| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fneq1d | Structured version Visualization version GIF version | ||
| Description: Equality deduction for function predicate with domain. (Contributed by Paul Chapman, 22-Jun-2011.) |
| Ref | Expression |
|---|---|
| fneq1d.1 | ⊢ (𝜑 → 𝐹 = 𝐺) |
| Ref | Expression |
|---|---|
| fneq1d | ⊢ (𝜑 → (𝐹 Fn 𝐴 ↔ 𝐺 Fn 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fneq1d.1 | . 2 ⊢ (𝜑 → 𝐹 = 𝐺) | |
| 2 | fneq1 6577 | . 2 ⊢ (𝐹 = 𝐺 → (𝐹 Fn 𝐴 ↔ 𝐺 Fn 𝐴)) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝐹 Fn 𝐴 ↔ 𝐺 Fn 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 Fn wfn 6481 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-br 5094 df-opab 5156 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-fun 6488 df-fn 6489 |
| This theorem is referenced by: fneq12d 6581 f1o00 6803 f1oprswap 6813 f1ompt 7050 fmpt2d 7063 f1ocnvd 7603 offn 7629 offval2f 7631 offval2 7636 ofrfval2 7637 caofinvl 7648 fsplitfpar 8054 omxpenlem 8998 itunifn 10315 konigthlem 10466 seqof 13968 swrdlen 14557 mptfzshft 15687 prdsdsfn 17371 imasdsfn 17420 cidfn 17587 comffn 17613 isoval 17674 invf1o 17678 isofn 17684 brssc 17723 cofucl 17797 estrchomfn 18043 funcestrcsetclem4 18051 funcsetcestrclem4 18066 1stfcl 18105 2ndfcl 18106 prfcl 18111 evlfcl 18130 curf1cl 18136 curfcl 18140 hofcl 18167 yonedainv 18189 smndex1n0mnd 18822 grpinvf1o 18924 ghmquskerco 19198 pmtrrn 19371 pmtrfrn 19372 rnghmresfn 20536 rhmresfn 20565 rhmsubclem1 20602 srngf1o 20765 ofco2 22367 mat1dimscm 22391 neif 23016 fmf 23861 fncpn 25863 mdeg0 26003 om2noseqfo 28229 noseqrdglem 28236 noseqrdgfn 28237 noseqrdg0 28238 tglnfn 28526 grpoinvf 30514 kbass2 32099 fnresin 32609 f1o3d 32610 suppovss 32666 f1od2 32706 prodindf 32851 esplyfval3 33612 frlmdim 33645 pstmxmet 33931 ofcfn 34134 ofcfval2 34138 signstlen 34601 bnj941 34805 satfn 35420 msubrn 35594 poimirlem4 37685 cnambfre 37729 sdclem2 37803 diafn 41154 dibfna 41274 dicfnN 41303 dihf11lem 41386 mapd1o 41768 hdmapfnN 41949 hgmapfnN 42008 aks4d1p1p5 42189 hbtlem7 43243 fsovf1od 44134 ntrrn 44240 ntrf 44241 dssmapntrcls 44246 addrfn 44589 subrfn 44590 mulvfn 44591 fsumsermpt 45704 hoidmvlelem3 46720 smflimsuplem7 46949 rhmsubcALTVlem1 48406 funcringcsetcALTV2lem4 48418 funcringcsetclem4ALTV 48441 ackvalsucsucval 48814 sectfn 49155 invfn 49156 isofnALT 49157 iinfssclem2 49181 nelsubclem 49193 upeu4 49322 swapf2fn 49394 fucofn2 49450 fucofn22 49466 fucoppc 49536 |
| Copyright terms: Public domain | W3C validator |