|---|
| fin2inf | ⊢ (𝐴 ≺ ω → ω ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relsdom 8882 | . 2 ⊢ Rel ≺ | |
| 2 | 1 | brrelex2i 5676 | 1 ⊢ (𝐴 ≺ ω → ω ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2113 Vcvv 3437 class class class wbr 5093 ωcom 7802 ≺ csdm 8874 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-br 5094 df-opab 5156 df-xp 5625 df-rel 5626 df-dom 8877 df-sdom 8878 |
| This theorem is referenced by: unfi2 9201 unifi2 9236 |
| Copyright terms: Public domain | W3C validator |