![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fneq1d | Structured version Visualization version GIF version |
Description: Equality deduction for function predicate with domain. (Contributed by Paul Chapman, 22-Jun-2011.) |
Ref | Expression |
---|---|
fneq1d.1 | ⊢ (𝜑 → 𝐹 = 𝐺) |
Ref | Expression |
---|---|
fneq1d | ⊢ (𝜑 → (𝐹 Fn 𝐴 ↔ 𝐺 Fn 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fneq1d.1 | . 2 ⊢ (𝜑 → 𝐹 = 𝐺) | |
2 | fneq1 6670 | . 2 ⊢ (𝐹 = 𝐺 → (𝐹 Fn 𝐴 ↔ 𝐺 Fn 𝐴)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝐹 Fn 𝐴 ↔ 𝐺 Fn 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 Fn wfn 6568 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-fun 6575 df-fn 6576 |
This theorem is referenced by: fneq12d 6674 f1o00 6897 f1oprswap 6906 f1ompt 7145 fmpt2d 7158 f1ocnvd 7701 offn 7727 offval2f 7729 offval2 7734 ofrfval2 7735 caofinvl 7745 fsplitfpar 8159 omxpenlem 9139 itunifn 10486 konigthlem 10637 seqof 14110 swrdlen 14695 mptfzshft 15826 prdsdsfn 17525 imasdsfn 17574 cidfn 17737 comffn 17763 isoval 17826 invf1o 17830 isofn 17836 brssc 17875 cofucl 17952 estrchomfn 18203 funcestrcsetclem4 18212 funcsetcestrclem4 18227 1stfcl 18266 2ndfcl 18267 prfcl 18272 evlfcl 18292 curf1cl 18298 curfcl 18302 hofcl 18329 yonedainv 18351 smndex1n0mnd 18947 grpinvf1o 19049 ghmquskerco 19324 pmtrrn 19499 pmtrfrn 19500 rnghmresfn 20641 rhmresfn 20670 rhmsubclem1 20707 srngf1o 20871 ofco2 22478 mat1dimscm 22502 neif 23129 fmf 23974 fncpn 25989 mdeg0 26129 om2noseqfo 28322 noseqrdglem 28329 noseqrdgfn 28330 noseqrdg0 28331 tglnfn 28573 grpoinvf 30564 kbass2 32149 fnresin 32645 f1o3d 32646 suppovss 32697 f1od2 32735 frlmdim 33624 pstmxmet 33843 prodindf 33987 ofcfn 34064 ofcfval2 34068 signstlen 34544 bnj941 34748 satfn 35323 msubrn 35497 poimirlem4 37584 cnambfre 37628 sdclem2 37702 diafn 40991 dibfna 41111 dicfnN 41140 dihf11lem 41223 mapd1o 41605 hdmapfnN 41786 hgmapfnN 41845 aks4d1p1p5 42032 hbtlem7 43082 fsovf1od 43978 ntrrn 44084 ntrf 44085 dssmapntrcls 44090 addrfn 44441 subrfn 44442 mulvfn 44443 fsumsermpt 45500 hoidmvlelem3 46518 smflimsuplem7 46747 rhmsubcALTVlem1 48004 funcringcsetcALTV2lem4 48016 funcringcsetclem4ALTV 48039 ackvalsucsucval 48422 |
Copyright terms: Public domain | W3C validator |