Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fneq1d | Structured version Visualization version GIF version |
Description: Equality deduction for function predicate with domain. (Contributed by Paul Chapman, 22-Jun-2011.) |
Ref | Expression |
---|---|
fneq1d.1 | ⊢ (𝜑 → 𝐹 = 𝐺) |
Ref | Expression |
---|---|
fneq1d | ⊢ (𝜑 → (𝐹 Fn 𝐴 ↔ 𝐺 Fn 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fneq1d.1 | . 2 ⊢ (𝜑 → 𝐹 = 𝐺) | |
2 | fneq1 6533 | . 2 ⊢ (𝐹 = 𝐺 → (𝐹 Fn 𝐴 ↔ 𝐺 Fn 𝐴)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝐹 Fn 𝐴 ↔ 𝐺 Fn 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 Fn wfn 6432 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2069 df-clab 2717 df-cleq 2731 df-clel 2817 df-rab 3074 df-v 3435 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-nul 4258 df-if 4461 df-sn 4563 df-pr 4565 df-op 4569 df-br 5076 df-opab 5138 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-fun 6439 df-fn 6440 |
This theorem is referenced by: fneq12d 6537 f1o00 6760 f1oprswap 6769 f1ompt 6994 fmpt2d 7006 f1ocnvd 7529 offn 7555 offval2f 7557 offval2 7562 ofrfval2 7563 caofinvl 7572 fsplitfpar 7968 omxpenlem 8869 itunifn 10182 konigthlem 10333 seqof 13789 swrdlen 14369 mptfzshft 15499 prdsdsfn 17185 imasdsfn 17234 cidfn 17397 comffn 17423 isoval 17486 invf1o 17490 isofn 17496 brssc 17535 cofucl 17612 estrchomfn 17860 funcestrcsetclem4 17869 funcsetcestrclem4 17884 1stfcl 17923 2ndfcl 17924 prfcl 17929 evlfcl 17949 curf1cl 17955 curfcl 17959 hofcl 17986 yonedainv 18008 smndex1n0mnd 18560 grpinvf1o 18654 pmtrrn 19074 pmtrfrn 19075 srngf1o 20123 ofco2 21609 mat1dimscm 21633 neif 22260 fmf 23105 fncpn 25106 mdeg0 25244 tglnfn 26917 grpoinvf 28903 kbass2 30488 fnresin 30970 f1o3d 30971 suppovss 31026 f1od2 31065 frlmdim 31703 pstmxmet 31856 prodindf 32000 ofcfn 32077 ofcfval2 32081 signstlen 32555 bnj941 32761 satfn 33326 msubrn 33500 poimirlem4 35790 cnambfre 35834 sdclem2 35909 diafn 39055 dibfna 39175 dicfnN 39204 dihf11lem 39287 mapd1o 39669 hdmapfnN 39850 hgmapfnN 39909 aks4d1p1p5 40090 hbtlem7 40957 fsovf1od 41631 ntrrn 41739 ntrf 41740 dssmapntrcls 41745 addrfn 42097 subrfn 42098 mulvfn 42099 fsumsermpt 43127 hoidmvlelem3 44142 smflimsuplem7 44370 rnghmresfn 45532 rhmresfn 45578 funcringcsetcALTV2lem4 45608 funcringcsetclem4ALTV 45631 rhmsubclem1 45655 rhmsubcALTVlem1 45673 ackvalsucsucval 46045 |
Copyright terms: Public domain | W3C validator |