MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unfilem1 Structured version   Visualization version   GIF version

Theorem unfilem1 8785
Description: Lemma for proving that the union of two finite sets is finite. (Contributed by NM, 10-Nov-2002.) (Revised by Mario Carneiro, 31-Aug-2015.)
Hypotheses
Ref Expression
unfilem1.1 𝐴 ∈ ω
unfilem1.2 𝐵 ∈ ω
unfilem1.3 𝐹 = (𝑥𝐵 ↦ (𝐴 +o 𝑥))
Assertion
Ref Expression
unfilem1 ran 𝐹 = ((𝐴 +o 𝐵) ∖ 𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem unfilem1
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 unfilem1.2 . . . . . . . . . 10 𝐵 ∈ ω
2 elnn 7593 . . . . . . . . . 10 ((𝑥𝐵𝐵 ∈ ω) → 𝑥 ∈ ω)
31, 2mpan2 689 . . . . . . . . 9 (𝑥𝐵𝑥 ∈ ω)
4 unfilem1.1 . . . . . . . . . 10 𝐴 ∈ ω
5 nnaord 8248 . . . . . . . . . 10 ((𝑥 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴 ∈ ω) → (𝑥𝐵 ↔ (𝐴 +o 𝑥) ∈ (𝐴 +o 𝐵)))
61, 4, 5mp3an23 1449 . . . . . . . . 9 (𝑥 ∈ ω → (𝑥𝐵 ↔ (𝐴 +o 𝑥) ∈ (𝐴 +o 𝐵)))
73, 6syl 17 . . . . . . . 8 (𝑥𝐵 → (𝑥𝐵 ↔ (𝐴 +o 𝑥) ∈ (𝐴 +o 𝐵)))
87ibi 269 . . . . . . 7 (𝑥𝐵 → (𝐴 +o 𝑥) ∈ (𝐴 +o 𝐵))
9 nnaword1 8258 . . . . . . . . 9 ((𝐴 ∈ ω ∧ 𝑥 ∈ ω) → 𝐴 ⊆ (𝐴 +o 𝑥))
10 nnord 7591 . . . . . . . . . 10 (𝐴 ∈ ω → Ord 𝐴)
11 nnacl 8240 . . . . . . . . . . 11 ((𝐴 ∈ ω ∧ 𝑥 ∈ ω) → (𝐴 +o 𝑥) ∈ ω)
12 nnord 7591 . . . . . . . . . . 11 ((𝐴 +o 𝑥) ∈ ω → Ord (𝐴 +o 𝑥))
1311, 12syl 17 . . . . . . . . . 10 ((𝐴 ∈ ω ∧ 𝑥 ∈ ω) → Ord (𝐴 +o 𝑥))
14 ordtri1 6227 . . . . . . . . . 10 ((Ord 𝐴 ∧ Ord (𝐴 +o 𝑥)) → (𝐴 ⊆ (𝐴 +o 𝑥) ↔ ¬ (𝐴 +o 𝑥) ∈ 𝐴))
1510, 13, 14syl2an2r 683 . . . . . . . . 9 ((𝐴 ∈ ω ∧ 𝑥 ∈ ω) → (𝐴 ⊆ (𝐴 +o 𝑥) ↔ ¬ (𝐴 +o 𝑥) ∈ 𝐴))
169, 15mpbid 234 . . . . . . . 8 ((𝐴 ∈ ω ∧ 𝑥 ∈ ω) → ¬ (𝐴 +o 𝑥) ∈ 𝐴)
174, 3, 16sylancr 589 . . . . . . 7 (𝑥𝐵 → ¬ (𝐴 +o 𝑥) ∈ 𝐴)
188, 17jca 514 . . . . . 6 (𝑥𝐵 → ((𝐴 +o 𝑥) ∈ (𝐴 +o 𝐵) ∧ ¬ (𝐴 +o 𝑥) ∈ 𝐴))
19 eleq1 2903 . . . . . . . 8 (𝑦 = (𝐴 +o 𝑥) → (𝑦 ∈ (𝐴 +o 𝐵) ↔ (𝐴 +o 𝑥) ∈ (𝐴 +o 𝐵)))
20 eleq1 2903 . . . . . . . . 9 (𝑦 = (𝐴 +o 𝑥) → (𝑦𝐴 ↔ (𝐴 +o 𝑥) ∈ 𝐴))
2120notbid 320 . . . . . . . 8 (𝑦 = (𝐴 +o 𝑥) → (¬ 𝑦𝐴 ↔ ¬ (𝐴 +o 𝑥) ∈ 𝐴))
2219, 21anbi12d 632 . . . . . . 7 (𝑦 = (𝐴 +o 𝑥) → ((𝑦 ∈ (𝐴 +o 𝐵) ∧ ¬ 𝑦𝐴) ↔ ((𝐴 +o 𝑥) ∈ (𝐴 +o 𝐵) ∧ ¬ (𝐴 +o 𝑥) ∈ 𝐴)))
2322biimparc 482 . . . . . 6 ((((𝐴 +o 𝑥) ∈ (𝐴 +o 𝐵) ∧ ¬ (𝐴 +o 𝑥) ∈ 𝐴) ∧ 𝑦 = (𝐴 +o 𝑥)) → (𝑦 ∈ (𝐴 +o 𝐵) ∧ ¬ 𝑦𝐴))
2418, 23sylan 582 . . . . 5 ((𝑥𝐵𝑦 = (𝐴 +o 𝑥)) → (𝑦 ∈ (𝐴 +o 𝐵) ∧ ¬ 𝑦𝐴))
2524rexlimiva 3284 . . . 4 (∃𝑥𝐵 𝑦 = (𝐴 +o 𝑥) → (𝑦 ∈ (𝐴 +o 𝐵) ∧ ¬ 𝑦𝐴))
264, 1nnacli 8243 . . . . . . . 8 (𝐴 +o 𝐵) ∈ ω
