MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fneq12 Structured version   Visualization version   GIF version

Theorem fneq12 6634
Description: Equality theorem for function predicate with domain. (Contributed by Thierry Arnoux, 31-Jan-2017.)
Assertion
Ref Expression
fneq12 ((𝐹 = 𝐺𝐴 = 𝐵) → (𝐹 Fn 𝐴𝐺 Fn 𝐵))

Proof of Theorem fneq12
StepHypRef Expression
1 simpl 482 . 2 ((𝐹 = 𝐺𝐴 = 𝐵) → 𝐹 = 𝐺)
2 simpr 484 . 2 ((𝐹 = 𝐺𝐴 = 𝐵) → 𝐴 = 𝐵)
31, 2fneq12d 6633 1 ((𝐹 = 𝐺𝐴 = 𝐵) → (𝐹 Fn 𝐴𝐺 Fn 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540   Fn wfn 6526
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-br 5120  df-opab 5182  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-fun 6533  df-fn 6534
This theorem is referenced by:  fprlem1  8299  tfrlem3a  8391  frrlem15  9771  hashresfn  14358
  Copyright terms: Public domain W3C validator