MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin2inf Structured version   Visualization version   GIF version

Theorem fin2inf 9260
Description: This (useless) theorem, which was proved without the Axiom of Infinity, demonstrates an artifact of our definition of binary relation, which is meaningful only when its arguments exist. In particular, the antecedent cannot be satisfied unless ω exists. (Contributed by NM, 13-Nov-2003.)
Assertion
Ref Expression
fin2inf (𝐴 ≺ ω → ω ∈ V)

Proof of Theorem fin2inf
StepHypRef Expression
1 relsdom 8928 . 2 Rel ≺
21brrelex2i 5698 1 (𝐴 ≺ ω → ω ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  Vcvv 3450   class class class wbr 5110  ωcom 7845  csdm 8920
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-br 5111  df-opab 5173  df-xp 5647  df-rel 5648  df-dom 8923  df-sdom 8924
This theorem is referenced by:  unfi2  9266  unifi2  9303
  Copyright terms: Public domain W3C validator