Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fneq1i | Structured version Visualization version GIF version |
Description: Equality inference for function predicate with domain. (Contributed by Paul Chapman, 22-Jun-2011.) |
Ref | Expression |
---|---|
fneq1i.1 | ⊢ 𝐹 = 𝐺 |
Ref | Expression |
---|---|
fneq1i | ⊢ (𝐹 Fn 𝐴 ↔ 𝐺 Fn 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fneq1i.1 | . 2 ⊢ 𝐹 = 𝐺 | |
2 | fneq1 6524 | . 2 ⊢ (𝐹 = 𝐺 → (𝐹 Fn 𝐴 ↔ 𝐺 Fn 𝐴)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐹 Fn 𝐴 ↔ 𝐺 Fn 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1539 Fn wfn 6428 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-fun 6435 df-fn 6436 |
This theorem is referenced by: fnunop 6547 mptfnf 6568 fnopabg 6570 f1oun 6735 f1oi 6754 f1osn 6756 ovid 7414 curry1 7944 curry2 7947 fsplitfpar 7959 frrlem11 8112 wfrlem5OLD 8144 wfrlem13OLD 8152 tfrlem10 8218 tfr1 8228 seqomlem2 8282 seqomlem3 8283 seqomlem4 8284 fnseqom 8286 unblem4 9069 r1fnon 9525 alephfnon 9821 alephfplem4 9863 alephfp 9864 cfsmolem 10026 infpssrlem3 10061 compssiso 10130 hsmexlem5 10186 axdclem2 10276 wunex2 10494 wuncval2 10503 om2uzrani 13672 om2uzf1oi 13673 uzrdglem 13677 uzrdgfni 13678 uzrdg0i 13679 hashkf 14046 dmaf 17764 cdaf 17765 prdsinvlem 18684 srg1zr 19765 pws1 19855 frlmphl 20988 ovolunlem1 24661 0plef 24836 0pledm 24837 itg1ge0 24850 itg1addlem4OLD 24864 mbfi1fseqlem5 24884 itg2addlem 24923 qaa 25483 ex-fpar 28826 0vfval 28968 xrge0pluscn 31890 bnj927 32749 bnj535 32870 fullfunfnv 34248 neibastop2lem 34549 fourierdlem42 43690 fcoreslem4 44560 rngcrescrhm 45643 rngcrescrhmALTV 45661 |
Copyright terms: Public domain | W3C validator |