MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fneq12 Structured version   Visualization version   GIF version

Theorem fneq12 6637
Description: Equality theorem for function predicate with domain. (Contributed by Thierry Arnoux, 31-Jan-2017.)
Assertion
Ref Expression
fneq12 ((𝐹 = 𝐺𝐴 = 𝐵) → (𝐹 Fn 𝐴𝐺 Fn 𝐵))

Proof of Theorem fneq12
StepHypRef Expression
1 simpl 484 . 2 ((𝐹 = 𝐺𝐴 = 𝐵) → 𝐹 = 𝐺)
2 simpr 486 . 2 ((𝐹 = 𝐺𝐴 = 𝐵) → 𝐴 = 𝐵)
31, 2fneq12d 6636 1 ((𝐹 = 𝐺𝐴 = 𝐵) → (𝐹 Fn 𝐴𝐺 Fn 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1542   Fn wfn 6530
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-rab 3434  df-v 3477  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-nul 4321  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631  df-br 5145  df-opab 5207  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-fun 6537  df-fn 6538
This theorem is referenced by:  fprlem1  8272  tfrlem3a  8364  frrlem15  9739  hashresfn  14287
  Copyright terms: Public domain W3C validator