|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > fneq1d | Structured version Visualization version GIF version | ||
| Description: Equality deduction for function predicate with domain. (Contributed by Paul Chapman, 22-Jun-2011.) | 
| Ref | Expression | 
|---|---|
| fneq1d.1 | ⊢ (𝜑 → 𝐹 = 𝐺) | 
| Ref | Expression | 
|---|---|
| fneq1d | ⊢ (𝜑 → (𝐹 Fn 𝐴 ↔ 𝐺 Fn 𝐴)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | fneq1d.1 | . 2 ⊢ (𝜑 → 𝐹 = 𝐺) | |
| 2 | fneq1 6658 | . 2 ⊢ (𝐹 = 𝐺 → (𝐹 Fn 𝐴 ↔ 𝐺 Fn 𝐴)) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝐹 Fn 𝐴 ↔ 𝐺 Fn 𝐴)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1539 Fn wfn 6555 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-ss 3967 df-nul 4333 df-if 4525 df-sn 4626 df-pr 4628 df-op 4632 df-br 5143 df-opab 5205 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-fun 6562 df-fn 6563 | 
| This theorem is referenced by: fneq12d 6662 f1o00 6882 f1oprswap 6891 f1ompt 7130 fmpt2d 7143 f1ocnvd 7685 offn 7711 offval2f 7713 offval2 7718 ofrfval2 7719 caofinvl 7730 fsplitfpar 8144 omxpenlem 9114 itunifn 10458 konigthlem 10609 seqof 14101 swrdlen 14686 mptfzshft 15815 prdsdsfn 17511 imasdsfn 17560 cidfn 17723 comffn 17749 isoval 17810 invf1o 17814 isofn 17820 brssc 17859 cofucl 17934 estrchomfn 18180 funcestrcsetclem4 18189 funcsetcestrclem4 18204 1stfcl 18243 2ndfcl 18244 prfcl 18249 evlfcl 18268 curf1cl 18274 curfcl 18278 hofcl 18305 yonedainv 18327 smndex1n0mnd 18926 grpinvf1o 19028 ghmquskerco 19303 pmtrrn 19476 pmtrfrn 19477 rnghmresfn 20620 rhmresfn 20649 rhmsubclem1 20686 srngf1o 20850 ofco2 22458 mat1dimscm 22482 neif 23109 fmf 23954 fncpn 25970 mdeg0 26110 om2noseqfo 28305 noseqrdglem 28312 noseqrdgfn 28313 noseqrdg0 28314 tglnfn 28556 grpoinvf 30552 kbass2 32137 fnresin 32637 f1o3d 32638 suppovss 32691 f1od2 32733 prodindf 32849 frlmdim 33663 pstmxmet 33897 ofcfn 34102 ofcfval2 34106 signstlen 34583 bnj941 34787 satfn 35361 msubrn 35535 poimirlem4 37632 cnambfre 37676 sdclem2 37750 diafn 41037 dibfna 41157 dicfnN 41186 dihf11lem 41269 mapd1o 41651 hdmapfnN 41832 hgmapfnN 41891 aks4d1p1p5 42077 hbtlem7 43142 fsovf1od 44034 ntrrn 44140 ntrf 44141 dssmapntrcls 44146 addrfn 44496 subrfn 44497 mulvfn 44498 fsumsermpt 45599 hoidmvlelem3 46617 smflimsuplem7 46846 rhmsubcALTVlem1 48202 funcringcsetcALTV2lem4 48214 funcringcsetclem4ALTV 48237 ackvalsucsucval 48614 upeu4 48965 swapf2fn 48992 fucofn2 49042 fucofn22 49058 | 
| Copyright terms: Public domain | W3C validator |