MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fneq1 Structured version   Visualization version   GIF version

Theorem fneq1 6670
Description: Equality theorem for function predicate with domain. (Contributed by NM, 1-Aug-1994.)
Assertion
Ref Expression
fneq1 (𝐹 = 𝐺 → (𝐹 Fn 𝐴𝐺 Fn 𝐴))

Proof of Theorem fneq1
StepHypRef Expression
1 funeq 6598 . . 3 (𝐹 = 𝐺 → (Fun 𝐹 ↔ Fun 𝐺))
2 dmeq 5928 . . . 4 (𝐹 = 𝐺 → dom 𝐹 = dom 𝐺)
32eqeq1d 2742 . . 3 (𝐹 = 𝐺 → (dom 𝐹 = 𝐴 ↔ dom 𝐺 = 𝐴))
41, 3anbi12d 631 . 2 (𝐹 = 𝐺 → ((Fun 𝐹 ∧ dom 𝐹 = 𝐴) ↔ (Fun 𝐺 ∧ dom 𝐺 = 𝐴)))
5 df-fn 6576 . 2 (𝐹 Fn 𝐴 ↔ (Fun 𝐹 ∧ dom 𝐹 = 𝐴))
6 df-fn 6576 . 2 (𝐺 Fn 𝐴 ↔ (Fun 𝐺 ∧ dom 𝐺 = 𝐴))
74, 5, 63bitr4g 314 1 (𝐹 = 𝐺 → (𝐹 Fn 𝐴𝐺 Fn 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  dom cdm 5700  Fun wfun 6567   Fn wfn 6568
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-fun 6575  df-fn 6576
This theorem is referenced by:  fneq1d  6672  fneq1i  6676  fn0  6711  feq1  6728  foeq1  6830  f1ocnv  6874  dffn5  6980  mpteqb  7048  fnsnb  7200  fnprb  7245  fntpb  7246  eufnfv  7266  frrlem1  8327  frrlem13  8339  wfrlem1OLD  8364  wfrlem3OLDa  8367  wfrlem15OLD  8379  tfrlem12  8445  fsetdmprc0  8913  mapval2  8930  elixp2  8959  ixpfn  8961  elixpsn  8995  inf3lem6  9702  ssttrcl  9784  ttrcltr  9785  ttrclss  9789  ttrclselem2  9795  aceq3lem  10189  dfac4  10191  dfacacn  10211  axcc2lem  10505  axcc3  10507  seqof  14110  ccatvalfn  14629  cshword  14839  0csh0  14841  rrgsupp  20723  lmodfopnelem1  20918  elpt  23601  elptr  23602  ptcmplem3  24083  prdsxmslem2  24563  tgjustr  28500  bnj62  34696  bnj976  34753  bnj66  34836  bnj124  34847  bnj607  34892  bnj873  34900  bnj1234  34989  bnj1463  35031  fineqvac  35073  gblacfnacd  35075  fnsnbt  42225  eqresfnbd  42227  dssmapf1od  43983  fnchoice  44929  choicefi  45107  axccdom  45129  dfafn5b  47076  rngchomffvalALTV  48001  functhinclem1  48708
  Copyright terms: Public domain W3C validator