| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fneq12d | Structured version Visualization version GIF version | ||
| Description: Equality deduction for function predicate with domain. (Contributed by NM, 26-Jun-2011.) |
| Ref | Expression |
|---|---|
| fneq12d.1 | ⊢ (𝜑 → 𝐹 = 𝐺) |
| fneq12d.2 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| fneq12d | ⊢ (𝜑 → (𝐹 Fn 𝐴 ↔ 𝐺 Fn 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fneq12d.1 | . . 3 ⊢ (𝜑 → 𝐹 = 𝐺) | |
| 2 | 1 | fneq1d 6579 | . 2 ⊢ (𝜑 → (𝐹 Fn 𝐴 ↔ 𝐺 Fn 𝐴)) |
| 3 | fneq12d.2 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 4 | 3 | fneq2d 6580 | . 2 ⊢ (𝜑 → (𝐺 Fn 𝐴 ↔ 𝐺 Fn 𝐵)) |
| 5 | 2, 4 | bitrd 279 | 1 ⊢ (𝜑 → (𝐹 Fn 𝐴 ↔ 𝐺 Fn 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 Fn wfn 6481 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-br 5094 df-opab 5156 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-fun 6488 df-fn 6489 |
| This theorem is referenced by: fneq12 6582 seqfn 13922 sscres 17732 reschomf 17740 funcres 17805 psrvscafval 21887 ressprdsds 24287 rrxmfval 25334 ex-fpar 30444 sseqfn 34424 tfsconcatfn 43455 funcoressn 47166 |
| Copyright terms: Public domain | W3C validator |