![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fneq12 | Structured version Visualization version GIF version |
Description: Equality theorem for function predicate with domain. (Contributed by Thierry Arnoux, 31-Jan-2017.) |
Ref | Expression |
---|---|
fneq12 | ⊢ ((𝐹 = 𝐺 ∧ 𝐴 = 𝐵) → (𝐹 Fn 𝐴 ↔ 𝐺 Fn 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 482 | . 2 ⊢ ((𝐹 = 𝐺 ∧ 𝐴 = 𝐵) → 𝐹 = 𝐺) | |
2 | simpr 484 | . 2 ⊢ ((𝐹 = 𝐺 ∧ 𝐴 = 𝐵) → 𝐴 = 𝐵) | |
3 | 1, 2 | fneq12d 6674 | 1 ⊢ ((𝐹 = 𝐺 ∧ 𝐴 = 𝐵) → (𝐹 Fn 𝐴 ↔ 𝐺 Fn 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 Fn wfn 6568 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-fun 6575 df-fn 6576 |
This theorem is referenced by: fprlem1 8341 tfrlem3a 8433 frrlem15 9826 hashresfn 14389 |
Copyright terms: Public domain | W3C validator |