| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fneq1 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for function predicate with domain. (Contributed by NM, 1-Aug-1994.) |
| Ref | Expression |
|---|---|
| fneq1 | ⊢ (𝐹 = 𝐺 → (𝐹 Fn 𝐴 ↔ 𝐺 Fn 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funeq 6536 | . . 3 ⊢ (𝐹 = 𝐺 → (Fun 𝐹 ↔ Fun 𝐺)) | |
| 2 | dmeq 5867 | . . . 4 ⊢ (𝐹 = 𝐺 → dom 𝐹 = dom 𝐺) | |
| 3 | 2 | eqeq1d 2731 | . . 3 ⊢ (𝐹 = 𝐺 → (dom 𝐹 = 𝐴 ↔ dom 𝐺 = 𝐴)) |
| 4 | 1, 3 | anbi12d 632 | . 2 ⊢ (𝐹 = 𝐺 → ((Fun 𝐹 ∧ dom 𝐹 = 𝐴) ↔ (Fun 𝐺 ∧ dom 𝐺 = 𝐴))) |
| 5 | df-fn 6514 | . 2 ⊢ (𝐹 Fn 𝐴 ↔ (Fun 𝐹 ∧ dom 𝐹 = 𝐴)) | |
| 6 | df-fn 6514 | . 2 ⊢ (𝐺 Fn 𝐴 ↔ (Fun 𝐺 ∧ dom 𝐺 = 𝐴)) | |
| 7 | 4, 5, 6 | 3bitr4g 314 | 1 ⊢ (𝐹 = 𝐺 → (𝐹 Fn 𝐴 ↔ 𝐺 Fn 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 dom cdm 5638 Fun wfun 6505 Fn wfn 6506 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-fun 6513 df-fn 6514 |
| This theorem is referenced by: fneq1d 6611 fneq1i 6615 fn0 6649 feq1 6666 foeq1 6768 f1ocnv 6812 dffn5 6919 mpteqb 6987 fnsnbg 7138 fnsnbOLD 7140 fnprb 7182 fntpb 7183 eufnfv 7203 frrlem1 8265 frrlem13 8277 tfrlem12 8357 fsetdmprc0 8828 mapval2 8845 elixp2 8874 ixpfn 8876 elixpsn 8910 inf3lem6 9586 ssttrcl 9668 ttrcltr 9669 ttrclss 9673 ttrclselem2 9679 aceq3lem 10073 dfac4 10075 dfacacn 10095 axcc2lem 10389 axcc3 10391 seqof 14024 ccatvalfn 14546 cshword 14756 0csh0 14758 rrgsupp 20610 lmodfopnelem1 20804 elpt 23459 elptr 23460 ptcmplem3 23941 prdsxmslem2 24417 tgjustr 28401 bnj62 34710 bnj976 34767 bnj66 34850 bnj124 34861 bnj607 34906 bnj873 34914 bnj1234 35003 bnj1463 35045 fineqvac 35087 gblacfnacd 35089 eqresfnbd 42220 dssmapf1od 44010 fnchoice 45023 choicefi 45194 axccdom 45216 dfafn5b 47159 rngchomffvalALTV 48263 ixpv 48875 iinfconstbaslem 49051 iinfconstbas 49052 nelsubc3lem 49056 functhinclem1 49430 cnelsubclem 49589 |
| Copyright terms: Public domain | W3C validator |