Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fneq1d | Structured version Visualization version GIF version |
Description: Equality deduction for function predicate with domain. (Contributed by Paul Chapman, 22-Jun-2011.) |
Ref | Expression |
---|---|
fneq1d.1 | ⊢ (𝜑 → 𝐹 = 𝐺) |
Ref | Expression |
---|---|
fneq1d | ⊢ (𝜑 → (𝐹 Fn 𝐴 ↔ 𝐺 Fn 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fneq1d.1 | . 2 ⊢ (𝜑 → 𝐹 = 𝐺) | |
2 | fneq1 6430 | . 2 ⊢ (𝐹 = 𝐺 → (𝐹 Fn 𝐴 ↔ 𝐺 Fn 𝐴)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝐹 Fn 𝐴 ↔ 𝐺 Fn 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 = wceq 1538 Fn wfn 6335 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-ext 2729 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-ex 1782 df-sb 2070 df-clab 2736 df-cleq 2750 df-clel 2830 df-v 3411 df-un 3865 df-in 3867 df-ss 3877 df-sn 4526 df-pr 4528 df-op 4532 df-br 5037 df-opab 5099 df-rel 5535 df-cnv 5536 df-co 5537 df-dm 5538 df-fun 6342 df-fn 6343 |
This theorem is referenced by: fneq12d 6434 f1o00 6641 f1oprswap 6650 f1ompt 6872 fmpt2d 6884 f1ocnvd 7398 offn 7423 offval2f 7425 offval2 7430 ofrfval2 7431 caofinvl 7440 fsplitfpar 7825 omxpenlem 8652 itunifn 9890 konigthlem 10041 seqof 13490 swrdlen 14069 mptfzshft 15194 prdsdsfn 16809 imasdsfn 16858 cidfn 17021 comffn 17046 isoval 17107 invf1o 17111 isofn 17117 brssc 17156 cofucl 17230 estrchomfn 17464 funcestrcsetclem4 17472 funcsetcestrclem4 17487 1stfcl 17526 2ndfcl 17527 prfcl 17532 evlfcl 17551 curf1cl 17557 curfcl 17561 hofcl 17588 yonedainv 17610 smndex1n0mnd 18156 grpinvf1o 18249 pmtrrn 18665 pmtrfrn 18666 srngf1o 19706 ofco2 21164 mat1dimscm 21188 neif 21813 fmf 22658 fncpn 24645 mdeg0 24783 tglnfn 26453 grpoinvf 28427 kbass2 30012 fnresin 30496 f1o3d 30497 suppovss 30553 f1od2 30592 frlmdim 31227 pstmxmet 31380 prodindf 31522 ofcfn 31599 ofcfval2 31603 signstlen 32077 bnj941 32284 satfn 32845 msubrn 33019 poimirlem4 35375 cnambfre 35419 sdclem2 35494 diafn 38644 dibfna 38764 dicfnN 38793 dihf11lem 38876 mapd1o 39258 hdmapfnN 39439 hgmapfnN 39498 aks4d1p1p5 39675 hbtlem7 40477 fsovf1od 41125 ntrrn 41233 ntrf 41234 dssmapntrcls 41239 addrfn 41584 subrfn 41585 mulvfn 41586 fsumsermpt 42622 hoidmvlelem3 43637 smflimsuplem7 43858 rnghmresfn 45003 rhmresfn 45049 funcringcsetcALTV2lem4 45079 funcringcsetclem4ALTV 45102 rhmsubclem1 45126 rhmsubcALTVlem1 45144 ackvalsucsucval 45516 |
Copyright terms: Public domain | W3C validator |