MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unfilem1 Structured version   Visualization version   GIF version

Theorem unfilem1 8579
Description: Lemma for proving that the union of two finite sets is finite. (Contributed by NM, 10-Nov-2002.) (Revised by Mario Carneiro, 31-Aug-2015.)
Hypotheses
Ref Expression
unfilem1.1 𝐴 ∈ ω
unfilem1.2 𝐵 ∈ ω
unfilem1.3 𝐹 = (𝑥𝐵 ↦ (𝐴 +o 𝑥))
Assertion
Ref Expression
unfilem1 ran 𝐹 = ((𝐴 +o 𝐵) ∖ 𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem unfilem1
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 unfilem1.2 . . . . . . . . . 10 𝐵 ∈ ω
2 elnn 7408 . . . . . . . . . 10 ((𝑥𝐵𝐵 ∈ ω) → 𝑥 ∈ ω)
31, 2mpan2 678 . . . . . . . . 9 (𝑥𝐵𝑥 ∈ ω)
4 unfilem1.1 . . . . . . . . . 10 𝐴 ∈ ω
5 nnaord 8048 . . . . . . . . . 10 ((𝑥 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴 ∈ ω) → (𝑥𝐵 ↔ (𝐴 +o 𝑥) ∈ (𝐴 +o 𝐵)))
61, 4, 5mp3an23 1432 . . . . . . . . 9 (𝑥 ∈ ω → (𝑥𝐵 ↔ (𝐴 +o 𝑥) ∈ (𝐴 +o 𝐵)))
73, 6syl 17 . . . . . . . 8 (𝑥𝐵 → (𝑥𝐵 ↔ (𝐴 +o 𝑥) ∈ (𝐴 +o 𝐵)))
87ibi 259 . . . . . . 7 (𝑥𝐵 → (𝐴 +o 𝑥) ∈ (𝐴 +o 𝐵))
9 nnaword1 8058 . . . . . . . . 9 ((𝐴 ∈ ω ∧ 𝑥 ∈ ω) → 𝐴 ⊆ (𝐴 +o 𝑥))
10 nnord 7406 . . . . . . . . . 10 (𝐴 ∈ ω → Ord 𝐴)
11 nnacl 8040 . . . . . . . . . . 11 ((𝐴 ∈ ω ∧ 𝑥 ∈ ω) → (𝐴 +o 𝑥) ∈ ω)
12 nnord 7406 . . . . . . . . . . 11 ((𝐴 +o 𝑥) ∈ ω → Ord (𝐴 +o 𝑥))
1311, 12syl 17 . . . . . . . . . 10 ((𝐴 ∈ ω ∧ 𝑥 ∈ ω) → Ord (𝐴 +o 𝑥))
14 ordtri1 6064 . . . . . . . . . 10 ((Ord 𝐴 ∧ Ord (𝐴 +o 𝑥)) → (𝐴 ⊆ (𝐴 +o 𝑥) ↔ ¬ (𝐴 +o 𝑥) ∈ 𝐴))
1510, 13, 14syl2an2r 672 . . . . . . . . 9 ((𝐴 ∈ ω ∧ 𝑥 ∈ ω) → (𝐴 ⊆ (𝐴 +o 𝑥) ↔ ¬ (𝐴 +o 𝑥) ∈ 𝐴))
169, 15mpbid 224 . . . . . . . 8 ((𝐴 ∈ ω ∧ 𝑥 ∈ ω) → ¬ (𝐴 +o 𝑥) ∈ 𝐴)
174, 3, 16sylancr 578 . . . . . . 7 (𝑥𝐵 → ¬ (𝐴 +o 𝑥) ∈ 𝐴)
188, 17jca 504 . . . . . 6 (𝑥𝐵 → ((𝐴 +o 𝑥) ∈ (𝐴 +o 𝐵) ∧ ¬ (𝐴 +o 𝑥) ∈ 𝐴))
19 eleq1 2853 . . . . . . . 8 (𝑦 = (𝐴 +o 𝑥) → (𝑦 ∈ (𝐴 +o 𝐵) ↔ (𝐴 +o 𝑥) ∈ (𝐴 +o 𝐵)))
