MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infn0ALT Structured version   Visualization version   GIF version

Theorem infn0ALT 9318
Description: Shorter proof of infn0 9317 using ax-un 7734. (Contributed by NM, 23-Oct-2004.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
infn0ALT (ω ≼ 𝐴𝐴 ≠ ∅)

Proof of Theorem infn0ALT
StepHypRef Expression
1 peano1 7889 . . 3 ∅ ∈ ω
2 infsdomnn 9315 . . 3 ((ω ≼ 𝐴 ∧ ∅ ∈ ω) → ∅ ≺ 𝐴)
31, 2mpan2 691 . 2 (ω ≼ 𝐴 → ∅ ≺ 𝐴)
4 reldom 8970 . . . 4 Rel ≼
54brrelex2i 5716 . . 3 (ω ≼ 𝐴𝐴 ∈ V)
6 0sdomg 9123 . . 3 (𝐴 ∈ V → (∅ ≺ 𝐴𝐴 ≠ ∅))
75, 6syl 17 . 2 (ω ≼ 𝐴 → (∅ ≺ 𝐴𝐴 ≠ ∅))
83, 7mpbid 232 1 (ω ≼ 𝐴𝐴 ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wcel 2109  wne 2933  Vcvv 3464  c0 4313   class class class wbr 5124  ωcom 7866  cdom 8962  csdm 8963
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-om 7867  df-1o 8485  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator