| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fneq1d | Structured version Visualization version GIF version | ||
| Description: Equality deduction for function predicate with domain. (Contributed by Paul Chapman, 22-Jun-2011.) |
| Ref | Expression |
|---|---|
| fneq1d.1 | ⊢ (𝜑 → 𝐹 = 𝐺) |
| Ref | Expression |
|---|---|
| fneq1d | ⊢ (𝜑 → (𝐹 Fn 𝐴 ↔ 𝐺 Fn 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fneq1d.1 | . 2 ⊢ (𝜑 → 𝐹 = 𝐺) | |
| 2 | fneq1 6634 | . 2 ⊢ (𝐹 = 𝐺 → (𝐹 Fn 𝐴 ↔ 𝐺 Fn 𝐴)) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝐹 Fn 𝐴 ↔ 𝐺 Fn 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 Fn wfn 6531 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5125 df-opab 5187 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-fun 6538 df-fn 6539 |
| This theorem is referenced by: fneq12d 6638 f1o00 6858 f1oprswap 6867 f1ompt 7106 fmpt2d 7119 f1ocnvd 7663 offn 7689 offval2f 7691 offval2 7696 ofrfval2 7697 caofinvl 7708 fsplitfpar 8122 omxpenlem 9092 itunifn 10436 konigthlem 10587 seqof 14082 swrdlen 14670 mptfzshft 15799 prdsdsfn 17484 imasdsfn 17533 cidfn 17696 comffn 17722 isoval 17783 invf1o 17787 isofn 17793 brssc 17832 cofucl 17906 estrchomfn 18152 funcestrcsetclem4 18160 funcsetcestrclem4 18175 1stfcl 18214 2ndfcl 18215 prfcl 18220 evlfcl 18239 curf1cl 18245 curfcl 18249 hofcl 18276 yonedainv 18298 smndex1n0mnd 18895 grpinvf1o 18997 ghmquskerco 19272 pmtrrn 19443 pmtrfrn 19444 rnghmresfn 20584 rhmresfn 20613 rhmsubclem1 20650 srngf1o 20813 ofco2 22394 mat1dimscm 22418 neif 23043 fmf 23888 fncpn 25892 mdeg0 26032 om2noseqfo 28249 noseqrdglem 28256 noseqrdgfn 28257 noseqrdg0 28258 tglnfn 28531 grpoinvf 30518 kbass2 32103 fnresin 32609 f1o3d 32610 suppovss 32663 f1od2 32703 prodindf 32845 frlmdim 33656 pstmxmet 33933 ofcfn 34136 ofcfval2 34140 signstlen 34604 bnj941 34808 satfn 35382 msubrn 35556 poimirlem4 37653 cnambfre 37697 sdclem2 37771 diafn 41058 dibfna 41178 dicfnN 41207 dihf11lem 41290 mapd1o 41672 hdmapfnN 41853 hgmapfnN 41912 aks4d1p1p5 42093 hbtlem7 43116 fsovf1od 44007 ntrrn 44113 ntrf 44114 dssmapntrcls 44119 addrfn 44463 subrfn 44464 mulvfn 44465 fsumsermpt 45575 hoidmvlelem3 46593 smflimsuplem7 46822 rhmsubcALTVlem1 48223 funcringcsetcALTV2lem4 48235 funcringcsetclem4ALTV 48258 ackvalsucsucval 48635 sectfn 48966 invfn 48967 isofnALT 48968 iinfssclem2 48989 nelsubclem 49001 upeu4 49096 swapf2fn 49152 fucofn2 49202 fucofn22 49218 |
| Copyright terms: Public domain | W3C validator |