| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > hashresfn | Structured version Visualization version GIF version | ||
| Description: Restriction of the domain of the size function. (Contributed by Thierry Arnoux, 31-Jan-2017.) |
| Ref | Expression |
|---|---|
| hashresfn | ⊢ (♯ ↾ 𝐴) Fn 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hashf 14359 | . . 3 ⊢ ♯:V⟶(ℕ0 ∪ {+∞}) | |
| 2 | ffn 6716 | . . 3 ⊢ (♯:V⟶(ℕ0 ∪ {+∞}) → ♯ Fn V) | |
| 3 | fnresin2 6674 | . . 3 ⊢ (♯ Fn V → (♯ ↾ (𝐴 ∩ V)) Fn (𝐴 ∩ V)) | |
| 4 | 1, 2, 3 | mp2b 10 | . 2 ⊢ (♯ ↾ (𝐴 ∩ V)) Fn (𝐴 ∩ V) |
| 5 | inv1 4378 | . . . 4 ⊢ (𝐴 ∩ V) = 𝐴 | |
| 6 | 5 | reseq2i 5974 | . . 3 ⊢ (♯ ↾ (𝐴 ∩ V)) = (♯ ↾ 𝐴) |
| 7 | fneq12 6644 | . . 3 ⊢ (((♯ ↾ (𝐴 ∩ V)) = (♯ ↾ 𝐴) ∧ (𝐴 ∩ V) = 𝐴) → ((♯ ↾ (𝐴 ∩ V)) Fn (𝐴 ∩ V) ↔ (♯ ↾ 𝐴) Fn 𝐴)) | |
| 8 | 6, 5, 7 | mp2an 692 | . 2 ⊢ ((♯ ↾ (𝐴 ∩ V)) Fn (𝐴 ∩ V) ↔ (♯ ↾ 𝐴) Fn 𝐴) |
| 9 | 4, 8 | mpbi 230 | 1 ⊢ (♯ ↾ 𝐴) Fn 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1539 Vcvv 3463 ∪ cun 3929 ∩ cin 3930 {csn 4606 ↾ cres 5667 Fn wfn 6536 ⟶wf 6537 +∞cpnf 11274 ℕ0cn0 12509 ♯chash 14351 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-cnex 11193 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 ax-pre-mulgt0 11214 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-int 4927 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7870 df-2nd 7997 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-1o 8488 df-er 8727 df-en 8968 df-dom 8969 df-sdom 8970 df-fin 8971 df-card 9961 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 df-sub 11476 df-neg 11477 df-nn 12249 df-n0 12510 df-xnn0 12583 df-z 12597 df-uz 12861 df-hash 14352 |
| This theorem is referenced by: hashgval2 14399 coinfliplem 34440 coinflipspace 34442 |
| Copyright terms: Public domain | W3C validator |