| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fneq1i | Structured version Visualization version GIF version | ||
| Description: Equality inference for function predicate with domain. (Contributed by Paul Chapman, 22-Jun-2011.) |
| Ref | Expression |
|---|---|
| fneq1i.1 | ⊢ 𝐹 = 𝐺 |
| Ref | Expression |
|---|---|
| fneq1i | ⊢ (𝐹 Fn 𝐴 ↔ 𝐺 Fn 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fneq1i.1 | . 2 ⊢ 𝐹 = 𝐺 | |
| 2 | fneq1 6579 | . 2 ⊢ (𝐹 = 𝐺 → (𝐹 Fn 𝐴 ↔ 𝐺 Fn 𝐴)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐹 Fn 𝐴 ↔ 𝐺 Fn 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1541 Fn wfn 6483 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5096 df-opab 5158 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-fun 6490 df-fn 6491 |
| This theorem is referenced by: fnunop 6604 mptfnf 6623 fnopabg 6625 f1oun 6789 f1oiOLD 6809 f1osn 6811 ovid 7495 curry1 8042 curry2 8045 fsplitfpar 8056 frrlem11 8234 tfrlem10 8314 tfr1 8324 seqomlem2 8378 seqomlem3 8379 seqomlem4 8380 fnseqom 8382 unblem4 9188 r1fnon 9669 alephfnon 9965 alephfplem4 10007 alephfp 10008 cfsmolem 10170 infpssrlem3 10205 compssiso 10274 hsmexlem5 10330 axdclem2 10420 wunex2 10638 wuncval2 10647 om2uzrani 13863 om2uzf1oi 13864 uzrdglem 13868 uzrdgfni 13869 uzrdg0i 13870 hashkf 14243 dmaf 17960 cdaf 17961 prdsinvlem 18966 srg1zr 20137 pws1 20247 rngcrescrhm 20603 frlmphl 21722 ovolunlem1 25428 0plef 25603 0pledm 25604 itg1ge0 25617 mbfi1fseqlem5 25650 itg2addlem 25689 qaa 26261 precsexlem1 28148 precsexlem2 28149 precsexlem3 28150 precsexlem4 28151 precsexlem5 28152 ex-fpar 30446 0vfval 30590 xrge0pluscn 33976 bnj927 34804 bnj535 34925 fullfunfnv 36013 neibastop2lem 36427 fnmptif 45389 fourierdlem42 46274 cjnpoly 47016 fcoreslem4 47193 upgrimwlklem1 48024 rngcrescrhmALTV 48407 isofval2 49160 |
| Copyright terms: Public domain | W3C validator |