| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fneq1d | Structured version Visualization version GIF version | ||
| Description: Equality deduction for function predicate with domain. (Contributed by Paul Chapman, 22-Jun-2011.) |
| Ref | Expression |
|---|---|
| fneq1d.1 | ⊢ (𝜑 → 𝐹 = 𝐺) |
| Ref | Expression |
|---|---|
| fneq1d | ⊢ (𝜑 → (𝐹 Fn 𝐴 ↔ 𝐺 Fn 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fneq1d.1 | . 2 ⊢ (𝜑 → 𝐹 = 𝐺) | |
| 2 | fneq1 6609 | . 2 ⊢ (𝐹 = 𝐺 → (𝐹 Fn 𝐴 ↔ 𝐺 Fn 𝐴)) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝐹 Fn 𝐴 ↔ 𝐺 Fn 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 Fn wfn 6506 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-fun 6513 df-fn 6514 |
| This theorem is referenced by: fneq12d 6613 f1o00 6835 f1oprswap 6844 f1ompt 7083 fmpt2d 7096 f1ocnvd 7640 offn 7666 offval2f 7668 offval2 7673 ofrfval2 7674 caofinvl 7685 fsplitfpar 8097 omxpenlem 9042 itunifn 10370 konigthlem 10521 seqof 14024 swrdlen 14612 mptfzshft 15744 prdsdsfn 17428 imasdsfn 17477 cidfn 17640 comffn 17666 isoval 17727 invf1o 17731 isofn 17737 brssc 17776 cofucl 17850 estrchomfn 18096 funcestrcsetclem4 18104 funcsetcestrclem4 18119 1stfcl 18158 2ndfcl 18159 prfcl 18164 evlfcl 18183 curf1cl 18189 curfcl 18193 hofcl 18220 yonedainv 18242 smndex1n0mnd 18839 grpinvf1o 18941 ghmquskerco 19216 pmtrrn 19387 pmtrfrn 19388 rnghmresfn 20528 rhmresfn 20557 rhmsubclem1 20594 srngf1o 20757 ofco2 22338 mat1dimscm 22362 neif 22987 fmf 23832 fncpn 25835 mdeg0 25975 om2noseqfo 28192 noseqrdglem 28199 noseqrdgfn 28200 noseqrdg0 28201 tglnfn 28474 grpoinvf 30461 kbass2 32046 fnresin 32550 f1o3d 32551 suppovss 32604 f1od2 32644 prodindf 32786 frlmdim 33607 pstmxmet 33887 ofcfn 34090 ofcfval2 34094 signstlen 34558 bnj941 34762 satfn 35342 msubrn 35516 poimirlem4 37618 cnambfre 37662 sdclem2 37736 diafn 41028 dibfna 41148 dicfnN 41177 dihf11lem 41260 mapd1o 41642 hdmapfnN 41823 hgmapfnN 41882 aks4d1p1p5 42063 hbtlem7 43114 fsovf1od 44005 ntrrn 44111 ntrf 44112 dssmapntrcls 44117 addrfn 44461 subrfn 44462 mulvfn 44463 fsumsermpt 45577 hoidmvlelem3 46595 smflimsuplem7 46824 rhmsubcALTVlem1 48266 funcringcsetcALTV2lem4 48278 funcringcsetclem4ALTV 48301 ackvalsucsucval 48674 sectfn 49015 invfn 49016 isofnALT 49017 iinfssclem2 49041 nelsubclem 49053 upeu4 49182 swapf2fn 49254 fucofn2 49310 fucofn22 49326 fucoppc 49396 |
| Copyright terms: Public domain | W3C validator |