MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqfnfv2 Structured version   Visualization version   GIF version

Theorem eqfnfv2 6853
Description: Equality of functions is determined by their values. Exercise 4 of [TakeutiZaring] p. 28. (Contributed by NM, 3-Aug-1994.) (Revised by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
eqfnfv2 ((𝐹 Fn 𝐴𝐺 Fn 𝐵) → (𝐹 = 𝐺 ↔ (𝐴 = 𝐵 ∧ ∀𝑥𝐴 (𝐹𝑥) = (𝐺𝑥))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹   𝑥,𝐺
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem eqfnfv2
StepHypRef Expression
1 dmeq 5772 . . . 4 (𝐹 = 𝐺 → dom 𝐹 = dom 𝐺)
2 fndm 6481 . . . . 5 (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴)
3 fndm 6481 . . . . 5 (𝐺 Fn 𝐵 → dom 𝐺 = 𝐵)
42, 3eqeqan12d 2751 . . . 4 ((𝐹 Fn 𝐴𝐺 Fn 𝐵) → (dom 𝐹 = dom 𝐺𝐴 = 𝐵))
51, 4syl5ib 247 . . 3 ((𝐹 Fn 𝐴𝐺 Fn 𝐵) → (𝐹 = 𝐺𝐴 = 𝐵))
65pm4.71rd 566 . 2 ((𝐹 Fn 𝐴𝐺 Fn 𝐵) → (𝐹 = 𝐺 ↔ (𝐴 = 𝐵𝐹 = 𝐺)))
7 fneq2 6471 . . . . . 6 (𝐴 = 𝐵 → (𝐺 Fn 𝐴𝐺 Fn 𝐵))
87biimparc 483 . . . . 5 ((𝐺 Fn 𝐵𝐴 = 𝐵) → 𝐺 Fn 𝐴)
9 eqfnfv 6852 . . . . 5 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → (𝐹 = 𝐺 ↔ ∀𝑥𝐴 (𝐹𝑥) = (𝐺𝑥)))
108, 9sylan2 596 . . . 4 ((𝐹 Fn 𝐴 ∧ (𝐺 Fn 𝐵𝐴 = 𝐵)) → (𝐹 = 𝐺 ↔ ∀𝑥𝐴 (𝐹𝑥) = (𝐺𝑥)))
1110anassrs 471 . . 3 (((𝐹 Fn 𝐴𝐺 Fn 𝐵) ∧ 𝐴 = 𝐵) → (𝐹 = 𝐺 ↔ ∀𝑥𝐴 (𝐹𝑥) = (𝐺𝑥)))
1211pm5.32da 582 . 2 ((𝐹 Fn 𝐴𝐺 Fn 𝐵) → ((𝐴 = 𝐵𝐹 = 𝐺) ↔ (𝐴 = 𝐵 ∧ ∀𝑥𝐴 (𝐹𝑥) = (𝐺𝑥))))
136, 12bitrd 282 1 ((𝐹 Fn 𝐴𝐺 Fn 𝐵) → (𝐹 = 𝐺 ↔ (𝐴 = 𝐵 ∧ ∀𝑥𝐴 (𝐹𝑥) = (𝐺𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1543  wral 3061  dom cdm 5551   Fn wfn 6375  cfv 6380
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pr 5322
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-br 5054  df-opab 5116  df-mpt 5136  df-id 5455  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-iota 6338  df-fun 6382  df-fn 6383  df-fv 6388
This theorem is referenced by:  eqfnfv3  6854  eqfunfv  6857  eqfnov  7339  fpr3g  8026  wfr3g  8053  frr3g  9372  2ffzeq  13233  eqwrd  14112  soseq  33540  sdclem2  35637  eqfnfv2d2  39724  2ffzoeq  44493
  Copyright terms: Public domain W3C validator