MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unfilem1 Structured version   Visualization version   GIF version

Theorem unfilem1 8779
Description: Lemma for proving that the union of two finite sets is finite. (Contributed by NM, 10-Nov-2002.) (Revised by Mario Carneiro, 31-Aug-2015.)
Hypotheses
Ref Expression
unfilem1.1 𝐴 ∈ ω
unfilem1.2 𝐵 ∈ ω
unfilem1.3 𝐹 = (𝑥𝐵 ↦ (𝐴 +o 𝑥))
Assertion
Ref Expression
unfilem1 ran 𝐹 = ((𝐴 +o 𝐵) ∖ 𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem unfilem1
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 unfilem1.2 . . . . . . . . . 10 𝐵 ∈ ω
2 elnn 7584 . . . . . . . . . 10 ((𝑥𝐵𝐵 ∈ ω) → 𝑥 ∈ ω)
31, 2mpan2 690 . . . . . . . . 9 (𝑥𝐵𝑥 ∈ ω)
4 unfilem1.1 . . . . . . . . . 10 𝐴 ∈ ω
5 nnaord 8241 . . . . . . . . . 10 ((𝑥 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴 ∈ ω) → (𝑥𝐵 ↔ (𝐴 +o 𝑥) ∈ (𝐴 +o 𝐵)))
61, 4, 5mp3an23 1450 . . . . . . . . 9 (𝑥 ∈ ω → (𝑥𝐵 ↔ (𝐴 +o 𝑥) ∈ (𝐴 +o 𝐵)))
73, 6syl 17 . . . . . . . 8 (𝑥𝐵 → (𝑥𝐵 ↔ (𝐴 +o 𝑥) ∈ (𝐴 +o 𝐵)))
87ibi 270 . . . . . . 7 (𝑥𝐵 → (𝐴 +o 𝑥) ∈ (𝐴 +o 𝐵))
9 nnaword1 8251 . . . . . . . . 9 ((𝐴 ∈ ω ∧ 𝑥 ∈ ω) → 𝐴 ⊆ (𝐴 +o 𝑥))
10 nnord 7582 . . . . . . . . . 10 (𝐴 ∈ ω → Ord 𝐴)
11 nnacl 8233 . . . . . . . . . . 11 ((𝐴 ∈ ω ∧ 𝑥 ∈ ω) → (𝐴 +o 𝑥) ∈ ω)
12 nnord 7582 . . . . . . . . . . 11 ((𝐴 +o 𝑥) ∈ ω → Ord (𝐴 +o 𝑥))
1311, 12syl 17 . . . . . . . . . 10 ((𝐴 ∈ ω ∧ 𝑥 ∈ ω) → Ord (𝐴 +o 𝑥))
14 ordtri1 6211 . . . . . . . . . 10 ((Ord 𝐴 ∧ Ord (𝐴 +o 𝑥)) → (𝐴 ⊆ (𝐴 +o 𝑥) ↔ ¬ (𝐴 +o 𝑥) ∈ 𝐴))
1510, 13, 14syl2an2r 684 . . . . . . . . 9 ((𝐴 ∈ ω ∧ 𝑥 ∈ ω) → (𝐴 ⊆ (𝐴 +o 𝑥) ↔ ¬ (𝐴 +o 𝑥) ∈ 𝐴))
169, 15mpbid 235 . . . . . . . 8 ((𝐴 ∈ ω ∧ 𝑥 ∈ ω) → ¬ (𝐴 +o 𝑥) ∈ 𝐴)
174, 3, 16sylancr 590 . . . . . . 7 (𝑥𝐵 → ¬ (𝐴 +o 𝑥) ∈ 𝐴)
188, 17jca 515 . . . . . 6 (𝑥𝐵 → ((𝐴 +o 𝑥) ∈ (𝐴 +o 𝐵) ∧ ¬ (𝐴 +o 𝑥) ∈ 𝐴))
19 eleq1 2903 . . . . . . . 8 (𝑦 = (𝐴 +o 𝑥) → (𝑦 ∈ (𝐴 +o 𝐵) ↔ (𝐴 +o 𝑥) ∈ (𝐴 +o 𝐵)))
20 eleq1 2903 . . . . . . . . 9 (𝑦 = (𝐴 +o 𝑥) → (𝑦𝐴 ↔ (𝐴 +o 𝑥) ∈ 𝐴))
2120notbid 321 . . . . . . . 8 (𝑦 = (𝐴 +o 𝑥) → (¬ 𝑦𝐴 ↔ ¬ (𝐴 +o 𝑥) ∈ 𝐴))
2219, 21anbi12d 633 . . . . . . 7 (𝑦 = (𝐴 +o 𝑥) → ((𝑦 ∈ (𝐴 +o 𝐵) ∧ ¬ 𝑦𝐴) ↔ ((𝐴 +o 𝑥) ∈ (𝐴 +o 𝐵) ∧ ¬ (𝐴 +o 𝑥) ∈ 𝐴)))
2322biimparc 483 . . . . . 6 ((((𝐴 +o 𝑥) ∈ (𝐴 +o 𝐵) ∧ ¬ (𝐴 +o 𝑥) ∈ 𝐴) ∧ 𝑦 = (𝐴 +o 𝑥)) → (𝑦 ∈ (𝐴 +o 𝐵) ∧ ¬ 𝑦𝐴))
2418, 23sylan 583 . . . . 5 ((𝑥𝐵𝑦 = (𝐴 +o 𝑥)) → (𝑦 ∈ (𝐴 +o 𝐵) ∧ ¬ 𝑦𝐴))
2524rexlimiva 3273 . . . 4 (∃𝑥𝐵 𝑦 = (𝐴 +o 𝑥) → (𝑦 ∈ (𝐴 +o 𝐵) ∧ ¬ 𝑦𝐴))
264, 1nnacli 8236 . . . . . . . 8 (𝐴 +o 𝐵) ∈ ω
27 elnn 7584 . . . . . . . 8 ((𝑦 ∈ (𝐴 +o 𝐵) ∧ (𝐴 +o 𝐵) ∈ ω) → 𝑦 ∈ ω)
2826, 27mpan2 690 . . . . . . 7 (𝑦 ∈ (𝐴 +o 𝐵) → 𝑦 ∈ ω)
29 nnord 7582 . . . . . . . . 9 (𝑦 ∈ ω → Ord 𝑦)
