| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fneq1 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for function predicate with domain. (Contributed by NM, 1-Aug-1994.) |
| Ref | Expression |
|---|---|
| fneq1 | ⊢ (𝐹 = 𝐺 → (𝐹 Fn 𝐴 ↔ 𝐺 Fn 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funeq 6496 | . . 3 ⊢ (𝐹 = 𝐺 → (Fun 𝐹 ↔ Fun 𝐺)) | |
| 2 | dmeq 5838 | . . . 4 ⊢ (𝐹 = 𝐺 → dom 𝐹 = dom 𝐺) | |
| 3 | 2 | eqeq1d 2733 | . . 3 ⊢ (𝐹 = 𝐺 → (dom 𝐹 = 𝐴 ↔ dom 𝐺 = 𝐴)) |
| 4 | 1, 3 | anbi12d 632 | . 2 ⊢ (𝐹 = 𝐺 → ((Fun 𝐹 ∧ dom 𝐹 = 𝐴) ↔ (Fun 𝐺 ∧ dom 𝐺 = 𝐴))) |
| 5 | df-fn 6479 | . 2 ⊢ (𝐹 Fn 𝐴 ↔ (Fun 𝐹 ∧ dom 𝐹 = 𝐴)) | |
| 6 | df-fn 6479 | . 2 ⊢ (𝐺 Fn 𝐴 ↔ (Fun 𝐺 ∧ dom 𝐺 = 𝐴)) | |
| 7 | 4, 5, 6 | 3bitr4g 314 | 1 ⊢ (𝐹 = 𝐺 → (𝐹 Fn 𝐴 ↔ 𝐺 Fn 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 dom cdm 5611 Fun wfun 6470 Fn wfn 6471 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-br 5087 df-opab 5149 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-fun 6478 df-fn 6479 |
| This theorem is referenced by: fneq1d 6569 fneq1i 6573 fn0 6607 feq1 6624 foeq1 6726 f1ocnv 6770 dffn5 6875 mpteqb 6943 fnsnbg 7093 fnsnbOLD 7095 fnprb 7137 fntpb 7138 eufnfv 7158 frrlem1 8211 frrlem13 8223 tfrlem12 8303 fsetdmprc0 8774 mapval2 8791 elixp2 8820 ixpfn 8822 elixpsn 8856 inf3lem6 9518 ssttrcl 9600 ttrcltr 9601 ttrclss 9605 ttrclselem2 9611 aceq3lem 10006 dfac4 10008 dfacacn 10028 axcc2lem 10322 axcc3 10324 seqof 13961 ccatvalfn 14483 cshword 14693 0csh0 14695 rrgsupp 20611 lmodfopnelem1 20826 elpt 23482 elptr 23483 ptcmplem3 23964 prdsxmslem2 24439 tgjustr 28447 bnj62 34724 bnj976 34781 bnj66 34864 bnj124 34875 bnj607 34920 bnj873 34928 bnj1234 35017 bnj1463 35059 fineqvac 35131 fineqvnttrclse 35136 gblacfnacd 35138 eqresfnbd 42265 dssmapf1od 44054 fnchoice 45066 choicefi 45237 axccdom 45259 dfafn5b 47192 rngchomffvalALTV 48309 ixpv 48921 iinfconstbaslem 49097 iinfconstbas 49098 nelsubc3lem 49102 functhinclem1 49476 cnelsubclem 49635 |
| Copyright terms: Public domain | W3C validator |