![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fneq1i | Structured version Visualization version GIF version |
Description: Equality inference for function predicate with domain. (Contributed by Paul Chapman, 22-Jun-2011.) |
Ref | Expression |
---|---|
fneq1i.1 | ⊢ 𝐹 = 𝐺 |
Ref | Expression |
---|---|
fneq1i | ⊢ (𝐹 Fn 𝐴 ↔ 𝐺 Fn 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fneq1i.1 | . 2 ⊢ 𝐹 = 𝐺 | |
2 | fneq1 6660 | . 2 ⊢ (𝐹 = 𝐺 → (𝐹 Fn 𝐴 ↔ 𝐺 Fn 𝐴)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐹 Fn 𝐴 ↔ 𝐺 Fn 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 = wceq 1537 Fn wfn 6558 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-br 5149 df-opab 5211 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-fun 6565 df-fn 6566 |
This theorem is referenced by: fnunop 6685 mptfnf 6704 fnopabg 6706 f1oun 6868 f1oi 6887 f1osn 6889 ovid 7574 curry1 8128 curry2 8131 fsplitfpar 8142 frrlem11 8320 wfrlem5OLD 8352 wfrlem13OLD 8360 tfrlem10 8426 tfr1 8436 seqomlem2 8490 seqomlem3 8491 seqomlem4 8492 fnseqom 8494 unblem4 9329 r1fnon 9805 alephfnon 10103 alephfplem4 10145 alephfp 10146 cfsmolem 10308 infpssrlem3 10343 compssiso 10412 hsmexlem5 10468 axdclem2 10558 wunex2 10776 wuncval2 10785 om2uzrani 13990 om2uzf1oi 13991 uzrdglem 13995 uzrdgfni 13996 uzrdg0i 13997 hashkf 14368 dmaf 18103 cdaf 18104 prdsinvlem 19080 srg1zr 20233 pws1 20339 rngcrescrhm 20701 frlmphl 21819 ovolunlem1 25546 0plef 25721 0pledm 25722 itg1ge0 25735 itg1addlem4OLD 25749 mbfi1fseqlem5 25769 itg2addlem 25808 qaa 26380 precsexlem1 28246 precsexlem2 28247 precsexlem3 28248 precsexlem4 28249 precsexlem5 28250 ex-fpar 30491 0vfval 30635 xrge0pluscn 33901 bnj927 34762 bnj535 34883 fullfunfnv 35928 neibastop2lem 36343 fnmptif 45211 fourierdlem42 46105 fcoreslem4 47016 rngcrescrhmALTV 48124 |
Copyright terms: Public domain | W3C validator |