![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fin2inf | Structured version Visualization version GIF version |
Description: This (useless) theorem, which was proved without the Axiom of Infinity, demonstrates an artifact of our definition of binary relation, which is meaningful only when its arguments exist. In particular, the antecedent cannot be satisfied unless ω exists. (Contributed by NM, 13-Nov-2003.) |
Ref | Expression |
---|---|
fin2inf | ⊢ (𝐴 ≺ ω → ω ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relsdom 8969 | . 2 ⊢ Rel ≺ | |
2 | 1 | brrelex2i 5734 | 1 ⊢ (𝐴 ≺ ω → ω ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2098 Vcvv 3463 class class class wbr 5148 ωcom 7869 ≺ csdm 8961 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2696 ax-sep 5299 ax-nul 5306 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2703 df-cleq 2717 df-clel 2802 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3465 df-dif 3948 df-un 3950 df-ss 3962 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-br 5149 df-opab 5211 df-xp 5683 df-rel 5684 df-dom 8964 df-sdom 8965 |
This theorem is referenced by: unfi2 9339 unifi2 9366 |
Copyright terms: Public domain | W3C validator |