Proof of Theorem frrlem1
Step | Hyp | Ref
| Expression |
1 | | frrlem1.1 |
. 2
⊢ 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} |
2 | | fneq1 6520 |
. . . . . 6
⊢ (𝑓 = 𝑔 → (𝑓 Fn 𝑥 ↔ 𝑔 Fn 𝑥)) |
3 | | fveq1 6767 |
. . . . . . . 8
⊢ (𝑓 = 𝑔 → (𝑓‘𝑦) = (𝑔‘𝑦)) |
4 | | reseq1 5882 |
. . . . . . . . 9
⊢ (𝑓 = 𝑔 → (𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)) = (𝑔 ↾ Pred(𝑅, 𝐴, 𝑦))) |
5 | 4 | oveq2d 7284 |
. . . . . . . 8
⊢ (𝑓 = 𝑔 → (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))) = (𝑦𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑦)))) |
6 | 3, 5 | eqeq12d 2755 |
. . . . . . 7
⊢ (𝑓 = 𝑔 → ((𝑓‘𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))) ↔ (𝑔‘𝑦) = (𝑦𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑦))))) |
7 | 6 | ralbidv 3122 |
. . . . . 6
⊢ (𝑓 = 𝑔 → (∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))) ↔ ∀𝑦 ∈ 𝑥 (𝑔‘𝑦) = (𝑦𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑦))))) |
8 | 2, 7 | 3anbi13d 1436 |
. . . . 5
⊢ (𝑓 = 𝑔 → ((𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))) ↔ (𝑔 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑔‘𝑦) = (𝑦𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑦)))))) |
9 | 8 | exbidv 1927 |
. . . 4
⊢ (𝑓 = 𝑔 → (∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))) ↔ ∃𝑥(𝑔 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑔‘𝑦) = (𝑦𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑦)))))) |
10 | | fneq2 6521 |
. . . . . 6
⊢ (𝑥 = 𝑧 → (𝑔 Fn 𝑥 ↔ 𝑔 Fn 𝑧)) |
11 | | sseq1 3950 |
. . . . . . 7
⊢ (𝑥 = 𝑧 → (𝑥 ⊆ 𝐴 ↔ 𝑧 ⊆ 𝐴)) |
12 | | sseq2 3951 |
. . . . . . . . 9
⊢ (𝑥 = 𝑧 → (Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥 ↔ Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑧)) |
13 | 12 | raleqbi1dv 3338 |
. . . . . . . 8
⊢ (𝑥 = 𝑧 → (∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥 ↔ ∀𝑦 ∈ 𝑧 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑧)) |
14 | | predeq3 6203 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑤 → Pred(𝑅, 𝐴, 𝑦) = Pred(𝑅, 𝐴, 𝑤)) |
15 | 14 | sseq1d 3956 |
. . . . . . . . 9
⊢ (𝑦 = 𝑤 → (Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑧 ↔ Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧)) |
16 | 15 | cbvralvw 3380 |
. . . . . . . 8
⊢
(∀𝑦 ∈
𝑧 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑧 ↔ ∀𝑤 ∈ 𝑧 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧) |
17 | 13, 16 | bitrdi 286 |
. . . . . . 7
⊢ (𝑥 = 𝑧 → (∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥 ↔ ∀𝑤 ∈ 𝑧 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧)) |
18 | 11, 17 | anbi12d 630 |
. . . . . 6
⊢ (𝑥 = 𝑧 → ((𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ↔ (𝑧 ⊆ 𝐴 ∧ ∀𝑤 ∈ 𝑧 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧))) |
19 | | raleq 3340 |
. . . . . . 7
⊢ (𝑥 = 𝑧 → (∀𝑦 ∈ 𝑥 (𝑔‘𝑦) = (𝑦𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑦))) ↔ ∀𝑦 ∈ 𝑧 (𝑔‘𝑦) = (𝑦𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑦))))) |
20 | | fveq2 6768 |
. . . . . . . . 9
⊢ (𝑦 = 𝑤 → (𝑔‘𝑦) = (𝑔‘𝑤)) |
21 | | id 22 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑤 → 𝑦 = 𝑤) |
22 | 14 | reseq2d 5888 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑤 → (𝑔 ↾ Pred(𝑅, 𝐴, 𝑦)) = (𝑔 ↾ Pred(𝑅, 𝐴, 𝑤))) |
23 | 21, 22 | oveq12d 7286 |
. . . . . . . . 9
⊢ (𝑦 = 𝑤 → (𝑦𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑦))) = (𝑤𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑤)))) |
24 | 20, 23 | eqeq12d 2755 |
. . . . . . . 8
⊢ (𝑦 = 𝑤 → ((𝑔‘𝑦) = (𝑦𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑦))) ↔ (𝑔‘𝑤) = (𝑤𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑤))))) |
25 | 24 | cbvralvw 3380 |
. . . . . . 7
⊢
(∀𝑦 ∈
𝑧 (𝑔‘𝑦) = (𝑦𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑦))) ↔ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝑤𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑤)))) |
26 | 19, 25 | bitrdi 286 |
. . . . . 6
⊢ (𝑥 = 𝑧 → (∀𝑦 ∈ 𝑥 (𝑔‘𝑦) = (𝑦𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑦))) ↔ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝑤𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑤))))) |
27 | 10, 18, 26 | 3anbi123d 1434 |
. . . . 5
⊢ (𝑥 = 𝑧 → ((𝑔 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑔‘𝑦) = (𝑦𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑦)))) ↔ (𝑔 Fn 𝑧 ∧ (𝑧 ⊆ 𝐴 ∧ ∀𝑤 ∈ 𝑧 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧) ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝑤𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑤)))))) |
28 | 27 | cbvexvw 2043 |
. . . 4
⊢
(∃𝑥(𝑔 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑔‘𝑦) = (𝑦𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑦)))) ↔ ∃𝑧(𝑔 Fn 𝑧 ∧ (𝑧 ⊆ 𝐴 ∧ ∀𝑤 ∈ 𝑧 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧) ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝑤𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑤))))) |
29 | 9, 28 | bitrdi 286 |
. . 3
⊢ (𝑓 = 𝑔 → (∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))) ↔ ∃𝑧(𝑔 Fn 𝑧 ∧ (𝑧 ⊆ 𝐴 ∧ ∀𝑤 ∈ 𝑧 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧) ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝑤𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑤)))))) |
30 | 29 | cbvabv 2812 |
. 2
⊢ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} = {𝑔 ∣ ∃𝑧(𝑔 Fn 𝑧 ∧ (𝑧 ⊆ 𝐴 ∧ ∀𝑤 ∈ 𝑧 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧) ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝑤𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑤))))} |
31 | 1, 30 | eqtri 2767 |
1
⊢ 𝐵 = {𝑔 ∣ ∃𝑧(𝑔 Fn 𝑧 ∧ (𝑧 ⊆ 𝐴 ∧ ∀𝑤 ∈ 𝑧 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧) ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝑤𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑤))))} |