MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin2inf Structured version   Visualization version   GIF version

Theorem fin2inf 9325
Description: This (useless) theorem, which was proved without the Axiom of Infinity, demonstrates an artifact of our definition of binary relation, which is meaningful only when its arguments exist. In particular, the antecedent cannot be satisfied unless ω exists. (Contributed by NM, 13-Nov-2003.)
Assertion
Ref Expression
fin2inf (𝐴 ≺ ω → ω ∈ V)

Proof of Theorem fin2inf
StepHypRef Expression
1 relsdom 8962 . 2 Rel ≺
21brrelex2i 5729 1 (𝐴 ≺ ω → ω ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2099  Vcvv 3469   class class class wbr 5142  ωcom 7864  csdm 8954
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2698  ax-sep 5293  ax-nul 5300  ax-pr 5423
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-sb 2061  df-clab 2705  df-cleq 2719  df-clel 2805  df-ral 3057  df-rex 3066  df-rab 3428  df-v 3471  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631  df-br 5143  df-opab 5205  df-xp 5678  df-rel 5679  df-dom 8957  df-sdom 8958
This theorem is referenced by:  unfi2  9331  unifi2  9358
  Copyright terms: Public domain W3C validator