20 eleq1 2853 . . . . . . . . 9 (𝑦 = (𝐴 +o 𝑥) → (𝑦𝐴 ↔ (𝐴 +o 𝑥) ∈ 𝐴))
2120notbid 310 . . . . . . . 8 (𝑦 = (𝐴 +o 𝑥) → (¬ 𝑦𝐴 ↔ ¬ (𝐴 +o 𝑥) ∈ 𝐴))
2219, 21anbi12d 621 . . . . . . 7 (𝑦 = (𝐴 +o 𝑥) → ((𝑦 ∈ (𝐴 +o 𝐵) ∧ ¬ 𝑦𝐴) ↔ ((𝐴 +o 𝑥) ∈ (𝐴 +o 𝐵) ∧ ¬ (𝐴 +o 𝑥) ∈ 𝐴)))
2322biimparc 472 . . . . . 6 ((((𝐴 +o 𝑥) ∈ (𝐴 +o 𝐵) ∧ ¬ (𝐴 +o 𝑥) ∈ 𝐴) ∧ 𝑦 = (𝐴 +o 𝑥)) → (𝑦 ∈ (𝐴 +o 𝐵) ∧ ¬ 𝑦𝐴))
2418, 23sylan 572 . . . . 5 ((𝑥𝐵𝑦 = (𝐴 +o 𝑥)) → (𝑦 ∈ (𝐴 +o 𝐵) ∧ ¬ 𝑦𝐴))
2524rexlimiva 3226 . . . 4 (∃𝑥𝐵 𝑦 = (𝐴 +o 𝑥) → (𝑦 ∈ (𝐴 +o 𝐵) ∧ ¬ 𝑦𝐴))
264, 1nnacli 8043 . . . . . . . 8 (𝐴 +o 𝐵) ∈ ω
27 elnn 7408 . . . . . . . 8 ((𝑦 ∈ (𝐴 +o 𝐵) ∧ (𝐴 +o 𝐵) ∈ ω) → 𝑦 ∈ ω)
2826, 27mpan2 678 . . . . . . 7 (𝑦 ∈ (𝐴 +o 𝐵) → 𝑦 ∈ ω)
29 nnord 7406 . . . . . . . . 9 (𝑦 ∈ ω → Ord 𝑦)
30 ordtri1 6064 . . . . . . . . 9 ((Ord 𝐴 ∧ Ord 𝑦) → (𝐴𝑦 ↔ ¬ 𝑦𝐴))
3110, 29, 30syl2an 586 . . . . . . . 8 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (𝐴𝑦 ↔ ¬ 𝑦𝐴))
32 nnawordex 8066 . . . . . . . 8 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (𝐴𝑦 ↔ ∃𝑥 ∈ ω (𝐴 +o 𝑥) = 𝑦))
3331, 32bitr3d 273 . . . . . . 7 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (¬ 𝑦𝐴 ↔ ∃𝑥 ∈ ω (𝐴 +o 𝑥) = 𝑦))
344, 28, 33sylancr 578 . . . . . 6 (𝑦 ∈ (𝐴 +o 𝐵) → (¬ 𝑦𝐴 ↔ ∃𝑥 ∈ ω (𝐴 +o 𝑥) = 𝑦))
35 eleq1 2853 . . . . . . . . . 10 ((𝐴 +o 𝑥) = 𝑦 → ((𝐴 +o 𝑥) ∈ (𝐴 +o 𝐵) ↔ 𝑦 ∈ (𝐴 +o 𝐵)))
366, 35sylan9bb 502 . . . . . . . . 9 ((𝑥 ∈ ω ∧ (𝐴 +o 𝑥) = 𝑦) → (𝑥𝐵𝑦 ∈ (𝐴 +o 𝐵)))
3736biimprcd 242 . . . . . . . 8 (𝑦 ∈ (𝐴 +o 𝐵) → ((𝑥 ∈ ω ∧ (𝐴 +o 𝑥) = 𝑦) → 𝑥𝐵))
38 eqcom 2785 . . . . . . . . . 10 ((𝐴 +o 𝑥) = 𝑦𝑦 = (𝐴 +o 𝑥))
3938biimpi 208 . . . . . . . . 9 ((𝐴 +o 𝑥) = 𝑦𝑦 = (𝐴 +o 𝑥))
4039adantl 474 . . . . . . . 8 ((𝑥 ∈ ω ∧ (𝐴 +o 𝑥) = 𝑦) → 𝑦 = (𝐴 +o 𝑥))
4137, 40jca2 506 . . . . . . 7 (𝑦 ∈ (𝐴 +o 𝐵) → ((𝑥 ∈ ω ∧ (𝐴 +o 𝑥) = 𝑦) → (𝑥𝐵𝑦 = (𝐴 +o 𝑥))))
4241reximdv2 3216 . . . . . 6 (𝑦 ∈ (𝐴 +o 𝐵) → (∃𝑥 ∈ ω (𝐴 +o 𝑥) = 𝑦 → ∃𝑥𝐵 𝑦 = (𝐴 +o 𝑥)))
