MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unfi2 Structured version   Visualization version   GIF version

Theorem unfi2 9325
Description: The union of two finite sets is finite. Part of Corollary 6K of [Enderton] p. 144. This version of unfi 9190 is useful only if we assume the Axiom of Infinity (see comments in fin2inf 9319). (Contributed by NM, 22-Oct-2004.) (Revised by Mario Carneiro, 27-Apr-2015.)
Assertion
Ref Expression
unfi2 ((𝐴 ≺ ω ∧ 𝐵 ≺ ω) → (𝐴𝐵) ≺ ω)

Proof of Theorem unfi2
StepHypRef Expression
1 isfinite2 9311 . . 3 (𝐴 ≺ ω → 𝐴 ∈ Fin)
2 isfinite2 9311 . . 3 (𝐵 ≺ ω → 𝐵 ∈ Fin)
3 unfi 9190 . . 3 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴𝐵) ∈ Fin)
41, 2, 3syl2an 596 . 2 ((𝐴 ≺ ω ∧ 𝐵 ≺ ω) → (𝐴𝐵) ∈ Fin)
5 fin2inf 9319 . . . 4 (𝐴 ≺ ω → ω ∈ V)
65adantr 480 . . 3 ((𝐴 ≺ ω ∧ 𝐵 ≺ ω) → ω ∈ V)
7 isfiniteg 9314 . . 3 (ω ∈ V → ((𝐴𝐵) ∈ Fin ↔ (𝐴𝐵) ≺ ω))
86, 7syl 17 . 2 ((𝐴 ≺ ω ∧ 𝐵 ≺ ω) → ((𝐴𝐵) ∈ Fin ↔ (𝐴𝐵) ≺ ω))
94, 8mpbid 232 1 ((𝐴 ≺ ω ∧ 𝐵 ≺ ω) → (𝐴𝐵) ≺ ω)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2109  Vcvv 3464  cun 3929   class class class wbr 5124  ωcom 7866  csdm 8963  Fincfn 8964
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7413  df-om 7867  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968
This theorem is referenced by:  djufi  10206  cdainflem  10207  infunsdom1  10231
  Copyright terms: Public domain W3C validator