| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fneq1 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for function predicate with domain. (Contributed by NM, 1-Aug-1994.) |
| Ref | Expression |
|---|---|
| fneq1 | ⊢ (𝐹 = 𝐺 → (𝐹 Fn 𝐴 ↔ 𝐺 Fn 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funeq 6509 | . . 3 ⊢ (𝐹 = 𝐺 → (Fun 𝐹 ↔ Fun 𝐺)) | |
| 2 | dmeq 5849 | . . . 4 ⊢ (𝐹 = 𝐺 → dom 𝐹 = dom 𝐺) | |
| 3 | 2 | eqeq1d 2735 | . . 3 ⊢ (𝐹 = 𝐺 → (dom 𝐹 = 𝐴 ↔ dom 𝐺 = 𝐴)) |
| 4 | 1, 3 | anbi12d 632 | . 2 ⊢ (𝐹 = 𝐺 → ((Fun 𝐹 ∧ dom 𝐹 = 𝐴) ↔ (Fun 𝐺 ∧ dom 𝐺 = 𝐴))) |
| 5 | df-fn 6492 | . 2 ⊢ (𝐹 Fn 𝐴 ↔ (Fun 𝐹 ∧ dom 𝐹 = 𝐴)) | |
| 6 | df-fn 6492 | . 2 ⊢ (𝐺 Fn 𝐴 ↔ (Fun 𝐺 ∧ dom 𝐺 = 𝐴)) | |
| 7 | 4, 5, 6 | 3bitr4g 314 | 1 ⊢ (𝐹 = 𝐺 → (𝐹 Fn 𝐴 ↔ 𝐺 Fn 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 dom cdm 5621 Fun wfun 6483 Fn wfn 6484 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5096 df-opab 5158 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-fun 6491 df-fn 6492 |
| This theorem is referenced by: fneq1d 6582 fneq1i 6586 fn0 6620 feq1 6637 foeq1 6739 f1ocnv 6783 dffn5 6889 mpteqb 6957 fnsnbg 7107 fnsnbOLD 7109 fnprb 7151 fntpb 7152 eufnfv 7172 frrlem1 8225 frrlem13 8237 tfrlem12 8317 fsetdmprc0 8788 mapval2 8806 elixp2 8835 ixpfn 8837 elixpsn 8871 inf3lem6 9534 ssttrcl 9616 ttrcltr 9617 ttrclss 9621 ttrclselem2 9627 aceq3lem 10022 dfac4 10024 dfacacn 10044 axcc2lem 10338 axcc3 10340 seqof 13973 ccatvalfn 14495 cshword 14705 0csh0 14707 rrgsupp 20625 lmodfopnelem1 20840 elpt 23507 elptr 23508 ptcmplem3 23989 prdsxmslem2 24464 tgjustr 28472 esplyind 33659 bnj62 34804 bnj976 34861 bnj66 34944 bnj124 34955 bnj607 35000 bnj873 35008 bnj1234 35097 bnj1463 35139 fineqvac 35211 fineqvnttrclse 35216 gblacfnacd 35218 eqresfnbd 42403 dssmapf1od 44178 fnchoice 45190 choicefi 45360 axccdom 45382 dfafn5b 47323 rngchomffvalALTV 48440 ixpv 49051 iinfconstbaslem 49226 iinfconstbas 49227 nelsubc3lem 49231 functhinclem1 49605 cnelsubclem 49764 |
| Copyright terms: Public domain | W3C validator |