4334, 42sylbid 232 . . . . 5 (𝑦 ∈ (𝐴 +o 𝐵) → (¬ 𝑦𝐴 → ∃𝑥𝐵 𝑦 = (𝐴 +o 𝑥)))
4443imp 398 . . . 4 ((𝑦 ∈ (𝐴 +o 𝐵) ∧ ¬ 𝑦𝐴) → ∃𝑥𝐵 𝑦 = (𝐴 +o 𝑥))
4525, 44impbii 201 . . 3 (∃𝑥𝐵 𝑦 = (𝐴 +o 𝑥) ↔ (𝑦 ∈ (𝐴 +o 𝐵) ∧ ¬ 𝑦𝐴))
46 unfilem1.3 . . . 4 𝐹 = (𝑥𝐵 ↦ (𝐴 +o 𝑥))
47 ovex 7010 . . . 4 (𝐴 +o 𝑥) ∈ V
4846, 47elrnmpti 5676 . . 3 (𝑦 ∈ ran 𝐹 ↔ ∃𝑥𝐵 𝑦 = (𝐴 +o 𝑥))
49 eldif 3841 . . 3 (𝑦 ∈ ((𝐴 +o 𝐵) ∖ 𝐴) ↔ (𝑦 ∈ (𝐴 +o 𝐵) ∧ ¬ 𝑦𝐴))
5045, 48, 493bitr4i 295 . 2 (𝑦 ∈ ran 𝐹𝑦 ∈ ((𝐴 +o 𝐵) ∖ 𝐴))
5150eqriv 2775 1 ran 𝐹 = ((𝐴 +o 𝐵) ∖ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 198  wa 387   = wceq 1507  wcel 2050  wrex 3089  cdif 3828  wss 3831  cmpt 5009  ran crn 5409  Ord word 6030  (class class class)co 6978  ωcom 7398   +o coa 7904
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2750  ax-sep 5061  ax-nul 5068  ax-pow 5120  ax-pr 5187  ax-un 7281
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2583  df-clab 2759  df-cleq 2771  df-clel 2846  df-nfc 2918  df-ne 2968  df-ral 3093  df-rex 3094  df-reu 3095  df-rab 3097  df-v 3417  df-sbc 3684  df-csb 3789  df-dif 3834  df-un 3836  df-in 3838  df-ss 3845  df-pss 3847  df-nul 4181  df-if 4352  df-pw 4425  df-sn 4443  df-pr 4445  df-tp 4447  df-op 4449  df-uni 4714  df-int 4751  df-iun 4795  df-br 4931  df-opab 4993  df-mpt 5010  df-tr 5032  df-id 5313  df-eprel 5318  df-po 5327  df-so 5328  df-fr 5367  df-we 5369  df-xp 5414  df-rel 5415  df-cnv 5416  df-co 5417  df-dm 5418  df-rn 5419  df-res 5420  df-ima 5421  df-pred 5988  df-ord 6034  df-on 6035  df-lim 6036  df-suc 6037  df-iota 6154  df-fun 6192  df-fn 6193  df-f 6194  df-f1 6195  df-fo 6196  df-f1o 6197  df-fv 6198  df-ov 6981  df-oprab 6982  df-mpo 6983  df-om 7399  df-wrecs 7752  df-recs 7814  df-rdg 7852  df-oadd 7911
This theorem is referenced by:  unfilem2  8580
  Copyright terms: Public domain W3C validator