MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tfrlem12 Structured version   Visualization version   GIF version

Theorem tfrlem12 8103
Description: Lemma for transfinite recursion. Show 𝐶 is an acceptable function. (Contributed by NM, 15-Aug-1994.) (Revised by Mario Carneiro, 9-May-2015.)
Hypotheses
Ref Expression
tfrlem.1 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
tfrlem.3 𝐶 = (recs(𝐹) ∪ {⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩})
Assertion
Ref Expression
tfrlem12 (recs(𝐹) ∈ V → 𝐶𝐴)
Distinct variable groups:   𝑥,𝑓,𝑦,𝐶   𝑓,𝐹,𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑓)

Proof of Theorem tfrlem12
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 tfrlem.1 . . . . . 6 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
21tfrlem8 8098 . . . . 5 Ord dom recs(𝐹)
32a1i 11 . . . 4 (recs(𝐹) ∈ V → Ord dom recs(𝐹))
4 dmexg 7659 . . . 4 (recs(𝐹) ∈ V → dom recs(𝐹) ∈ V)
5 elon2 6202 . . . 4 (dom recs(𝐹) ∈ On ↔ (Ord dom recs(𝐹) ∧ dom recs(𝐹) ∈ V))
63, 4, 5sylanbrc 586 . . 3 (recs(𝐹) ∈ V → dom recs(𝐹) ∈ On)
7 suceloni 7570 . . . 4 (dom recs(𝐹) ∈ On → suc dom recs(𝐹) ∈ On)
8 tfrlem.3 . . . . 5 𝐶 = (recs(𝐹) ∪ {⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩})
91, 8tfrlem10 8101 . . . 4 (dom recs(𝐹) ∈ On → 𝐶 Fn suc dom recs(𝐹))
101, 8tfrlem11 8102 . . . . . 6 (dom recs(𝐹) ∈ On → (𝑧 ∈ suc dom recs(𝐹) → (𝐶𝑧) = (𝐹‘(𝐶𝑧))))
1110ralrimiv 3094 . . . . 5 (dom recs(𝐹) ∈ On → ∀𝑧 ∈ suc dom recs(𝐹)(𝐶𝑧) = (𝐹‘(𝐶𝑧)))
12 fveq2 6695 . . . . . . 7 (𝑧 = 𝑦 → (𝐶𝑧) = (𝐶𝑦))
13 reseq2 5831 . . . . . . . 8 (𝑧 = 𝑦 → (𝐶𝑧) = (𝐶𝑦))
1413fveq2d 6699 . . . . . . 7 (𝑧 = 𝑦 → (𝐹‘(𝐶𝑧)) = (𝐹‘(𝐶𝑦)))
1512, 14eqeq12d 2752 . . . . . 6 (𝑧 = 𝑦 → ((𝐶𝑧) = (𝐹‘(𝐶𝑧)) ↔ (𝐶𝑦) = (𝐹‘(𝐶𝑦))))
1615cbvralvw 3348 . . . . 5 (∀𝑧 ∈ suc dom recs(𝐹)(𝐶𝑧) = (𝐹‘(𝐶𝑧)) ↔ ∀𝑦 ∈ suc dom recs(𝐹)(𝐶𝑦) = (𝐹‘(𝐶𝑦)))
1711, 16sylib 221 . . . 4 (dom recs(𝐹) ∈ On → ∀𝑦 ∈ suc dom recs(𝐹)(𝐶𝑦) = (𝐹‘(𝐶𝑦)))
18 fneq2 6449 . . . . . 6 (𝑥 = suc dom recs(𝐹) → (𝐶 Fn 𝑥𝐶 Fn suc dom recs(𝐹)))
19 raleq 3309 . . . . . 6 (𝑥 = suc dom recs(𝐹) → (∀𝑦𝑥 (𝐶𝑦) = (𝐹‘(𝐶𝑦)) ↔ ∀𝑦 ∈ suc dom recs(𝐹)(𝐶𝑦) = (𝐹‘(𝐶𝑦))))
2018, 19anbi12d 634 . . . . 5 (𝑥 = suc dom recs(𝐹) → ((𝐶 Fn 𝑥 ∧ ∀𝑦𝑥 (𝐶𝑦) = (𝐹‘(𝐶𝑦))) ↔ (𝐶 Fn suc dom recs(𝐹) ∧ ∀𝑦 ∈ suc dom recs(𝐹)(𝐶𝑦) = (𝐹‘(𝐶𝑦)))))
2120rspcev 3527 . . . 4 ((suc dom recs(𝐹) ∈ On ∧ (𝐶 Fn suc dom recs(𝐹) ∧ ∀𝑦 ∈ suc dom recs(𝐹)(𝐶𝑦) = (𝐹‘(𝐶𝑦)))) → ∃𝑥 ∈ On (𝐶 Fn 𝑥 ∧ ∀𝑦𝑥 (𝐶𝑦) = (𝐹‘(𝐶𝑦))))
