MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fneq12d Structured version   Visualization version   GIF version

Theorem fneq12d 6576
Description: Equality deduction for function predicate with domain. (Contributed by NM, 26-Jun-2011.)
Hypotheses
Ref Expression
fneq12d.1 (𝜑𝐹 = 𝐺)
fneq12d.2 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
fneq12d (𝜑 → (𝐹 Fn 𝐴𝐺 Fn 𝐵))

Proof of Theorem fneq12d
StepHypRef Expression
1 fneq12d.1 . . 3 (𝜑𝐹 = 𝐺)
21fneq1d 6574 . 2 (𝜑 → (𝐹 Fn 𝐴𝐺 Fn 𝐴))
3 fneq12d.2 . . 3 (𝜑𝐴 = 𝐵)
43fneq2d 6575 . 2 (𝜑 → (𝐺 Fn 𝐴𝐺 Fn 𝐵))
52, 4bitrd 279 1 (𝜑 → (𝐹 Fn 𝐴𝐺 Fn 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1541   Fn wfn 6476
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-br 5092  df-opab 5154  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-fun 6483  df-fn 6484
This theorem is referenced by:  fneq12  6577  seqfn  13917  sscres  17727  reschomf  17735  funcres  17800  psrvscafval  21883  ressprdsds  24284  rrxmfval  25331  ex-fpar  30437  sseqfn  34398  tfsconcatfn  43370  funcoressn  47072
  Copyright terms: Public domain W3C validator