Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fneq1 | Structured version Visualization version GIF version |
Description: Equality theorem for function predicate with domain. (Contributed by NM, 1-Aug-1994.) |
Ref | Expression |
---|---|
fneq1 | ⊢ (𝐹 = 𝐺 → (𝐹 Fn 𝐴 ↔ 𝐺 Fn 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funeq 6450 | . . 3 ⊢ (𝐹 = 𝐺 → (Fun 𝐹 ↔ Fun 𝐺)) | |
2 | dmeq 5809 | . . . 4 ⊢ (𝐹 = 𝐺 → dom 𝐹 = dom 𝐺) | |
3 | 2 | eqeq1d 2741 | . . 3 ⊢ (𝐹 = 𝐺 → (dom 𝐹 = 𝐴 ↔ dom 𝐺 = 𝐴)) |
4 | 1, 3 | anbi12d 630 | . 2 ⊢ (𝐹 = 𝐺 → ((Fun 𝐹 ∧ dom 𝐹 = 𝐴) ↔ (Fun 𝐺 ∧ dom 𝐺 = 𝐴))) |
5 | df-fn 6433 | . 2 ⊢ (𝐹 Fn 𝐴 ↔ (Fun 𝐹 ∧ dom 𝐹 = 𝐴)) | |
6 | df-fn 6433 | . 2 ⊢ (𝐺 Fn 𝐴 ↔ (Fun 𝐺 ∧ dom 𝐺 = 𝐴)) | |
7 | 4, 5, 6 | 3bitr4g 313 | 1 ⊢ (𝐹 = 𝐺 → (𝐹 Fn 𝐴 ↔ 𝐺 Fn 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1541 dom cdm 5588 Fun wfun 6424 Fn wfn 6425 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-br 5079 df-opab 5141 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-fun 6432 df-fn 6433 |
This theorem is referenced by: fneq1d 6522 fneq1i 6526 fn0 6560 feq1 6577 foeq1 6680 f1ocnv 6724 dffn5 6822 mpteqb 6888 fnsnb 7032 fnprb 7078 fntpb 7079 eufnfv 7099 frrlem1 8086 frrlem13 8098 wfrlem1OLD 8123 wfrlem3OLDa 8126 wfrlem15OLD 8138 tfrlem12 8204 fsetdmprc0 8617 mapval2 8634 elixp2 8663 ixpfn 8665 elixpsn 8699 inf3lem6 9352 ssttrcl 9434 ttrcltr 9435 ttrclss 9439 ttrclselem2 9445 aceq3lem 9860 dfac4 9862 dfacacn 9881 axcc2lem 10176 axcc3 10178 seqof 13761 ccatvalfn 14267 cshword 14485 0csh0 14487 lmodfopnelem1 20140 rrgsupp 20543 elpt 22704 elptr 22705 ptcmplem3 23186 prdsxmslem2 23666 tgjustr 26816 bnj62 32678 bnj976 32736 bnj66 32819 bnj124 32830 bnj607 32875 bnj873 32883 bnj1234 32972 bnj1463 33014 fineqvac 33045 fnsnbt 40188 dssmapf1od 41582 fnchoice 42525 choicefi 42693 axccdom 42715 dfafn5b 44604 rngchomffvalALTV 45505 functhinclem1 46274 |
Copyright terms: Public domain | W3C validator |