MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqfnfv2 Structured version   Visualization version   GIF version

Theorem eqfnfv2 6799
Description: Equality of functions is determined by their values. Exercise 4 of [TakeutiZaring] p. 28. (Contributed by NM, 3-Aug-1994.) (Revised by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
eqfnfv2 ((𝐹 Fn 𝐴𝐺 Fn 𝐵) → (𝐹 = 𝐺 ↔ (𝐴 = 𝐵 ∧ ∀𝑥𝐴 (𝐹𝑥) = (𝐺𝑥))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹   𝑥,𝐺
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem eqfnfv2
StepHypRef Expression
1 dmeq 5771 . . . 4 (𝐹 = 𝐺 → dom 𝐹 = dom 𝐺)
2 fndm 6452 . . . . 5 (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴)
3 fndm 6452 . . . . 5 (𝐺 Fn 𝐵 → dom 𝐺 = 𝐵)
42, 3eqeqan12d 2843 . . . 4 ((𝐹 Fn 𝐴𝐺 Fn 𝐵) → (dom 𝐹 = dom 𝐺𝐴 = 𝐵))
51, 4syl5ib 245 . . 3 ((𝐹 Fn 𝐴𝐺 Fn 𝐵) → (𝐹 = 𝐺𝐴 = 𝐵))
65pm4.71rd 563 . 2 ((𝐹 Fn 𝐴𝐺 Fn 𝐵) → (𝐹 = 𝐺 ↔ (𝐴 = 𝐵𝐹 = 𝐺)))
7 fneq2 6442 . . . . . 6 (𝐴 = 𝐵 → (𝐺 Fn 𝐴𝐺 Fn 𝐵))
87biimparc 480 . . . . 5 ((𝐺 Fn 𝐵𝐴 = 𝐵) → 𝐺 Fn 𝐴)
9 eqfnfv 6798 . . . . 5 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → (𝐹 = 𝐺 ↔ ∀𝑥𝐴 (𝐹𝑥) = (𝐺𝑥)))
108, 9sylan2 592 . . . 4 ((𝐹 Fn 𝐴 ∧ (𝐺 Fn 𝐵𝐴 = 𝐵)) → (𝐹 = 𝐺 ↔ ∀𝑥𝐴 (𝐹𝑥) = (𝐺𝑥)))
1110anassrs 468 . . 3 (((𝐹 Fn 𝐴𝐺 Fn 𝐵) ∧ 𝐴 = 𝐵) → (𝐹 = 𝐺 ↔ ∀𝑥𝐴 (𝐹𝑥) = (𝐺𝑥)))
1211pm5.32da 579 . 2 ((𝐹 Fn 𝐴𝐺 Fn 𝐵) → ((𝐴 = 𝐵𝐹 = 𝐺) ↔ (𝐴 = 𝐵 ∧ ∀𝑥𝐴 (𝐹𝑥) = (𝐺𝑥))))
136, 12bitrd 280 1 ((𝐹 Fn 𝐴𝐺 Fn 𝐵) → (𝐹 = 𝐺 ↔ (𝐴 = 𝐵 ∧ ∀𝑥𝐴 (𝐹𝑥) = (𝐺𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396   = wceq 1530  wral 3143  dom cdm 5554   Fn wfn 6347  cfv 6352
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ral 3148  df-rex 3149  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-nul 4296  df-if 4471  df-sn 4565  df-pr 4567  df-op 4571  df-uni 4838  df-br 5064  df-opab 5126  df-mpt 5144  df-id 5459  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-iota 6312  df-fun 6354  df-fn 6355  df-fv 6360
This theorem is referenced by:  eqfnfv3  6800  eqfunfv  6803  eqfnov  7270  wfr3g  7944  2ffzeq  13018  eqwrd  13899  soseq  32980  frr3g  33005  fpr3g  33006  sdclem2  34885  2ffzoeq  43394
  Copyright terms: Public domain W3C validator