| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fneq1i | Structured version Visualization version GIF version | ||
| Description: Equality inference for function predicate with domain. (Contributed by Paul Chapman, 22-Jun-2011.) |
| Ref | Expression |
|---|---|
| fneq1i.1 | ⊢ 𝐹 = 𝐺 |
| Ref | Expression |
|---|---|
| fneq1i | ⊢ (𝐹 Fn 𝐴 ↔ 𝐺 Fn 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fneq1i.1 | . 2 ⊢ 𝐹 = 𝐺 | |
| 2 | fneq1 6577 | . 2 ⊢ (𝐹 = 𝐺 → (𝐹 Fn 𝐴 ↔ 𝐺 Fn 𝐴)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐹 Fn 𝐴 ↔ 𝐺 Fn 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 Fn wfn 6481 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-br 5096 df-opab 5158 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-fun 6488 df-fn 6489 |
| This theorem is referenced by: fnunop 6602 mptfnf 6621 fnopabg 6623 f1oun 6787 f1oi 6806 f1osn 6808 ovid 7494 curry1 8044 curry2 8047 fsplitfpar 8058 frrlem11 8236 tfrlem10 8316 tfr1 8326 seqomlem2 8380 seqomlem3 8381 seqomlem4 8382 fnseqom 8384 unblem4 9200 r1fnon 9682 alephfnon 9978 alephfplem4 10020 alephfp 10021 cfsmolem 10183 infpssrlem3 10218 compssiso 10287 hsmexlem5 10343 axdclem2 10433 wunex2 10651 wuncval2 10660 om2uzrani 13877 om2uzf1oi 13878 uzrdglem 13882 uzrdgfni 13883 uzrdg0i 13884 hashkf 14257 dmaf 17974 cdaf 17975 prdsinvlem 18946 srg1zr 20118 pws1 20228 rngcrescrhm 20587 frlmphl 21706 ovolunlem1 25414 0plef 25589 0pledm 25590 itg1ge0 25603 mbfi1fseqlem5 25636 itg2addlem 25675 qaa 26247 precsexlem1 28132 precsexlem2 28133 precsexlem3 28134 precsexlem4 28135 precsexlem5 28136 ex-fpar 30424 0vfval 30568 xrge0pluscn 33909 bnj927 34738 bnj535 34859 fullfunfnv 35922 neibastop2lem 36336 fnmptif 45246 fourierdlem42 46134 cjnpoly 46877 fcoreslem4 47054 upgrimwlklem1 47885 rngcrescrhmALTV 48268 isofval2 49021 |
| Copyright terms: Public domain | W3C validator |