| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqfnfv2 | Structured version Visualization version GIF version | ||
| Description: Equality of functions is determined by their values. Exercise 4 of [TakeutiZaring] p. 28. (Contributed by NM, 3-Aug-1994.) (Revised by Mario Carneiro, 31-Aug-2015.) |
| Ref | Expression |
|---|---|
| eqfnfv2 | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵) → (𝐹 = 𝐺 ↔ (𝐴 = 𝐵 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmeq 5883 | . . . 4 ⊢ (𝐹 = 𝐺 → dom 𝐹 = dom 𝐺) | |
| 2 | fndm 6640 | . . . . 5 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
| 3 | fndm 6640 | . . . . 5 ⊢ (𝐺 Fn 𝐵 → dom 𝐺 = 𝐵) | |
| 4 | 2, 3 | eqeqan12d 2749 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵) → (dom 𝐹 = dom 𝐺 ↔ 𝐴 = 𝐵)) |
| 5 | 1, 4 | imbitrid 244 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵) → (𝐹 = 𝐺 → 𝐴 = 𝐵)) |
| 6 | 5 | pm4.71rd 562 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵) → (𝐹 = 𝐺 ↔ (𝐴 = 𝐵 ∧ 𝐹 = 𝐺))) |
| 7 | fneq2 6629 | . . . . . 6 ⊢ (𝐴 = 𝐵 → (𝐺 Fn 𝐴 ↔ 𝐺 Fn 𝐵)) | |
| 8 | 7 | biimparc 479 | . . . . 5 ⊢ ((𝐺 Fn 𝐵 ∧ 𝐴 = 𝐵) → 𝐺 Fn 𝐴) |
| 9 | eqfnfv 7020 | . . . . 5 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) → (𝐹 = 𝐺 ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥))) | |
| 10 | 8, 9 | sylan2 593 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ (𝐺 Fn 𝐵 ∧ 𝐴 = 𝐵)) → (𝐹 = 𝐺 ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥))) |
| 11 | 10 | anassrs 467 | . . 3 ⊢ (((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵) ∧ 𝐴 = 𝐵) → (𝐹 = 𝐺 ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥))) |
| 12 | 11 | pm5.32da 579 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵) → ((𝐴 = 𝐵 ∧ 𝐹 = 𝐺) ↔ (𝐴 = 𝐵 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥)))) |
| 13 | 6, 12 | bitrd 279 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵) → (𝐹 = 𝐺 ↔ (𝐴 = 𝐵 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∀wral 3051 dom cdm 5654 Fn wfn 6525 ‘cfv 6530 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6483 df-fun 6532 df-fn 6533 df-fv 6538 |
| This theorem is referenced by: eqfnfv3 7022 eqfunfv 7025 eqfnov 7534 soseq 8156 fpr3g 8282 wfr3g 8319 frr3g 9768 2ffzeq 13664 eqwrd 14573 sdclem2 37712 eqfnfv2d2 41940 aks6d1c5 42098 2ffzoeq 47304 |
| Copyright terms: Public domain | W3C validator |