| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fneq1i | Structured version Visualization version GIF version | ||
| Description: Equality inference for function predicate with domain. (Contributed by Paul Chapman, 22-Jun-2011.) |
| Ref | Expression |
|---|---|
| fneq1i.1 | ⊢ 𝐹 = 𝐺 |
| Ref | Expression |
|---|---|
| fneq1i | ⊢ (𝐹 Fn 𝐴 ↔ 𝐺 Fn 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fneq1i.1 | . 2 ⊢ 𝐹 = 𝐺 | |
| 2 | fneq1 6629 | . 2 ⊢ (𝐹 = 𝐺 → (𝐹 Fn 𝐴 ↔ 𝐺 Fn 𝐴)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐹 Fn 𝐴 ↔ 𝐺 Fn 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 Fn wfn 6526 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 df-opab 5182 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-fun 6533 df-fn 6534 |
| This theorem is referenced by: fnunop 6654 mptfnf 6673 fnopabg 6675 f1oun 6837 f1oi 6856 f1osn 6858 ovid 7548 curry1 8103 curry2 8106 fsplitfpar 8117 frrlem11 8295 wfrlem5OLD 8327 wfrlem13OLD 8335 tfrlem10 8401 tfr1 8411 seqomlem2 8465 seqomlem3 8466 seqomlem4 8467 fnseqom 8469 unblem4 9303 r1fnon 9781 alephfnon 10079 alephfplem4 10121 alephfp 10122 cfsmolem 10284 infpssrlem3 10319 compssiso 10388 hsmexlem5 10444 axdclem2 10534 wunex2 10752 wuncval2 10761 om2uzrani 13970 om2uzf1oi 13971 uzrdglem 13975 uzrdgfni 13976 uzrdg0i 13977 hashkf 14350 dmaf 18062 cdaf 18063 prdsinvlem 19032 srg1zr 20175 pws1 20285 rngcrescrhm 20644 frlmphl 21741 ovolunlem1 25450 0plef 25625 0pledm 25626 itg1ge0 25639 mbfi1fseqlem5 25672 itg2addlem 25711 qaa 26283 precsexlem1 28161 precsexlem2 28162 precsexlem3 28163 precsexlem4 28164 precsexlem5 28165 ex-fpar 30443 0vfval 30587 xrge0pluscn 33971 bnj927 34800 bnj535 34921 fullfunfnv 35964 neibastop2lem 36378 fnmptif 45289 fourierdlem42 46178 fcoreslem4 47095 upgrimwlklem1 47910 rngcrescrhmALTV 48255 isofval2 49002 |
| Copyright terms: Public domain | W3C validator |