![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fneq1 | Structured version Visualization version GIF version |
Description: Equality theorem for function predicate with domain. (Contributed by NM, 1-Aug-1994.) |
Ref | Expression |
---|---|
fneq1 | ⊢ (𝐹 = 𝐺 → (𝐹 Fn 𝐴 ↔ 𝐺 Fn 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funeq 6598 | . . 3 ⊢ (𝐹 = 𝐺 → (Fun 𝐹 ↔ Fun 𝐺)) | |
2 | dmeq 5928 | . . . 4 ⊢ (𝐹 = 𝐺 → dom 𝐹 = dom 𝐺) | |
3 | 2 | eqeq1d 2742 | . . 3 ⊢ (𝐹 = 𝐺 → (dom 𝐹 = 𝐴 ↔ dom 𝐺 = 𝐴)) |
4 | 1, 3 | anbi12d 631 | . 2 ⊢ (𝐹 = 𝐺 → ((Fun 𝐹 ∧ dom 𝐹 = 𝐴) ↔ (Fun 𝐺 ∧ dom 𝐺 = 𝐴))) |
5 | df-fn 6576 | . 2 ⊢ (𝐹 Fn 𝐴 ↔ (Fun 𝐹 ∧ dom 𝐹 = 𝐴)) | |
6 | df-fn 6576 | . 2 ⊢ (𝐺 Fn 𝐴 ↔ (Fun 𝐺 ∧ dom 𝐺 = 𝐴)) | |
7 | 4, 5, 6 | 3bitr4g 314 | 1 ⊢ (𝐹 = 𝐺 → (𝐹 Fn 𝐴 ↔ 𝐺 Fn 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 dom cdm 5700 Fun wfun 6567 Fn wfn 6568 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-fun 6575 df-fn 6576 |
This theorem is referenced by: fneq1d 6672 fneq1i 6676 fn0 6711 feq1 6728 foeq1 6830 f1ocnv 6874 dffn5 6980 mpteqb 7048 fnsnb 7200 fnprb 7245 fntpb 7246 eufnfv 7266 frrlem1 8327 frrlem13 8339 wfrlem1OLD 8364 wfrlem3OLDa 8367 wfrlem15OLD 8379 tfrlem12 8445 fsetdmprc0 8913 mapval2 8930 elixp2 8959 ixpfn 8961 elixpsn 8995 inf3lem6 9702 ssttrcl 9784 ttrcltr 9785 ttrclss 9789 ttrclselem2 9795 aceq3lem 10189 dfac4 10191 dfacacn 10211 axcc2lem 10505 axcc3 10507 seqof 14110 ccatvalfn 14629 cshword 14839 0csh0 14841 rrgsupp 20723 lmodfopnelem1 20918 elpt 23601 elptr 23602 ptcmplem3 24083 prdsxmslem2 24563 tgjustr 28500 bnj62 34696 bnj976 34753 bnj66 34836 bnj124 34847 bnj607 34892 bnj873 34900 bnj1234 34989 bnj1463 35031 fineqvac 35073 gblacfnacd 35075 fnsnbt 42225 eqresfnbd 42227 dssmapf1od 43983 fnchoice 44929 choicefi 45107 axccdom 45129 dfafn5b 47076 rngchomffvalALTV 48001 functhinclem1 48708 |
Copyright terms: Public domain | W3C validator |