| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fin2inf | Structured version Visualization version GIF version | ||
| Description: This (useless) theorem, which was proved without the Axiom of Infinity, demonstrates an artifact of our definition of binary relation, which is meaningful only when its arguments exist. In particular, the antecedent cannot be satisfied unless ω exists. (Contributed by NM, 13-Nov-2003.) |
| Ref | Expression |
|---|---|
| fin2inf | ⊢ (𝐴 ≺ ω → ω ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relsdom 8974 | . 2 ⊢ Rel ≺ | |
| 2 | 1 | brrelex2i 5722 | 1 ⊢ (𝐴 ≺ ω → ω ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2107 Vcvv 3463 class class class wbr 5123 ωcom 7869 ≺ csdm 8966 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5124 df-opab 5186 df-xp 5671 df-rel 5672 df-dom 8969 df-sdom 8970 |
| This theorem is referenced by: unfi2 9330 unifi2 9367 |
| Copyright terms: Public domain | W3C validator |