Step | Hyp | Ref
| Expression |
1 | | tfrlem.1 |
. . . . . 6
⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} |
2 | 1 | tfrlem8 8186 |
. . . . 5
⊢ Ord dom
recs(𝐹) |
3 | 2 | a1i 11 |
. . . 4
⊢
(recs(𝐹) ∈ V
→ Ord dom recs(𝐹)) |
4 | | dmexg 7724 |
. . . 4
⊢
(recs(𝐹) ∈ V
→ dom recs(𝐹) ∈
V) |
5 | | elon2 6262 |
. . . 4
⊢ (dom
recs(𝐹) ∈ On ↔
(Ord dom recs(𝐹) ∧ dom
recs(𝐹) ∈
V)) |
6 | 3, 4, 5 | sylanbrc 582 |
. . 3
⊢
(recs(𝐹) ∈ V
→ dom recs(𝐹) ∈
On) |
7 | | suceloni 7635 |
. . . 4
⊢ (dom
recs(𝐹) ∈ On →
suc dom recs(𝐹) ∈
On) |
8 | | tfrlem.3 |
. . . . 5
⊢ 𝐶 = (recs(𝐹) ∪ {〈dom recs(𝐹), (𝐹‘recs(𝐹))〉}) |
9 | 1, 8 | tfrlem10 8189 |
. . . 4
⊢ (dom
recs(𝐹) ∈ On →
𝐶 Fn suc dom recs(𝐹)) |
10 | 1, 8 | tfrlem11 8190 |
. . . . . 6
⊢ (dom
recs(𝐹) ∈ On →
(𝑧 ∈ suc dom
recs(𝐹) → (𝐶‘𝑧) = (𝐹‘(𝐶 ↾ 𝑧)))) |
11 | 10 | ralrimiv 3106 |
. . . . 5
⊢ (dom
recs(𝐹) ∈ On →
∀𝑧 ∈ suc dom
recs(𝐹)(𝐶‘𝑧) = (𝐹‘(𝐶 ↾ 𝑧))) |
12 | | fveq2 6756 |
. . . . . . 7
⊢ (𝑧 = 𝑦 → (𝐶‘𝑧) = (𝐶‘𝑦)) |
13 | | reseq2 5875 |
. . . . . . . 8
⊢ (𝑧 = 𝑦 → (𝐶 ↾ 𝑧) = (𝐶 ↾ 𝑦)) |
14 | 13 | fveq2d 6760 |
. . . . . . 7
⊢ (𝑧 = 𝑦 → (𝐹‘(𝐶 ↾ 𝑧)) = (𝐹‘(𝐶 ↾ 𝑦))) |
15 | 12, 14 | eqeq12d 2754 |
. . . . . 6
⊢ (𝑧 = 𝑦 → ((𝐶‘𝑧) = (𝐹‘(𝐶 ↾ 𝑧)) ↔ (𝐶‘𝑦) = (𝐹‘(𝐶 ↾ 𝑦)))) |
16 | 15 | cbvralvw 3372 |
. . . . 5
⊢
(∀𝑧 ∈
suc dom recs(𝐹)(𝐶‘𝑧) = (𝐹‘(𝐶 ↾ 𝑧)) ↔ ∀𝑦 ∈ suc dom recs(𝐹)(𝐶‘𝑦) = (𝐹‘(𝐶 ↾ 𝑦))) |
17 | 11, 16 | sylib 217 |
. . . 4
⊢ (dom
recs(𝐹) ∈ On →
∀𝑦 ∈ suc dom
recs(𝐹)(𝐶‘𝑦) = (𝐹‘(𝐶 ↾ 𝑦))) |
18 | | fneq2 6509 |
. . . . . 6
⊢ (𝑥 = suc dom recs(𝐹) → (𝐶 Fn 𝑥 ↔ 𝐶 Fn suc dom recs(𝐹))) |
19 | | raleq 3333 |
. . . . . 6
⊢ (𝑥 = suc dom recs(𝐹) → (∀𝑦 ∈ 𝑥 (𝐶‘𝑦) = (𝐹‘(𝐶 ↾ 𝑦)) ↔ ∀𝑦 ∈ suc dom recs(𝐹)(𝐶‘𝑦) = (𝐹‘(𝐶 ↾ 𝑦)))) |
20 | 18, 19 | anbi12d 630 |
. . . . 5
⊢ (𝑥 = suc dom recs(𝐹) → ((𝐶 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝐶‘𝑦) = (𝐹‘(𝐶 ↾ 𝑦))) ↔ (𝐶 Fn suc dom recs(𝐹) ∧ ∀𝑦 ∈ suc dom recs(𝐹)(𝐶‘𝑦) = (𝐹‘(𝐶 ↾ 𝑦))))) |
21 | 20 | rspcev 3552 |
. . . 4
⊢ ((suc dom
recs(𝐹) ∈ On ∧
(𝐶 Fn suc dom recs(𝐹) ∧ ∀𝑦 ∈ suc dom recs(𝐹)(𝐶‘𝑦) = (𝐹‘(𝐶 ↾ 𝑦)))) → ∃𝑥 ∈ On (𝐶 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝐶‘𝑦) = (𝐹‘(𝐶 ↾ 𝑦)))) |
