![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > unfi2 | Structured version Visualization version GIF version |
Description: The union of two finite sets is finite. Part of Corollary 6K of [Enderton] p. 144. This version of unfi 9178 is useful only if we assume the Axiom of Infinity (see comments in fin2inf 9315). (Contributed by NM, 22-Oct-2004.) (Revised by Mario Carneiro, 27-Apr-2015.) |
Ref | Expression |
---|---|
unfi2 | ⊢ ((𝐴 ≺ ω ∧ 𝐵 ≺ ω) → (𝐴 ∪ 𝐵) ≺ ω) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isfinite2 9307 | . . 3 ⊢ (𝐴 ≺ ω → 𝐴 ∈ Fin) | |
2 | isfinite2 9307 | . . 3 ⊢ (𝐵 ≺ ω → 𝐵 ∈ Fin) | |
3 | unfi 9178 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴 ∪ 𝐵) ∈ Fin) | |
4 | 1, 2, 3 | syl2an 595 | . 2 ⊢ ((𝐴 ≺ ω ∧ 𝐵 ≺ ω) → (𝐴 ∪ 𝐵) ∈ Fin) |
5 | fin2inf 9315 | . . . 4 ⊢ (𝐴 ≺ ω → ω ∈ V) | |
6 | 5 | adantr 480 | . . 3 ⊢ ((𝐴 ≺ ω ∧ 𝐵 ≺ ω) → ω ∈ V) |
7 | isfiniteg 9310 | . . 3 ⊢ (ω ∈ V → ((𝐴 ∪ 𝐵) ∈ Fin ↔ (𝐴 ∪ 𝐵) ≺ ω)) | |
8 | 6, 7 | syl 17 | . 2 ⊢ ((𝐴 ≺ ω ∧ 𝐵 ≺ ω) → ((𝐴 ∪ 𝐵) ∈ Fin ↔ (𝐴 ∪ 𝐵) ≺ ω)) |
9 | 4, 8 | mpbid 231 | 1 ⊢ ((𝐴 ≺ ω ∧ 𝐵 ≺ ω) → (𝐴 ∪ 𝐵) ≺ ω) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∈ wcel 2105 Vcvv 3473 ∪ cun 3946 class class class wbr 5148 ωcom 7859 ≺ csdm 8944 Fincfn 8945 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7415 df-om 7860 df-2nd 7980 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-rdg 8416 df-1o 8472 df-er 8709 df-en 8946 df-dom 8947 df-sdom 8948 df-fin 8949 |
This theorem is referenced by: djufi 10187 cdainflem 10188 infunsdom1 10214 |
Copyright terms: Public domain | W3C validator |