![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fin2inf | Structured version Visualization version GIF version |
Description: This (useless) theorem, which was proved without the Axiom of Infinity, demonstrates an artifact of our definition of binary relation, which is meaningful only when its arguments exist. In particular, the antecedent cannot be satisfied unless ω exists. (Contributed by NM, 13-Nov-2003.) |
Ref | Expression |
---|---|
fin2inf | ⊢ (𝐴 ≺ ω → ω ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relsdom 8962 | . 2 ⊢ Rel ≺ | |
2 | 1 | brrelex2i 5729 | 1 ⊢ (𝐴 ≺ ω → ω ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2099 Vcvv 3469 class class class wbr 5142 ωcom 7864 ≺ csdm 8954 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pr 5423 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2705 df-cleq 2719 df-clel 2805 df-ral 3057 df-rex 3066 df-rab 3428 df-v 3471 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-br 5143 df-opab 5205 df-xp 5678 df-rel 5679 df-dom 8957 df-sdom 8958 |
This theorem is referenced by: unfi2 9331 unifi2 9358 |
Copyright terms: Public domain | W3C validator |