22 | 7, 9, 17, 21 | syl12anc 833 |
. . 3
⊢ (dom
recs(𝐹) ∈ On →
∃𝑥 ∈ On (𝐶 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝐶‘𝑦) = (𝐹‘(𝐶 ↾ 𝑦)))) |
23 | 6, 22 | syl 17 |
. 2
⊢
(recs(𝐹) ∈ V
→ ∃𝑥 ∈ On
(𝐶 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝐶‘𝑦) = (𝐹‘(𝐶 ↾ 𝑦)))) |
24 | | snex 5349 |
. . . . 5
⊢
{〈dom recs(𝐹),
(𝐹‘recs(𝐹))〉} ∈
V |
25 | | unexg 7577 |
. . . . 5
⊢
((recs(𝐹) ∈ V
∧ {〈dom recs(𝐹),
(𝐹‘recs(𝐹))〉} ∈ V) →
(recs(𝐹) ∪ {〈dom
recs(𝐹), (𝐹‘recs(𝐹))〉}) ∈ V) |
26 | 24, 25 | mpan2 687 |
. . . 4
⊢
(recs(𝐹) ∈ V
→ (recs(𝐹) ∪
{〈dom recs(𝐹), (𝐹‘recs(𝐹))〉}) ∈ V) |
27 | 8, 26 | eqeltrid 2843 |
. . 3
⊢
(recs(𝐹) ∈ V
→ 𝐶 ∈
V) |
28 | | fneq1 6508 |
. . . . . 6
⊢ (𝑓 = 𝐶 → (𝑓 Fn 𝑥 ↔ 𝐶 Fn 𝑥)) |
29 | | fveq1 6755 |
. . . . . . . 8
⊢ (𝑓 = 𝐶 → (𝑓‘𝑦) = (𝐶‘𝑦)) |
30 | | reseq1 5874 |
. . . . . . . . 9
⊢ (𝑓 = 𝐶 → (𝑓 ↾ 𝑦) = (𝐶 ↾ 𝑦)) |
31 | 30 | fveq2d 6760 |
. . . . . . . 8
⊢ (𝑓 = 𝐶 → (𝐹‘(𝑓 ↾ 𝑦)) = (𝐹‘(𝐶 ↾ 𝑦))) |
32 | 29, 31 | eqeq12d 2754 |
. . . . . . 7
⊢ (𝑓 = 𝐶 → ((𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)) ↔ (𝐶‘𝑦) = (𝐹‘(𝐶 ↾ 𝑦)))) |
33 | 32 | ralbidv 3120 |
. . . . . 6
⊢ (𝑓 = 𝐶 → (∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)) ↔ ∀𝑦 ∈ 𝑥 (𝐶‘𝑦) = (𝐹‘(𝐶 ↾ 𝑦)))) |
34 | 28, 33 | anbi12d 630 |
. . . . 5
⊢ (𝑓 = 𝐶 → ((𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦))) ↔ (𝐶 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝐶‘𝑦) = (𝐹‘(𝐶 ↾ 𝑦))))) |
35 | 34 | rexbidv 3225 |
. . . 4
⊢ (𝑓 = 𝐶 → (∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦))) ↔ ∃𝑥 ∈ On (𝐶 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝐶‘𝑦) = (𝐹‘(𝐶 ↾ 𝑦))))) |
36 | 35, 1 | elab2g 3604 |
. . 3
⊢ (𝐶 ∈ V → (𝐶 ∈ 𝐴 ↔ ∃𝑥 ∈ On (𝐶 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝐶‘𝑦) = (𝐹‘(𝐶 ↾ 𝑦))))) |
37 | 27, 36 | syl 17 |
. 2
⊢
(recs(𝐹) ∈ V
→ (𝐶 ∈ 𝐴 ↔ ∃𝑥 ∈ On (𝐶 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝐶‘𝑦) = (𝐹‘(𝐶 ↾ 𝑦))))) |
38 | 23, 37 | mpbird 256 |
1
⊢
(recs(𝐹) ∈ V
→ 𝐶 ∈ 𝐴) |