| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fneq1i | Structured version Visualization version GIF version | ||
| Description: Equality inference for function predicate with domain. (Contributed by Paul Chapman, 22-Jun-2011.) |
| Ref | Expression |
|---|---|
| fneq1i.1 | ⊢ 𝐹 = 𝐺 |
| Ref | Expression |
|---|---|
| fneq1i | ⊢ (𝐹 Fn 𝐴 ↔ 𝐺 Fn 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fneq1i.1 | . 2 ⊢ 𝐹 = 𝐺 | |
| 2 | fneq1 6572 | . 2 ⊢ (𝐹 = 𝐺 → (𝐹 Fn 𝐴 ↔ 𝐺 Fn 𝐴)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐹 Fn 𝐴 ↔ 𝐺 Fn 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1541 Fn wfn 6476 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-br 5092 df-opab 5154 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-fun 6483 df-fn 6484 |
| This theorem is referenced by: fnunop 6597 mptfnf 6616 fnopabg 6618 f1oun 6782 f1oi 6801 f1osn 6803 ovid 7487 curry1 8034 curry2 8037 fsplitfpar 8048 frrlem11 8226 tfrlem10 8306 tfr1 8316 seqomlem2 8370 seqomlem3 8371 seqomlem4 8372 fnseqom 8374 unblem4 9179 r1fnon 9660 alephfnon 9956 alephfplem4 9998 alephfp 9999 cfsmolem 10161 infpssrlem3 10196 compssiso 10265 hsmexlem5 10321 axdclem2 10411 wunex2 10629 wuncval2 10638 om2uzrani 13859 om2uzf1oi 13860 uzrdglem 13864 uzrdgfni 13865 uzrdg0i 13866 hashkf 14239 dmaf 17956 cdaf 17957 prdsinvlem 18962 srg1zr 20134 pws1 20244 rngcrescrhm 20600 frlmphl 21719 ovolunlem1 25426 0plef 25601 0pledm 25602 itg1ge0 25615 mbfi1fseqlem5 25648 itg2addlem 25687 qaa 26259 precsexlem1 28146 precsexlem2 28147 precsexlem3 28148 precsexlem4 28149 precsexlem5 28150 ex-fpar 30440 0vfval 30584 xrge0pluscn 33951 bnj927 34779 bnj535 34900 fullfunfnv 35986 neibastop2lem 36400 fnmptif 45308 fourierdlem42 46193 cjnpoly 46926 fcoreslem4 47103 upgrimwlklem1 47934 rngcrescrhmALTV 48317 isofval2 49070 |
| Copyright terms: Public domain | W3C validator |