MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tfrlem12 Structured version   Visualization version   GIF version

Theorem tfrlem12 8360
Description: Lemma for transfinite recursion. Show 𝐶 is an acceptable function. (Contributed by NM, 15-Aug-1994.) (Revised by Mario Carneiro, 9-May-2015.)
Hypotheses
Ref Expression
tfrlem.1 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
tfrlem.3 𝐶 = (recs(𝐹) ∪ {⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩})
Assertion
Ref Expression
tfrlem12 (recs(𝐹) ∈ V → 𝐶𝐴)
Distinct variable groups:   𝑥,𝑓,𝑦,𝐶   𝑓,𝐹,𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑓)

Proof of Theorem tfrlem12
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 tfrlem.1 . . . . . 6 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
21tfrlem8 8355 . . . . 5 Ord dom recs(𝐹)
32a1i 11 . . . 4 (recs(𝐹) ∈ V → Ord dom recs(𝐹))
4 dmexg 7880 . . . 4 (recs(𝐹) ∈ V → dom recs(𝐹) ∈ V)
5 elon2 6346 . . . 4 (dom recs(𝐹) ∈ On ↔ (Ord dom recs(𝐹) ∧ dom recs(𝐹) ∈ V))
63, 4, 5sylanbrc 583 . . 3 (recs(𝐹) ∈ V → dom recs(𝐹) ∈ On)
7 onsuc 7790 . . . 4 (dom recs(𝐹) ∈ On → suc dom recs(𝐹) ∈ On)
8 tfrlem.3 . . . . 5 𝐶 = (recs(𝐹) ∪ {⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩})
91, 8tfrlem10 8358 . . . 4 (dom recs(𝐹) ∈ On → 𝐶 Fn suc dom recs(𝐹))
101, 8tfrlem11 8359 . . . . . 6 (dom recs(𝐹) ∈ On → (𝑧 ∈ suc dom recs(𝐹) → (𝐶𝑧) = (𝐹‘(𝐶𝑧))))
1110ralrimiv 3125 . . . . 5 (dom recs(𝐹) ∈ On → ∀𝑧 ∈ suc dom recs(𝐹)(𝐶𝑧) = (𝐹‘(𝐶𝑧)))
12 fveq2 6861 . . . . . . 7 (𝑧 = 𝑦 → (𝐶𝑧) = (𝐶𝑦))
13 reseq2 5948 . . . . . . . 8 (𝑧 = 𝑦 → (𝐶𝑧) = (𝐶𝑦))
1413fveq2d 6865 . . . . . . 7 (𝑧 = 𝑦 → (𝐹‘(𝐶𝑧)) = (𝐹‘(𝐶𝑦)))
1512, 14eqeq12d 2746 . . . . . 6 (𝑧 = 𝑦 → ((𝐶𝑧) = (𝐹‘(𝐶𝑧)) ↔ (𝐶𝑦) = (𝐹‘(𝐶𝑦))))
1615cbvralvw 3216 . . . . 5 (∀𝑧 ∈ suc dom recs(𝐹)(𝐶𝑧) = (𝐹‘(𝐶𝑧)) ↔ ∀𝑦 ∈ suc dom recs(𝐹)(𝐶𝑦) = (𝐹‘(𝐶𝑦)))
1711, 16sylib 218 . . . 4 (dom recs(𝐹) ∈ On → ∀𝑦 ∈ suc dom recs(𝐹)(𝐶𝑦) = (𝐹‘(𝐶𝑦)))
18 fneq2 6613 . . . . . 6 (𝑥 = suc dom recs(𝐹) → (𝐶 Fn 𝑥𝐶 Fn suc dom recs(𝐹)))
19 raleq 3298 . . . . . 6 (𝑥 = suc dom recs(𝐹) → (∀𝑦𝑥 (𝐶𝑦) = (𝐹‘(𝐶𝑦)) ↔ ∀𝑦 ∈ suc dom recs(𝐹)(𝐶𝑦) = (𝐹‘(𝐶𝑦))))
2018, 19anbi12d 632 . . . . 5 (𝑥 = suc dom recs(𝐹) → ((𝐶 Fn 𝑥 ∧ ∀𝑦𝑥 (𝐶𝑦) = (𝐹‘(𝐶𝑦))) ↔ (𝐶 Fn suc dom recs(𝐹) ∧ ∀𝑦 ∈ suc dom recs(𝐹)(𝐶𝑦) = (𝐹‘(𝐶𝑦)))))
