| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fin2inf | Structured version Visualization version GIF version | ||
| Description: This (useless) theorem, which was proved without the Axiom of Infinity, demonstrates an artifact of our definition of binary relation, which is meaningful only when its arguments exist. In particular, the antecedent cannot be satisfied unless ω exists. (Contributed by NM, 13-Nov-2003.) |
| Ref | Expression |
|---|---|
| fin2inf | ⊢ (𝐴 ≺ ω → ω ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relsdom 8971 | . 2 ⊢ Rel ≺ | |
| 2 | 1 | brrelex2i 5716 | 1 ⊢ (𝐴 ≺ ω → ω ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Vcvv 3464 class class class wbr 5124 ωcom 7866 ≺ csdm 8963 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5125 df-opab 5187 df-xp 5665 df-rel 5666 df-dom 8966 df-sdom 8967 |
| This theorem is referenced by: unfi2 9325 unifi2 9362 |
| Copyright terms: Public domain | W3C validator |