| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fneq12d | Structured version Visualization version GIF version | ||
| Description: Equality deduction for function predicate with domain. (Contributed by NM, 26-Jun-2011.) |
| Ref | Expression |
|---|---|
| fneq12d.1 | ⊢ (𝜑 → 𝐹 = 𝐺) |
| fneq12d.2 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| fneq12d | ⊢ (𝜑 → (𝐹 Fn 𝐴 ↔ 𝐺 Fn 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fneq12d.1 | . . 3 ⊢ (𝜑 → 𝐹 = 𝐺) | |
| 2 | 1 | fneq1d 6614 | . 2 ⊢ (𝜑 → (𝐹 Fn 𝐴 ↔ 𝐺 Fn 𝐴)) |
| 3 | fneq12d.2 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 4 | 3 | fneq2d 6615 | . 2 ⊢ (𝜑 → (𝐺 Fn 𝐴 ↔ 𝐺 Fn 𝐵)) |
| 5 | 2, 4 | bitrd 279 | 1 ⊢ (𝜑 → (𝐹 Fn 𝐴 ↔ 𝐺 Fn 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 Fn wfn 6509 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-fun 6516 df-fn 6517 |
| This theorem is referenced by: fneq12 6617 seqfn 13985 sscres 17792 reschomf 17800 funcres 17865 psrvscafval 21864 ressprdsds 24266 rrxmfval 25313 ex-fpar 30398 sseqfn 34388 tfsconcatfn 43334 funcoressn 47047 |
| Copyright terms: Public domain | W3C validator |