| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fneq1d | Structured version Visualization version GIF version | ||
| Description: Equality deduction for function predicate with domain. (Contributed by Paul Chapman, 22-Jun-2011.) |
| Ref | Expression |
|---|---|
| fneq1d.1 | ⊢ (𝜑 → 𝐹 = 𝐺) |
| Ref | Expression |
|---|---|
| fneq1d | ⊢ (𝜑 → (𝐹 Fn 𝐴 ↔ 𝐺 Fn 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fneq1d.1 | . 2 ⊢ (𝜑 → 𝐹 = 𝐺) | |
| 2 | fneq1 6577 | . 2 ⊢ (𝐹 = 𝐺 → (𝐹 Fn 𝐴 ↔ 𝐺 Fn 𝐴)) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝐹 Fn 𝐴 ↔ 𝐺 Fn 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 Fn wfn 6481 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-br 5096 df-opab 5158 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-fun 6488 df-fn 6489 |
| This theorem is referenced by: fneq12d 6581 f1o00 6803 f1oprswap 6812 f1ompt 7049 fmpt2d 7062 f1ocnvd 7604 offn 7630 offval2f 7632 offval2 7637 ofrfval2 7638 caofinvl 7649 fsplitfpar 8058 omxpenlem 9002 itunifn 10330 konigthlem 10481 seqof 13984 swrdlen 14572 mptfzshft 15703 prdsdsfn 17387 imasdsfn 17436 cidfn 17603 comffn 17629 isoval 17690 invf1o 17694 isofn 17700 brssc 17739 cofucl 17813 estrchomfn 18059 funcestrcsetclem4 18067 funcsetcestrclem4 18082 1stfcl 18121 2ndfcl 18122 prfcl 18127 evlfcl 18146 curf1cl 18152 curfcl 18156 hofcl 18183 yonedainv 18205 smndex1n0mnd 18804 grpinvf1o 18906 ghmquskerco 19181 pmtrrn 19354 pmtrfrn 19355 rnghmresfn 20522 rhmresfn 20551 rhmsubclem1 20588 srngf1o 20751 ofco2 22354 mat1dimscm 22378 neif 23003 fmf 23848 fncpn 25851 mdeg0 25991 om2noseqfo 28215 noseqrdglem 28222 noseqrdgfn 28223 noseqrdg0 28224 tglnfn 28510 grpoinvf 30494 kbass2 32079 fnresin 32583 f1o3d 32584 suppovss 32637 f1od2 32677 prodindf 32819 frlmdim 33583 pstmxmet 33863 ofcfn 34066 ofcfval2 34070 signstlen 34534 bnj941 34738 satfn 35327 msubrn 35501 poimirlem4 37603 cnambfre 37647 sdclem2 37721 diafn 41013 dibfna 41133 dicfnN 41162 dihf11lem 41245 mapd1o 41627 hdmapfnN 41808 hgmapfnN 41867 aks4d1p1p5 42048 hbtlem7 43098 fsovf1od 43989 ntrrn 44095 ntrf 44096 dssmapntrcls 44101 addrfn 44445 subrfn 44446 mulvfn 44447 fsumsermpt 45561 hoidmvlelem3 46579 smflimsuplem7 46808 rhmsubcALTVlem1 48266 funcringcsetcALTV2lem4 48278 funcringcsetclem4ALTV 48301 ackvalsucsucval 48674 sectfn 49015 invfn 49016 isofnALT 49017 iinfssclem2 49041 nelsubclem 49053 upeu4 49182 swapf2fn 49254 fucofn2 49310 fucofn22 49326 fucoppc 49396 |
| Copyright terms: Public domain | W3C validator |