![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > unfi2 | Structured version Visualization version GIF version |
Description: The union of two finite sets is finite. Part of Corollary 6K of [Enderton] p. 144. This version of unfi 9168 is useful only if we assume the Axiom of Infinity (see comments in fin2inf 9305). (Contributed by NM, 22-Oct-2004.) (Revised by Mario Carneiro, 27-Apr-2015.) |
Ref | Expression |
---|---|
unfi2 | ⊢ ((𝐴 ≺ ω ∧ 𝐵 ≺ ω) → (𝐴 ∪ 𝐵) ≺ ω) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isfinite2 9297 | . . 3 ⊢ (𝐴 ≺ ω → 𝐴 ∈ Fin) | |
2 | isfinite2 9297 | . . 3 ⊢ (𝐵 ≺ ω → 𝐵 ∈ Fin) | |
3 | unfi 9168 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴 ∪ 𝐵) ∈ Fin) | |
4 | 1, 2, 3 | syl2an 596 | . 2 ⊢ ((𝐴 ≺ ω ∧ 𝐵 ≺ ω) → (𝐴 ∪ 𝐵) ∈ Fin) |
5 | fin2inf 9305 | . . . 4 ⊢ (𝐴 ≺ ω → ω ∈ V) | |
6 | 5 | adantr 481 | . . 3 ⊢ ((𝐴 ≺ ω ∧ 𝐵 ≺ ω) → ω ∈ V) |
7 | isfiniteg 9300 | . . 3 ⊢ (ω ∈ V → ((𝐴 ∪ 𝐵) ∈ Fin ↔ (𝐴 ∪ 𝐵) ≺ ω)) | |
8 | 6, 7 | syl 17 | . 2 ⊢ ((𝐴 ≺ ω ∧ 𝐵 ≺ ω) → ((𝐴 ∪ 𝐵) ∈ Fin ↔ (𝐴 ∪ 𝐵) ≺ ω)) |
9 | 4, 8 | mpbid 231 | 1 ⊢ ((𝐴 ≺ ω ∧ 𝐵 ≺ ω) → (𝐴 ∪ 𝐵) ≺ ω) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∈ wcel 2106 Vcvv 3474 ∪ cun 3945 class class class wbr 5147 ωcom 7851 ≺ csdm 8934 Fincfn 8935 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-ov 7408 df-om 7852 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 |
This theorem is referenced by: djufi 10177 cdainflem 10178 infunsdom1 10204 |
Copyright terms: Public domain | W3C validator |