227, 9, 17, 21syl12anc 837 . . 3 (dom recs(𝐹) ∈ On → ∃𝑥 ∈ On (𝐶 Fn 𝑥 ∧ ∀𝑦𝑥 (𝐶𝑦) = (𝐹‘(𝐶𝑦))))
236, 22syl 17 . 2 (recs(𝐹) ∈ V → ∃𝑥 ∈ On (𝐶 Fn 𝑥 ∧ ∀𝑦𝑥 (𝐶𝑦) = (𝐹‘(𝐶𝑦))))
24 snex 5309 . . . . 5 {⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩} ∈ V
25 unexg 7512 . . . . 5 ((recs(𝐹) ∈ V ∧ {⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩} ∈ V) → (recs(𝐹) ∪ {⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩}) ∈ V)
2624, 25mpan2 691 . . . 4 (recs(𝐹) ∈ V → (recs(𝐹) ∪ {⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩}) ∈ V)
278, 26eqeltrid 2835 . . 3 (recs(𝐹) ∈ V → 𝐶 ∈ V)
28 fneq1 6448 . . . . . 6 (𝑓 = 𝐶 → (𝑓 Fn 𝑥𝐶 Fn 𝑥))
29 fveq1 6694 . . . . . . . 8 (𝑓 = 𝐶 → (𝑓𝑦) = (𝐶𝑦))
30 reseq1 5830 . . . . . . . . 9 (𝑓 = 𝐶 → (𝑓𝑦) = (𝐶𝑦))
3130fveq2d 6699 . . . . . . . 8 (𝑓 = 𝐶 → (𝐹‘(𝑓𝑦)) = (𝐹‘(𝐶𝑦)))
3229, 31eqeq12d 2752 . . . . . . 7 (𝑓 = 𝐶 → ((𝑓𝑦) = (𝐹‘(𝑓𝑦)) ↔ (𝐶𝑦) = (𝐹‘(𝐶𝑦))))
3332ralbidv 3108 . . . . . 6 (𝑓 = 𝐶 → (∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)) ↔ ∀𝑦𝑥 (𝐶𝑦) = (𝐹‘(𝐶𝑦))))
3428, 33anbi12d 634 . . . . 5 (𝑓 = 𝐶 → ((𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦))) ↔ (𝐶 Fn 𝑥 ∧ ∀𝑦𝑥 (𝐶𝑦) = (𝐹‘(𝐶𝑦)))))
3534rexbidv 3206 . . . 4 (𝑓 = 𝐶 → (∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦))) ↔ ∃𝑥 ∈ On (𝐶 Fn 𝑥 ∧ ∀𝑦𝑥 (𝐶𝑦) = (𝐹‘(𝐶𝑦)))))
3635, 1elab2g 3578 . . 3 (𝐶 ∈ V → (𝐶𝐴 ↔ ∃𝑥 ∈ On (𝐶 Fn 𝑥 ∧ ∀𝑦𝑥 (𝐶𝑦) = (𝐹‘(𝐶𝑦)))))
3727, 36syl 17 . 2 (recs(𝐹) ∈ V → (𝐶𝐴 ↔ ∃𝑥 ∈ On (𝐶 Fn 𝑥 ∧ ∀𝑦𝑥 (𝐶𝑦) = (𝐹‘(𝐶𝑦)))))
3823, 37mpbird 260 1 (recs(𝐹) ∈ V → 𝐶𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1543  wcel 2112  {cab 2714  wral 3051  wrex 3052  Vcvv 3398  cun 3851  {csn 4527  cop 4533  dom cdm 5536  cres 5538  Ord word 6190  Oncon0 6191  suc csuc 6193   Fn wfn 6353  cfv 6358  recscrecs 8085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-sep 5177  ax-nul 5184  ax-pr 5307  ax-un 7501
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-ral 3056  df-rex 3057  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4806  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6140  df-ord 6194  df-on 6195  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-fv 6366  df-wrecs 8025  df-recs 8086
This theorem is referenced by:  tfrlem13  8104
  Copyright terms: Public domain W3C validator