Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fneq1 | Structured version Visualization version GIF version |
Description: Equality theorem for function predicate with domain. (Contributed by NM, 1-Aug-1994.) |
Ref | Expression |
---|---|
fneq1 | ⊢ (𝐹 = 𝐺 → (𝐹 Fn 𝐴 ↔ 𝐺 Fn 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funeq 6483 | . . 3 ⊢ (𝐹 = 𝐺 → (Fun 𝐹 ↔ Fun 𝐺)) | |
2 | dmeq 5825 | . . . 4 ⊢ (𝐹 = 𝐺 → dom 𝐹 = dom 𝐺) | |
3 | 2 | eqeq1d 2738 | . . 3 ⊢ (𝐹 = 𝐺 → (dom 𝐹 = 𝐴 ↔ dom 𝐺 = 𝐴)) |
4 | 1, 3 | anbi12d 632 | . 2 ⊢ (𝐹 = 𝐺 → ((Fun 𝐹 ∧ dom 𝐹 = 𝐴) ↔ (Fun 𝐺 ∧ dom 𝐺 = 𝐴))) |
5 | df-fn 6461 | . 2 ⊢ (𝐹 Fn 𝐴 ↔ (Fun 𝐹 ∧ dom 𝐹 = 𝐴)) | |
6 | df-fn 6461 | . 2 ⊢ (𝐺 Fn 𝐴 ↔ (Fun 𝐺 ∧ dom 𝐺 = 𝐴)) | |
7 | 4, 5, 6 | 3bitr4g 314 | 1 ⊢ (𝐹 = 𝐺 → (𝐹 Fn 𝐴 ↔ 𝐺 Fn 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1539 dom cdm 5600 Fun wfun 6452 Fn wfn 6453 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-rab 3306 df-v 3439 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4566 df-pr 4568 df-op 4572 df-br 5082 df-opab 5144 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-fun 6460 df-fn 6461 |
This theorem is referenced by: fneq1d 6557 fneq1i 6561 fn0 6594 feq1 6611 foeq1 6714 f1ocnv 6758 dffn5 6860 mpteqb 6926 fnsnb 7070 fnprb 7116 fntpb 7117 eufnfv 7137 frrlem1 8133 frrlem13 8145 wfrlem1OLD 8170 wfrlem3OLDa 8173 wfrlem15OLD 8185 tfrlem12 8251 fsetdmprc0 8674 mapval2 8691 elixp2 8720 ixpfn 8722 elixpsn 8756 inf3lem6 9439 ssttrcl 9521 ttrcltr 9522 ttrclss 9526 ttrclselem2 9532 aceq3lem 9926 dfac4 9928 dfacacn 9947 axcc2lem 10242 axcc3 10244 seqof 13830 ccatvalfn 14335 cshword 14553 0csh0 14555 lmodfopnelem1 20208 rrgsupp 20611 elpt 22772 elptr 22773 ptcmplem3 23254 prdsxmslem2 23734 tgjustr 26884 bnj62 32748 bnj976 32806 bnj66 32889 bnj124 32900 bnj607 32945 bnj873 32953 bnj1234 33042 bnj1463 33084 fineqvac 33115 fnsnbt 40403 dssmapf1od 41842 fnchoice 42785 choicefi 42960 axccdom 42982 dfafn5b 44897 rngchomffvalALTV 45797 functhinclem1 46566 |
Copyright terms: Public domain | W3C validator |