Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fneq1d | Structured version Visualization version GIF version |
Description: Equality deduction for function predicate with domain. (Contributed by Paul Chapman, 22-Jun-2011.) |
Ref | Expression |
---|---|
fneq1d.1 | ⊢ (𝜑 → 𝐹 = 𝐺) |
Ref | Expression |
---|---|
fneq1d | ⊢ (𝜑 → (𝐹 Fn 𝐴 ↔ 𝐺 Fn 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fneq1d.1 | . 2 ⊢ (𝜑 → 𝐹 = 𝐺) | |
2 | fneq1 6508 | . 2 ⊢ (𝐹 = 𝐺 → (𝐹 Fn 𝐴 ↔ 𝐺 Fn 𝐴)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝐹 Fn 𝐴 ↔ 𝐺 Fn 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 Fn wfn 6413 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-fun 6420 df-fn 6421 |
This theorem is referenced by: fneq12d 6512 f1o00 6734 f1oprswap 6743 f1ompt 6967 fmpt2d 6979 f1ocnvd 7498 offn 7524 offval2f 7526 offval2 7531 ofrfval2 7532 caofinvl 7541 fsplitfpar 7930 omxpenlem 8813 itunifn 10104 konigthlem 10255 seqof 13708 swrdlen 14288 mptfzshft 15418 prdsdsfn 17093 imasdsfn 17142 cidfn 17305 comffn 17331 isoval 17394 invf1o 17398 isofn 17404 brssc 17443 cofucl 17519 estrchomfn 17767 funcestrcsetclem4 17776 funcsetcestrclem4 17791 1stfcl 17830 2ndfcl 17831 prfcl 17836 evlfcl 17856 curf1cl 17862 curfcl 17866 hofcl 17893 yonedainv 17915 smndex1n0mnd 18466 grpinvf1o 18560 pmtrrn 18980 pmtrfrn 18981 srngf1o 20029 ofco2 21508 mat1dimscm 21532 neif 22159 fmf 23004 fncpn 25002 mdeg0 25140 tglnfn 26812 grpoinvf 28795 kbass2 30380 fnresin 30862 f1o3d 30863 suppovss 30919 f1od2 30958 frlmdim 31596 pstmxmet 31749 prodindf 31891 ofcfn 31968 ofcfval2 31972 signstlen 32446 bnj941 32652 satfn 33217 msubrn 33391 poimirlem4 35708 cnambfre 35752 sdclem2 35827 diafn 38975 dibfna 39095 dicfnN 39124 dihf11lem 39207 mapd1o 39589 hdmapfnN 39770 hgmapfnN 39829 aks4d1p1p5 40011 hbtlem7 40866 fsovf1od 41513 ntrrn 41621 ntrf 41622 dssmapntrcls 41627 addrfn 41979 subrfn 41980 mulvfn 41981 fsumsermpt 43010 hoidmvlelem3 44025 smflimsuplem7 44246 rnghmresfn 45409 rhmresfn 45455 funcringcsetcALTV2lem4 45485 funcringcsetclem4ALTV 45508 rhmsubclem1 45532 rhmsubcALTVlem1 45550 ackvalsucsucval 45922 |
Copyright terms: Public domain | W3C validator |