| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fneq1i | Structured version Visualization version GIF version | ||
| Description: Equality inference for function predicate with domain. (Contributed by Paul Chapman, 22-Jun-2011.) |
| Ref | Expression |
|---|---|
| fneq1i.1 | ⊢ 𝐹 = 𝐺 |
| Ref | Expression |
|---|---|
| fneq1i | ⊢ (𝐹 Fn 𝐴 ↔ 𝐺 Fn 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fneq1i.1 | . 2 ⊢ 𝐹 = 𝐺 | |
| 2 | fneq1 6612 | . 2 ⊢ (𝐹 = 𝐺 → (𝐹 Fn 𝐴 ↔ 𝐺 Fn 𝐴)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐹 Fn 𝐴 ↔ 𝐺 Fn 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 Fn wfn 6509 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-fun 6516 df-fn 6517 |
| This theorem is referenced by: fnunop 6637 mptfnf 6656 fnopabg 6658 f1oun 6822 f1oi 6841 f1osn 6843 ovid 7533 curry1 8086 curry2 8089 fsplitfpar 8100 frrlem11 8278 tfrlem10 8358 tfr1 8368 seqomlem2 8422 seqomlem3 8423 seqomlem4 8424 fnseqom 8426 unblem4 9249 r1fnon 9727 alephfnon 10025 alephfplem4 10067 alephfp 10068 cfsmolem 10230 infpssrlem3 10265 compssiso 10334 hsmexlem5 10390 axdclem2 10480 wunex2 10698 wuncval2 10707 om2uzrani 13924 om2uzf1oi 13925 uzrdglem 13929 uzrdgfni 13930 uzrdg0i 13931 hashkf 14304 dmaf 18018 cdaf 18019 prdsinvlem 18988 srg1zr 20131 pws1 20241 rngcrescrhm 20600 frlmphl 21697 ovolunlem1 25405 0plef 25580 0pledm 25581 itg1ge0 25594 mbfi1fseqlem5 25627 itg2addlem 25666 qaa 26238 precsexlem1 28116 precsexlem2 28117 precsexlem3 28118 precsexlem4 28119 precsexlem5 28120 ex-fpar 30398 0vfval 30542 xrge0pluscn 33937 bnj927 34766 bnj535 34887 fullfunfnv 35941 neibastop2lem 36355 fnmptif 45266 fourierdlem42 46154 fcoreslem4 47071 upgrimwlklem1 47901 rngcrescrhmALTV 48272 isofval2 49025 |
| Copyright terms: Public domain | W3C validator |