MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infn0ALT Structured version   Visualization version   GIF version

Theorem infn0ALT 9339
Description: Shorter proof of infn0 9338 using ax-un 7754. (Contributed by NM, 23-Oct-2004.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
infn0ALT (ω ≼ 𝐴𝐴 ≠ ∅)

Proof of Theorem infn0ALT
StepHypRef Expression
1 peano1 7911 . . 3 ∅ ∈ ω
2 infsdomnn 9336 . . 3 ((ω ≼ 𝐴 ∧ ∅ ∈ ω) → ∅ ≺ 𝐴)
31, 2mpan2 691 . 2 (ω ≼ 𝐴 → ∅ ≺ 𝐴)
4 reldom 8990 . . . 4 Rel ≼
54brrelex2i 5746 . . 3 (ω ≼ 𝐴𝐴 ∈ V)
6 0sdomg 9143 . . 3 (𝐴 ∈ V → (∅ ≺ 𝐴𝐴 ≠ ∅))
75, 6syl 17 . 2 (ω ≼ 𝐴 → (∅ ≺ 𝐴𝐴 ≠ ∅))
83, 7mpbid 232 1 (ω ≼ 𝐴𝐴 ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wcel 2106  wne 2938  Vcvv 3478  c0 4339   class class class wbr 5148  ωcom 7887  cdom 8982  csdm 8983
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-om 7888  df-1o 8505  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator