| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fneq12d | Structured version Visualization version GIF version | ||
| Description: Equality deduction for function predicate with domain. (Contributed by NM, 26-Jun-2011.) |
| Ref | Expression |
|---|---|
| fneq12d.1 | ⊢ (𝜑 → 𝐹 = 𝐺) |
| fneq12d.2 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| fneq12d | ⊢ (𝜑 → (𝐹 Fn 𝐴 ↔ 𝐺 Fn 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fneq12d.1 | . . 3 ⊢ (𝜑 → 𝐹 = 𝐺) | |
| 2 | 1 | fneq1d 6631 | . 2 ⊢ (𝜑 → (𝐹 Fn 𝐴 ↔ 𝐺 Fn 𝐴)) |
| 3 | fneq12d.2 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 4 | 3 | fneq2d 6632 | . 2 ⊢ (𝜑 → (𝐺 Fn 𝐴 ↔ 𝐺 Fn 𝐵)) |
| 5 | 2, 4 | bitrd 279 | 1 ⊢ (𝜑 → (𝐹 Fn 𝐴 ↔ 𝐺 Fn 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 Fn wfn 6526 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 df-opab 5182 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-fun 6533 df-fn 6534 |
| This theorem is referenced by: fneq12 6634 seqfn 14031 sscres 17836 reschomf 17844 funcres 17909 psrvscafval 21908 ressprdsds 24310 rrxmfval 25358 ex-fpar 30443 sseqfn 34422 tfsconcatfn 43362 funcoressn 47071 |
| Copyright terms: Public domain | W3C validator |