| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fneq1 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for function predicate with domain. (Contributed by NM, 1-Aug-1994.) |
| Ref | Expression |
|---|---|
| fneq1 | ⊢ (𝐹 = 𝐺 → (𝐹 Fn 𝐴 ↔ 𝐺 Fn 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funeq 6561 | . . 3 ⊢ (𝐹 = 𝐺 → (Fun 𝐹 ↔ Fun 𝐺)) | |
| 2 | dmeq 5888 | . . . 4 ⊢ (𝐹 = 𝐺 → dom 𝐹 = dom 𝐺) | |
| 3 | 2 | eqeq1d 2738 | . . 3 ⊢ (𝐹 = 𝐺 → (dom 𝐹 = 𝐴 ↔ dom 𝐺 = 𝐴)) |
| 4 | 1, 3 | anbi12d 632 | . 2 ⊢ (𝐹 = 𝐺 → ((Fun 𝐹 ∧ dom 𝐹 = 𝐴) ↔ (Fun 𝐺 ∧ dom 𝐺 = 𝐴))) |
| 5 | df-fn 6539 | . 2 ⊢ (𝐹 Fn 𝐴 ↔ (Fun 𝐹 ∧ dom 𝐹 = 𝐴)) | |
| 6 | df-fn 6539 | . 2 ⊢ (𝐺 Fn 𝐴 ↔ (Fun 𝐺 ∧ dom 𝐺 = 𝐴)) | |
| 7 | 4, 5, 6 | 3bitr4g 314 | 1 ⊢ (𝐹 = 𝐺 → (𝐹 Fn 𝐴 ↔ 𝐺 Fn 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 dom cdm 5659 Fun wfun 6530 Fn wfn 6531 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5125 df-opab 5187 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-fun 6538 df-fn 6539 |
| This theorem is referenced by: fneq1d 6636 fneq1i 6640 fn0 6674 feq1 6691 foeq1 6791 f1ocnv 6835 dffn5 6942 mpteqb 7010 fnsnbg 7161 fnsnbOLD 7163 fnprb 7205 fntpb 7206 eufnfv 7226 frrlem1 8290 frrlem13 8302 wfrlem1OLD 8327 wfrlem3OLDa 8330 wfrlem15OLD 8342 tfrlem12 8408 fsetdmprc0 8874 mapval2 8891 elixp2 8920 ixpfn 8922 elixpsn 8956 inf3lem6 9652 ssttrcl 9734 ttrcltr 9735 ttrclss 9739 ttrclselem2 9745 aceq3lem 10139 dfac4 10141 dfacacn 10161 axcc2lem 10455 axcc3 10457 seqof 14082 ccatvalfn 14604 cshword 14814 0csh0 14816 rrgsupp 20666 lmodfopnelem1 20860 elpt 23515 elptr 23516 ptcmplem3 23997 prdsxmslem2 24473 tgjustr 28458 bnj62 34756 bnj976 34813 bnj66 34896 bnj124 34907 bnj607 34952 bnj873 34960 bnj1234 35049 bnj1463 35091 fineqvac 35133 gblacfnacd 35135 eqresfnbd 42250 dssmapf1od 44012 fnchoice 45020 choicefi 45191 axccdom 45213 dfafn5b 47157 rngchomffvalALTV 48220 ixpv 48832 iinfconstbaslem 48999 iinfconstbas 49000 nelsubc3lem 49004 functhinclem1 49297 cnelsubclem 49447 |
| Copyright terms: Public domain | W3C validator |