![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fneq1i | Structured version Visualization version GIF version |
Description: Equality inference for function predicate with domain. (Contributed by Paul Chapman, 22-Jun-2011.) |
Ref | Expression |
---|---|
fneq1i.1 | ⊢ 𝐹 = 𝐺 |
Ref | Expression |
---|---|
fneq1i | ⊢ (𝐹 Fn 𝐴 ↔ 𝐺 Fn 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fneq1i.1 | . 2 ⊢ 𝐹 = 𝐺 | |
2 | fneq1 6670 | . 2 ⊢ (𝐹 = 𝐺 → (𝐹 Fn 𝐴 ↔ 𝐺 Fn 𝐴)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐹 Fn 𝐴 ↔ 𝐺 Fn 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 = wceq 1537 Fn wfn 6568 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-fun 6575 df-fn 6576 |
This theorem is referenced by: fnunop 6695 mptfnf 6715 fnopabg 6717 f1oun 6881 f1oi 6900 f1osn 6902 ovid 7591 curry1 8145 curry2 8148 fsplitfpar 8159 frrlem11 8337 wfrlem5OLD 8369 wfrlem13OLD 8377 tfrlem10 8443 tfr1 8453 seqomlem2 8507 seqomlem3 8508 seqomlem4 8509 fnseqom 8511 unblem4 9359 r1fnon 9836 alephfnon 10134 alephfplem4 10176 alephfp 10177 cfsmolem 10339 infpssrlem3 10374 compssiso 10443 hsmexlem5 10499 axdclem2 10589 wunex2 10807 wuncval2 10816 om2uzrani 14003 om2uzf1oi 14004 uzrdglem 14008 uzrdgfni 14009 uzrdg0i 14010 hashkf 14381 dmaf 18116 cdaf 18117 prdsinvlem 19089 srg1zr 20242 pws1 20348 rngcrescrhm 20706 frlmphl 21824 ovolunlem1 25551 0plef 25726 0pledm 25727 itg1ge0 25740 itg1addlem4OLD 25754 mbfi1fseqlem5 25774 itg2addlem 25813 qaa 26383 precsexlem1 28249 precsexlem2 28250 precsexlem3 28251 precsexlem4 28252 precsexlem5 28253 ex-fpar 30494 0vfval 30638 xrge0pluscn 33886 bnj927 34745 bnj535 34866 fullfunfnv 35910 neibastop2lem 36326 fnmptif 45175 fourierdlem42 46070 fcoreslem4 46981 rngcrescrhmALTV 48003 |
Copyright terms: Public domain | W3C validator |