| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fneq1i | Structured version Visualization version GIF version | ||
| Description: Equality inference for function predicate with domain. (Contributed by Paul Chapman, 22-Jun-2011.) |
| Ref | Expression |
|---|---|
| fneq1i.1 | ⊢ 𝐹 = 𝐺 |
| Ref | Expression |
|---|---|
| fneq1i | ⊢ (𝐹 Fn 𝐴 ↔ 𝐺 Fn 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fneq1i.1 | . 2 ⊢ 𝐹 = 𝐺 | |
| 2 | fneq1 6609 | . 2 ⊢ (𝐹 = 𝐺 → (𝐹 Fn 𝐴 ↔ 𝐺 Fn 𝐴)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐹 Fn 𝐴 ↔ 𝐺 Fn 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 Fn wfn 6506 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-fun 6513 df-fn 6514 |
| This theorem is referenced by: fnunop 6634 mptfnf 6653 fnopabg 6655 f1oun 6819 f1oi 6838 f1osn 6840 ovid 7530 curry1 8083 curry2 8086 fsplitfpar 8097 frrlem11 8275 tfrlem10 8355 tfr1 8365 seqomlem2 8419 seqomlem3 8420 seqomlem4 8421 fnseqom 8423 unblem4 9242 r1fnon 9720 alephfnon 10018 alephfplem4 10060 alephfp 10061 cfsmolem 10223 infpssrlem3 10258 compssiso 10327 hsmexlem5 10383 axdclem2 10473 wunex2 10691 wuncval2 10700 om2uzrani 13917 om2uzf1oi 13918 uzrdglem 13922 uzrdgfni 13923 uzrdg0i 13924 hashkf 14297 dmaf 18011 cdaf 18012 prdsinvlem 18981 srg1zr 20124 pws1 20234 rngcrescrhm 20593 frlmphl 21690 ovolunlem1 25398 0plef 25573 0pledm 25574 itg1ge0 25587 mbfi1fseqlem5 25620 itg2addlem 25659 qaa 26231 precsexlem1 28109 precsexlem2 28110 precsexlem3 28111 precsexlem4 28112 precsexlem5 28113 ex-fpar 30391 0vfval 30535 xrge0pluscn 33930 bnj927 34759 bnj535 34880 fullfunfnv 35934 neibastop2lem 36348 fnmptif 45259 fourierdlem42 46147 cjnpoly 46890 fcoreslem4 47067 upgrimwlklem1 47897 rngcrescrhmALTV 48268 isofval2 49021 |
| Copyright terms: Public domain | W3C validator |