Proof of Theorem frrlem1
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | frrlem1.1 | . 2
⊢ 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} | 
| 2 |  | fneq1 6659 | . . . . . 6
⊢ (𝑓 = 𝑔 → (𝑓 Fn 𝑥 ↔ 𝑔 Fn 𝑥)) | 
| 3 |  | fveq1 6905 | . . . . . . . 8
⊢ (𝑓 = 𝑔 → (𝑓‘𝑦) = (𝑔‘𝑦)) | 
| 4 |  | reseq1 5991 | . . . . . . . . 9
⊢ (𝑓 = 𝑔 → (𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)) = (𝑔 ↾ Pred(𝑅, 𝐴, 𝑦))) | 
| 5 | 4 | oveq2d 7447 | . . . . . . . 8
⊢ (𝑓 = 𝑔 → (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))) = (𝑦𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑦)))) | 
| 6 | 3, 5 | eqeq12d 2753 | . . . . . . 7
⊢ (𝑓 = 𝑔 → ((𝑓‘𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))) ↔ (𝑔‘𝑦) = (𝑦𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑦))))) | 
| 7 | 6 | ralbidv 3178 | . . . . . 6
⊢ (𝑓 = 𝑔 → (∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))) ↔ ∀𝑦 ∈ 𝑥 (𝑔‘𝑦) = (𝑦𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑦))))) | 
| 8 | 2, 7 | 3anbi13d 1440 | . . . . 5
⊢ (𝑓 = 𝑔 → ((𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))) ↔ (𝑔 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑔‘𝑦) = (𝑦𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑦)))))) | 
| 9 | 8 | exbidv 1921 | . . . 4
⊢ (𝑓 = 𝑔 → (∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))) ↔ ∃𝑥(𝑔 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑔‘𝑦) = (𝑦𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑦)))))) | 
| 10 |  | fneq2 6660 | . . . . . 6
⊢ (𝑥 = 𝑧 → (𝑔 Fn 𝑥 ↔ 𝑔 Fn 𝑧)) | 
| 11 |  | sseq1 4009 | . . . . . . 7
⊢ (𝑥 = 𝑧 → (𝑥 ⊆ 𝐴 ↔ 𝑧 ⊆ 𝐴)) | 
| 12 |  | sseq2 4010 | . . . . . . . . 9
⊢ (𝑥 = 𝑧 → (Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥 ↔ Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑧)) | 
| 13 | 12 | raleqbi1dv 3338 | . . . . . . . 8
⊢ (𝑥 = 𝑧 → (∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥 ↔ ∀𝑦 ∈ 𝑧 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑧)) | 
| 14 |  | predeq3 6325 | . . . . . . . . . 10
⊢ (𝑦 = 𝑤 → Pred(𝑅, 𝐴, 𝑦) = Pred(𝑅, 𝐴, 𝑤)) | 
| 15 | 14 | sseq1d 4015 | . . . . . . . . 9
⊢ (𝑦 = 𝑤 → (Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑧 ↔ Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧)) | 
| 16 | 15 | cbvralvw 3237 | . . . . . . . 8
⊢
(∀𝑦 ∈
𝑧 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑧 ↔ ∀𝑤 ∈ 𝑧 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧) | 
| 17 | 13, 16 | bitrdi 287 | . . . . . . 7
⊢ (𝑥 = 𝑧 → (∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥 ↔ ∀𝑤 ∈ 𝑧 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧)) | 
| 18 | 11, 17 | anbi12d 632 | . . . . . 6
⊢ (𝑥 = 𝑧 → ((𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ↔ (𝑧 ⊆ 𝐴 ∧ ∀𝑤 ∈ 𝑧 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧))) | 
| 19 |  | raleq 3323 | . . . . . . 7
⊢ (𝑥 = 𝑧 → (∀𝑦 ∈ 𝑥 (𝑔‘𝑦) = (𝑦𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑦))) ↔ ∀𝑦 ∈ 𝑧 (𝑔‘𝑦) = (𝑦𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑦))))) | 
| 20 |  | fveq2 6906 | . . . . . . . . 9
⊢ (𝑦 = 𝑤 → (𝑔‘𝑦) = (𝑔‘𝑤)) | 
| 21 |  | id 22 | . . . . . . . . . 10
⊢ (𝑦 = 𝑤 → 𝑦 = 𝑤) | 
| 22 | 14 | reseq2d 5997 | . . . . . . . . . 10
⊢ (𝑦 = 𝑤 → (𝑔 ↾ Pred(𝑅, 𝐴, 𝑦)) = (𝑔 ↾ Pred(𝑅, 𝐴, 𝑤))) | 
| 23 | 21, 22 | oveq12d 7449 | . . . . . . . . 9
⊢ (𝑦 = 𝑤 → (𝑦𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑦))) = (𝑤𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑤)))) | 
| 24 | 20, 23 | eqeq12d 2753 | . . . . . . . 8
⊢ (𝑦 = 𝑤 → ((𝑔‘𝑦) = (𝑦𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑦))) ↔ (𝑔‘𝑤) = (𝑤𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑤))))) | 
| 25 | 24 | cbvralvw 3237 | . . . . . . 7
⊢
(∀𝑦 ∈
𝑧 (𝑔‘𝑦) = (𝑦𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑦))) ↔ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝑤𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑤)))) | 
| 26 | 19, 25 | bitrdi 287 | . . . . . 6
⊢ (𝑥 = 𝑧 → (∀𝑦 ∈ 𝑥 (𝑔‘𝑦) = (𝑦𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑦))) ↔ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝑤𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑤))))) | 
| 27 | 10, 18, 26 | 3anbi123d 1438 | . . . . 5
⊢ (𝑥 = 𝑧 → ((𝑔 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑔‘𝑦) = (𝑦𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑦)))) ↔ (𝑔 Fn 𝑧 ∧ (𝑧 ⊆ 𝐴 ∧ ∀𝑤 ∈ 𝑧 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧) ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝑤𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑤)))))) | 
| 28 | 27 | cbvexvw 2036 | . . . 4
⊢
(∃𝑥(𝑔 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑔‘𝑦) = (𝑦𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑦)))) ↔ ∃𝑧(𝑔 Fn 𝑧 ∧ (𝑧 ⊆ 𝐴 ∧ ∀𝑤 ∈ 𝑧 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧) ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝑤𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑤))))) | 
| 29 | 9, 28 | bitrdi 287 | . . 3
⊢ (𝑓 = 𝑔 → (∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))) ↔ ∃𝑧(𝑔 Fn 𝑧 ∧ (𝑧 ⊆ 𝐴 ∧ ∀𝑤 ∈ 𝑧 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧) ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝑤𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑤)))))) | 
| 30 | 29 | cbvabv 2812 | . 2
⊢ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} = {𝑔 ∣ ∃𝑧(𝑔 Fn 𝑧 ∧ (𝑧 ⊆ 𝐴 ∧ ∀𝑤 ∈ 𝑧 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧) ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝑤𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑤))))} | 
| 31 | 1, 30 | eqtri 2765 | 1
⊢ 𝐵 = {𝑔 ∣ ∃𝑧(𝑔 Fn 𝑧 ∧ (𝑧 ⊆ 𝐴 ∧ ∀𝑤 ∈ 𝑧 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧) ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝑤𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑤))))} |