| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fin2inf | Structured version Visualization version GIF version | ||
| Description: This (useless) theorem, which was proved without the Axiom of Infinity, demonstrates an artifact of our definition of binary relation, which is meaningful only when its arguments exist. In particular, the antecedent cannot be satisfied unless ω exists. (Contributed by NM, 13-Nov-2003.) |
| Ref | Expression |
|---|---|
| fin2inf | ⊢ (𝐴 ≺ ω → ω ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relsdom 8876 | . 2 ⊢ Rel ≺ | |
| 2 | 1 | brrelex2i 5673 | 1 ⊢ (𝐴 ≺ ω → ω ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 Vcvv 3436 class class class wbr 5091 ωcom 7796 ≺ csdm 8868 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-br 5092 df-opab 5154 df-xp 5622 df-rel 5623 df-dom 8871 df-sdom 8872 |
| This theorem is referenced by: unfi2 9194 unifi2 9229 |
| Copyright terms: Public domain | W3C validator |