30 ordtri1 6211 . . . . . . . . 9 ((Ord 𝐴 ∧ Ord 𝑦) → (𝐴𝑦 ↔ ¬ 𝑦𝐴))
3110, 29, 30syl2an 598 . . . . . . . 8 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (𝐴𝑦 ↔ ¬ 𝑦𝐴))
32 nnawordex 8259 . . . . . . . 8 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (𝐴𝑦 ↔ ∃𝑥 ∈ ω (𝐴 +o 𝑥) = 𝑦))
3331, 32bitr3d 284 . . . . . . 7 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (¬ 𝑦𝐴 ↔ ∃𝑥 ∈ ω (𝐴 +o 𝑥) = 𝑦))
344, 28, 33sylancr 590 . . . . . 6 (𝑦 ∈ (𝐴 +o 𝐵) → (¬ 𝑦𝐴 ↔ ∃𝑥 ∈ ω (𝐴 +o 𝑥) = 𝑦))
35 eleq1 2903 . . . . . . . . . 10 ((𝐴 +o 𝑥) = 𝑦 → ((𝐴 +o 𝑥) ∈ (𝐴 +o 𝐵) ↔ 𝑦 ∈ (𝐴 +o 𝐵)))
366, 35sylan9bb 513 . . . . . . . . 9 ((𝑥 ∈ ω ∧ (𝐴 +o 𝑥) = 𝑦) → (𝑥𝐵𝑦 ∈ (𝐴 +o 𝐵)))
3736biimprcd 253 . . . . . . . 8 (𝑦 ∈ (𝐴 +o 𝐵) → ((𝑥 ∈ ω ∧ (𝐴 +o 𝑥) = 𝑦) → 𝑥𝐵))
38 eqcom 2831 . . . . . . . . . 10 ((𝐴 +o 𝑥) = 𝑦𝑦 = (𝐴 +o 𝑥))
3938biimpi 219 . . . . . . . . 9 ((𝐴 +o 𝑥) = 𝑦𝑦 = (𝐴 +o 𝑥))
4039adantl 485 . . . . . . . 8 ((𝑥 ∈ ω ∧ (𝐴 +o 𝑥) = 𝑦) → 𝑦 = (𝐴 +o 𝑥))
4137, 40jca2 517 . . . . . . 7 (𝑦 ∈ (𝐴 +o 𝐵) → ((𝑥 ∈ ω ∧ (𝐴 +o 𝑥) = 𝑦) → (𝑥𝐵𝑦 = (𝐴 +o 𝑥))))
4241reximdv2 3263 . . . . . 6 (𝑦 ∈ (𝐴 +o 𝐵) → (∃𝑥 ∈ ω (𝐴 +o 𝑥) = 𝑦 → ∃𝑥𝐵 𝑦 = (𝐴 +o 𝑥)))
4334, 42sylbid 243 . . . . 5 (𝑦 ∈ (𝐴 +o 𝐵) → (¬ 𝑦𝐴 → ∃𝑥𝐵 𝑦 = (𝐴 +o 𝑥)))
4443imp 410 . . . 4 ((𝑦 ∈ (𝐴 +o 𝐵) ∧ ¬ 𝑦𝐴) → ∃𝑥𝐵 𝑦 = (𝐴 +o 𝑥))
4525, 44impbii 212 . . 3 (∃𝑥𝐵 𝑦 = (𝐴 +o 𝑥) ↔ (𝑦 ∈ (𝐴 +o 𝐵) ∧ ¬ 𝑦𝐴))
46 unfilem1.3 . . . 4 𝐹 = (𝑥𝐵 ↦ (𝐴 +o 𝑥))
47 ovex 7182 . . . 4 (𝐴 +o 𝑥) ∈ V
4846, 47elrnmpti 5819 . . 3 (𝑦 ∈ ran 𝐹 ↔ ∃𝑥𝐵 𝑦 = (𝐴 +o 𝑥))
49 eldif 3929 . . 3 (𝑦 ∈ ((𝐴 +o 𝐵) ∖ 𝐴) ↔ (𝑦 ∈ (𝐴 +o 𝐵) ∧ ¬ 𝑦𝐴))
5045, 48, 493bitr4i 306 . 2 (𝑦 ∈ ran 𝐹𝑦 ∈ ((𝐴 +o 𝐵) ∖ 𝐴))
5150eqriv 2821 1 ran 𝐹 = ((𝐴 +o 𝐵) ∖ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 209  wa 399   = wceq 1538  wcel 2115  wrex 3134  cdif 3916  wss 3919  cmpt 5132  ran crn 5543  Ord word 6177  (class class class)co 7149  ωcom 7574   +o coa 8095
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7455
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-ral 3138  df-rex 3139  df-reu 3140  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4825  df-int 4863  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5447  df-eprel 5452  df-po 5461  df-so 5462  df-fr 5501  df-we 5503  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-pred 6135  df-ord 6181  df-on 6182  df-lim 6183  df-suc 6184  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-ov 7152  df-oprab 7153  df-mpo 7154  df-om 7575  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-oadd 8102
This theorem is referenced by:  unfilem2  8780
  Copyright terms: Public domain W3C validator