Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fin2inf | Structured version Visualization version GIF version |
Description: This (useless) theorem, which was proved without the Axiom of Infinity, demonstrates an artifact of our definition of binary relation, which is meaningful only when its arguments exist. In particular, the antecedent cannot be satisfied unless ω exists. (Contributed by NM, 13-Nov-2003.) |
Ref | Expression |
---|---|
fin2inf | ⊢ (𝐴 ≺ ω → ω ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relsdom 8714 | . 2 ⊢ Rel ≺ | |
2 | 1 | brrelex2i 5643 | 1 ⊢ (𝐴 ≺ ω → ω ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2109 Vcvv 3430 class class class wbr 5078 ωcom 7700 ≺ csdm 8706 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-br 5079 df-opab 5141 df-xp 5594 df-rel 5595 df-dom 8709 df-sdom 8710 |
This theorem is referenced by: unfi2 9044 unifi2 9070 |
Copyright terms: Public domain | W3C validator |