2120rspcev 3591 . . . 4 ((suc dom recs(𝐹) ∈ On ∧ (𝐶 Fn suc dom recs(𝐹) ∧ ∀𝑦 ∈ suc dom recs(𝐹)(𝐶𝑦) = (𝐹‘(𝐶𝑦)))) → ∃𝑥 ∈ On (𝐶 Fn 𝑥 ∧ ∀𝑦𝑥 (𝐶𝑦) = (𝐹‘(𝐶𝑦))))
227, 9, 17, 21syl12anc 836 . . 3 (dom recs(𝐹) ∈ On → ∃𝑥 ∈ On (𝐶 Fn 𝑥 ∧ ∀𝑦𝑥 (𝐶𝑦) = (𝐹‘(𝐶𝑦))))
236, 22syl 17 . 2 (recs(𝐹) ∈ V → ∃𝑥 ∈ On (𝐶 Fn 𝑥 ∧ ∀𝑦𝑥 (𝐶𝑦) = (𝐹‘(𝐶𝑦))))
24 snex 5394 . . . . 5 {⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩} ∈ V
25 unexg 7722 . . . . 5 ((recs(𝐹) ∈ V ∧ {⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩} ∈ V) → (recs(𝐹) ∪ {⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩}) ∈ V)
2624, 25mpan2 691 . . . 4 (recs(𝐹) ∈ V → (recs(𝐹) ∪ {⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩}) ∈ V)
278, 26eqeltrid 2833 . . 3 (recs(𝐹) ∈ V → 𝐶 ∈ V)
28 fneq1 6612 . . . . . 6 (𝑓 = 𝐶 → (𝑓 Fn 𝑥𝐶 Fn 𝑥))
29 fveq1 6860 . . . . . . . 8 (𝑓 = 𝐶 → (𝑓𝑦) = (𝐶𝑦))
30 reseq1 5947 . . . . . . . . 9 (𝑓 = 𝐶 → (𝑓𝑦) = (𝐶𝑦))
3130fveq2d 6865 . . . . . . . 8 (𝑓 = 𝐶 → (𝐹‘(𝑓𝑦)) = (𝐹‘(𝐶𝑦)))
3229, 31eqeq12d 2746 . . . . . . 7 (𝑓 = 𝐶 → ((𝑓𝑦) = (𝐹‘(𝑓𝑦)) ↔ (𝐶𝑦) = (𝐹‘(𝐶𝑦))))
3332ralbidv 3157 . . . . . 6 (𝑓 = 𝐶 → (∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)) ↔ ∀𝑦𝑥 (𝐶𝑦) = (𝐹‘(𝐶𝑦))))
3428, 33anbi12d 632 . . . . 5 (𝑓 = 𝐶 → ((𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦))) ↔ (𝐶 Fn 𝑥 ∧ ∀𝑦𝑥 (𝐶𝑦) = (𝐹‘(𝐶𝑦)))))
3534rexbidv 3158 . . . 4 (𝑓 = 𝐶 → (∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦))) ↔ ∃𝑥 ∈ On (𝐶 Fn 𝑥 ∧ ∀𝑦𝑥 (𝐶𝑦) = (𝐹‘(𝐶𝑦)))))
3635, 1elab2g 3650 . . 3 (𝐶 ∈ V → (𝐶𝐴 ↔ ∃𝑥 ∈ On (𝐶 Fn 𝑥 ∧ ∀𝑦𝑥 (𝐶𝑦) = (𝐹‘(𝐶𝑦)))))
3727, 36syl 17 . 2 (recs(𝐹) ∈ V → (𝐶𝐴 ↔ ∃𝑥 ∈ On (𝐶 Fn 𝑥 ∧ ∀𝑦𝑥 (𝐶𝑦) = (𝐹‘(𝐶𝑦)))))
3823, 37mpbird 257 1 (recs(𝐹) ∈ V → 𝐶𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  {cab 2708  wral 3045  wrex 3054  Vcvv 3450  cun 3915  {csn 4592  cop 4598  dom cdm 5641  cres 5643  Ord word 6334  Oncon0 6335  suc csuc 6337   Fn wfn 6509  cfv 6514  recscrecs 8342
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-fo 6520  df-fv 6522  df-ov 7393  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343
This theorem is referenced by:  tfrlem13  8361
  Copyright terms: Public domain W3C validator