Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fneq12 | Structured version Visualization version GIF version |
Description: Equality theorem for function predicate with domain. (Contributed by Thierry Arnoux, 31-Jan-2017.) |
Ref | Expression |
---|---|
fneq12 | ⊢ ((𝐹 = 𝐺 ∧ 𝐴 = 𝐵) → (𝐹 Fn 𝐴 ↔ 𝐺 Fn 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 482 | . 2 ⊢ ((𝐹 = 𝐺 ∧ 𝐴 = 𝐵) → 𝐹 = 𝐺) | |
2 | simpr 484 | . 2 ⊢ ((𝐹 = 𝐺 ∧ 𝐴 = 𝐵) → 𝐴 = 𝐵) | |
3 | 1, 2 | fneq12d 6512 | 1 ⊢ ((𝐹 = 𝐺 ∧ 𝐴 = 𝐵) → (𝐹 Fn 𝐴 ↔ 𝐺 Fn 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 Fn wfn 6413 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-fun 6420 df-fn 6421 |
This theorem is referenced by: fprlem1 8087 tfrlem3a 8179 frrlem15 9446 hashresfn 13982 |
Copyright terms: Public domain | W3C validator |