MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fneq12d Structured version   Visualization version   GIF version

Theorem fneq12d 6616
Description: Equality deduction for function predicate with domain. (Contributed by NM, 26-Jun-2011.)
Hypotheses
Ref Expression
fneq12d.1 (𝜑𝐹 = 𝐺)
fneq12d.2 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
fneq12d (𝜑 → (𝐹 Fn 𝐴𝐺 Fn 𝐵))

Proof of Theorem fneq12d
StepHypRef Expression
1 fneq12d.1 . . 3 (𝜑𝐹 = 𝐺)
21fneq1d 6614 . 2 (𝜑 → (𝐹 Fn 𝐴𝐺 Fn 𝐴))
3 fneq12d.2 . . 3 (𝜑𝐴 = 𝐵)
43fneq2d 6615 . 2 (𝜑 → (𝐺 Fn 𝐴𝐺 Fn 𝐵))
52, 4bitrd 279 1 (𝜑 → (𝐹 Fn 𝐴𝐺 Fn 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540   Fn wfn 6509
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-br 5111  df-opab 5173  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-fun 6516  df-fn 6517
This theorem is referenced by:  fneq12  6617  seqfn  13985  sscres  17792  reschomf  17800  funcres  17865  psrvscafval  21864  ressprdsds  24266  rrxmfval  25313  ex-fpar  30398  sseqfn  34388  tfsconcatfn  43334  funcoressn  47047
  Copyright terms: Public domain W3C validator