| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fneq1d | Structured version Visualization version GIF version | ||
| Description: Equality deduction for function predicate with domain. (Contributed by Paul Chapman, 22-Jun-2011.) |
| Ref | Expression |
|---|---|
| fneq1d.1 | ⊢ (𝜑 → 𝐹 = 𝐺) |
| Ref | Expression |
|---|---|
| fneq1d | ⊢ (𝜑 → (𝐹 Fn 𝐴 ↔ 𝐺 Fn 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fneq1d.1 | . 2 ⊢ (𝜑 → 𝐹 = 𝐺) | |
| 2 | fneq1 6572 | . 2 ⊢ (𝐹 = 𝐺 → (𝐹 Fn 𝐴 ↔ 𝐺 Fn 𝐴)) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝐹 Fn 𝐴 ↔ 𝐺 Fn 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 Fn wfn 6476 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-br 5092 df-opab 5154 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-fun 6483 df-fn 6484 |
| This theorem is referenced by: fneq12d 6576 f1o00 6798 f1oprswap 6807 f1ompt 7044 fmpt2d 7057 f1ocnvd 7597 offn 7623 offval2f 7625 offval2 7630 ofrfval2 7631 caofinvl 7642 fsplitfpar 8048 omxpenlem 8991 itunifn 10305 konigthlem 10456 seqof 13963 swrdlen 14552 mptfzshft 15682 prdsdsfn 17366 imasdsfn 17415 cidfn 17582 comffn 17608 isoval 17669 invf1o 17673 isofn 17679 brssc 17718 cofucl 17792 estrchomfn 18038 funcestrcsetclem4 18046 funcsetcestrclem4 18061 1stfcl 18100 2ndfcl 18101 prfcl 18106 evlfcl 18125 curf1cl 18131 curfcl 18135 hofcl 18162 yonedainv 18184 smndex1n0mnd 18817 grpinvf1o 18919 ghmquskerco 19194 pmtrrn 19367 pmtrfrn 19368 rnghmresfn 20532 rhmresfn 20561 rhmsubclem1 20598 srngf1o 20761 ofco2 22364 mat1dimscm 22388 neif 23013 fmf 23858 fncpn 25860 mdeg0 26000 om2noseqfo 28226 noseqrdglem 28233 noseqrdgfn 28234 noseqrdg0 28235 tglnfn 28523 grpoinvf 30507 kbass2 32092 fnresin 32602 f1o3d 32603 suppovss 32657 f1od2 32697 prodindf 32839 frlmdim 33619 pstmxmet 33905 ofcfn 34108 ofcfval2 34112 signstlen 34575 bnj941 34779 satfn 35387 msubrn 35561 poimirlem4 37663 cnambfre 37707 sdclem2 37781 diafn 41072 dibfna 41192 dicfnN 41221 dihf11lem 41304 mapd1o 41686 hdmapfnN 41867 hgmapfnN 41926 aks4d1p1p5 42107 hbtlem7 43157 fsovf1od 44048 ntrrn 44154 ntrf 44155 dssmapntrcls 44160 addrfn 44503 subrfn 44504 mulvfn 44505 fsumsermpt 45618 hoidmvlelem3 46634 smflimsuplem7 46863 rhmsubcALTVlem1 48311 funcringcsetcALTV2lem4 48323 funcringcsetclem4ALTV 48346 ackvalsucsucval 48719 sectfn 49060 invfn 49061 isofnALT 49062 iinfssclem2 49086 nelsubclem 49098 upeu4 49227 swapf2fn 49299 fucofn2 49355 fucofn22 49371 fucoppc 49441 |
| Copyright terms: Public domain | W3C validator |