27 elnn 7593 . . . . . . . 8 ((𝑦 ∈ (𝐴 +o 𝐵) ∧ (𝐴 +o 𝐵) ∈ ω) → 𝑦 ∈ ω)
2826, 27mpan2 689 . . . . . . 7 (𝑦 ∈ (𝐴 +o 𝐵) → 𝑦 ∈ ω)
29 nnord 7591 . . . . . . . . 9 (𝑦 ∈ ω → Ord 𝑦)
30 ordtri1 6227 . . . . . . . . 9 ((Ord 𝐴 ∧ Ord 𝑦) → (𝐴𝑦 ↔ ¬ 𝑦𝐴))
3110, 29, 30syl2an 597 . . . . . . . 8 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (𝐴𝑦 ↔ ¬ 𝑦𝐴))
32 nnawordex 8266 . . . . . . . 8 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (𝐴𝑦 ↔ ∃𝑥 ∈ ω (𝐴 +o 𝑥) = 𝑦))
3331, 32bitr3d 283 . . . . . . 7 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (¬ 𝑦𝐴 ↔ ∃𝑥 ∈ ω (𝐴 +o 𝑥) = 𝑦))
344, 28, 33sylancr 589 . . . . . 6 (𝑦 ∈ (𝐴 +o 𝐵) → (¬ 𝑦𝐴 ↔ ∃𝑥 ∈ ω (𝐴 +o 𝑥) = 𝑦))
35 eleq1 2903 . . . . . . . . . 10 ((𝐴 +o 𝑥) = 𝑦 → ((𝐴 +o 𝑥) ∈ (𝐴 +o 𝐵) ↔ 𝑦 ∈ (𝐴 +o 𝐵)))
366, 35sylan9bb 512 . . . . . . . . 9 ((𝑥 ∈ ω ∧ (𝐴 +o 𝑥) = 𝑦) → (𝑥𝐵𝑦 ∈ (𝐴 +o 𝐵)))
3736biimprcd 252 . . . . . . . 8 (𝑦 ∈ (𝐴 +o 𝐵) → ((𝑥 ∈ ω ∧ (𝐴 +o 𝑥) = 𝑦) → 𝑥𝐵))
38 eqcom 2831 . . . . . . . . . 10 ((𝐴 +o 𝑥) = 𝑦𝑦 = (𝐴 +o 𝑥))
3938biimpi 218 . . . . . . . . 9 ((𝐴 +o 𝑥) = 𝑦𝑦 = (𝐴 +o 𝑥))
4039adantl 484 . . . . . . . 8 ((𝑥 ∈ ω ∧ (𝐴 +o 𝑥) = 𝑦) → 𝑦 = (𝐴 +o 𝑥))
4137, 40jca2 516 . . . . . . 7 (𝑦 ∈ (𝐴 +o 𝐵) → ((𝑥 ∈ ω ∧ (𝐴 +o 𝑥) = 𝑦) → (𝑥𝐵𝑦 = (𝐴 +o 𝑥))))
4241reximdv2 3274 . . . . . 6 (𝑦 ∈ (𝐴 +o 𝐵) → (∃𝑥 ∈ ω (𝐴 +o 𝑥) = 𝑦 → ∃𝑥𝐵 𝑦 = (𝐴 +o 𝑥)))
4334, 42sylbid 242 . . . . 5 (𝑦 ∈ (𝐴 +o 𝐵) → (¬ 𝑦𝐴 → ∃𝑥𝐵 𝑦 = (𝐴 +o 𝑥)))
4443imp 409 . . . 4 ((𝑦 ∈ (𝐴 +o 𝐵) ∧ ¬ 𝑦𝐴) → ∃𝑥𝐵 𝑦 = (𝐴 +o 𝑥))
4525, 44impbii 211 . . 3 (∃𝑥𝐵 𝑦 = (𝐴 +o 𝑥) ↔ (𝑦 ∈ (𝐴 +o 𝐵) ∧ ¬ 𝑦𝐴))
46 unfilem1.3 . . . 4 𝐹 = (𝑥𝐵 ↦ (𝐴 +o 𝑥))
47 ovex 7192 . . . 4 (𝐴 +o 𝑥) ∈ V
4846, 47elrnmpti 5835 . . 3 (𝑦 ∈ ran 𝐹 ↔ ∃𝑥𝐵 𝑦 = (𝐴 +o 𝑥))
49 eldif 3949 . . 3 (𝑦 ∈ ((𝐴 +o 𝐵) ∖ 𝐴) ↔ (𝑦 ∈ (𝐴 +o 𝐵) ∧ ¬ 𝑦𝐴))
5045, 48, 493bitr4i 305 . 2 (𝑦 ∈ ran 𝐹𝑦 ∈ ((𝐴 +o 𝐵) ∖ 𝐴))
5150eqriv 2821 1 ran 𝐹 = ((𝐴 +o 𝐵) ∖ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 208  wa 398   = wceq 1536  wcel 2113  wrex 3142  cdif 3936  wss 3939  cmpt 5149  ran crn 5559  Ord word 6193  (class class class)co 7159  ωcom 7583   +o coa 8102
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-ral 3146  df-rex 3147  df-reu 3148  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-int 4880  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-ov 7162  df-oprab 7163  df-mpo 7164  df-om 7584  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-oadd 8109
This theorem is referenced by:  unfilem2  8786
  Copyright terms: Public domain W3C validator