| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fneq1 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for function predicate with domain. (Contributed by NM, 1-Aug-1994.) |
| Ref | Expression |
|---|---|
| fneq1 | ⊢ (𝐹 = 𝐺 → (𝐹 Fn 𝐴 ↔ 𝐺 Fn 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funeq 6520 | . . 3 ⊢ (𝐹 = 𝐺 → (Fun 𝐹 ↔ Fun 𝐺)) | |
| 2 | dmeq 5857 | . . . 4 ⊢ (𝐹 = 𝐺 → dom 𝐹 = dom 𝐺) | |
| 3 | 2 | eqeq1d 2731 | . . 3 ⊢ (𝐹 = 𝐺 → (dom 𝐹 = 𝐴 ↔ dom 𝐺 = 𝐴)) |
| 4 | 1, 3 | anbi12d 632 | . 2 ⊢ (𝐹 = 𝐺 → ((Fun 𝐹 ∧ dom 𝐹 = 𝐴) ↔ (Fun 𝐺 ∧ dom 𝐺 = 𝐴))) |
| 5 | df-fn 6502 | . 2 ⊢ (𝐹 Fn 𝐴 ↔ (Fun 𝐹 ∧ dom 𝐹 = 𝐴)) | |
| 6 | df-fn 6502 | . 2 ⊢ (𝐺 Fn 𝐴 ↔ (Fun 𝐺 ∧ dom 𝐺 = 𝐴)) | |
| 7 | 4, 5, 6 | 3bitr4g 314 | 1 ⊢ (𝐹 = 𝐺 → (𝐹 Fn 𝐴 ↔ 𝐺 Fn 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 dom cdm 5631 Fun wfun 6493 Fn wfn 6494 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-br 5103 df-opab 5165 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-fun 6501 df-fn 6502 |
| This theorem is referenced by: fneq1d 6593 fneq1i 6597 fn0 6631 feq1 6648 foeq1 6750 f1ocnv 6794 dffn5 6901 mpteqb 6969 fnsnbg 7120 fnsnbOLD 7122 fnprb 7164 fntpb 7165 eufnfv 7185 frrlem1 8242 frrlem13 8254 tfrlem12 8334 fsetdmprc0 8805 mapval2 8822 elixp2 8851 ixpfn 8853 elixpsn 8887 inf3lem6 9562 ssttrcl 9644 ttrcltr 9645 ttrclss 9649 ttrclselem2 9655 aceq3lem 10049 dfac4 10051 dfacacn 10071 axcc2lem 10365 axcc3 10367 seqof 14000 ccatvalfn 14522 cshword 14732 0csh0 14734 rrgsupp 20586 lmodfopnelem1 20780 elpt 23435 elptr 23436 ptcmplem3 23917 prdsxmslem2 24393 tgjustr 28377 bnj62 34683 bnj976 34740 bnj66 34823 bnj124 34834 bnj607 34879 bnj873 34887 bnj1234 34976 bnj1463 35018 fineqvac 35060 gblacfnacd 35062 eqresfnbd 42193 dssmapf1od 43983 fnchoice 44996 choicefi 45167 axccdom 45189 dfafn5b 47135 rngchomffvalALTV 48239 ixpv 48851 iinfconstbaslem 49027 iinfconstbas 49028 nelsubc3lem 49032 functhinclem1 49406 cnelsubclem 49565 |
| Copyright terms: Public domain | W3C validator |