Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frrlem1 Structured version   Visualization version   GIF version

Theorem frrlem1 33144
Description: Lemma for founded recursion. The final item we are interested in is the union of acceptable functions 𝐵. This lemma just changes bound variables for later use. (Contributed by Paul Chapman, 21-Apr-2012.)
Hypothesis
Ref Expression
frrlem1.1 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}
Assertion
Ref Expression
frrlem1 𝐵 = {𝑔 ∣ ∃𝑧(𝑔 Fn 𝑧 ∧ (𝑧𝐴 ∧ ∀𝑤𝑧 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧) ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝑤𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑤))))}
Distinct variable groups:   𝐴,𝑓,𝑔,𝑤,𝑥,𝑦,𝑧   𝑓,𝐺,𝑔,𝑤,𝑥,𝑦,𝑧   𝑅,𝑓,𝑔,𝑤,𝑥,𝑦,𝑧
Allowed substitution hints:   𝐵(𝑥,𝑦,𝑧,𝑤,𝑓,𝑔)

Proof of Theorem frrlem1
StepHypRef Expression
1 frrlem1.1 . 2 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}
2 fneq1 6437 . . . . . 6 (𝑓 = 𝑔 → (𝑓 Fn 𝑥𝑔 Fn 𝑥))
3 fveq1 6662 . . . . . . . 8 (𝑓 = 𝑔 → (𝑓𝑦) = (𝑔𝑦))
4 reseq1 5840 . . . . . . . . 9 (𝑓 = 𝑔 → (𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)) = (𝑔 ↾ Pred(𝑅, 𝐴, 𝑦)))
54oveq2d 7165 . . . . . . . 8 (𝑓 = 𝑔 → (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))) = (𝑦𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑦))))
63, 5eqeq12d 2836 . . . . . . 7 (𝑓 = 𝑔 → ((𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))) ↔ (𝑔𝑦) = (𝑦𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑦)))))
76ralbidv 3196 . . . . . 6 (𝑓 = 𝑔 → (∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))) ↔ ∀𝑦𝑥 (𝑔𝑦) = (𝑦𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑦)))))
82, 73anbi13d 1433 . . . . 5 (𝑓 = 𝑔 → ((𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))) ↔ (𝑔 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑔𝑦) = (𝑦𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑦))))))
98exbidv 1921 . . . 4 (𝑓 = 𝑔 → (∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))) ↔ ∃𝑥(𝑔 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑔𝑦) = (𝑦𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑦))))))
10 fneq2 6438 . . . . . 6 (𝑥 = 𝑧 → (𝑔 Fn 𝑥𝑔 Fn 𝑧))
11 sseq1 3985 . . . . . . 7 (𝑥 = 𝑧 → (𝑥𝐴𝑧𝐴))
12 sseq2 3986 . . . . . . . . 9 (𝑥 = 𝑧 → (Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥 ↔ Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑧))
1312raleqbi1dv 3402 . . . . . . . 8 (𝑥 = 𝑧 → (∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥 ↔ ∀𝑦𝑧 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑧))
14 predeq3 6145 . . . . . . . . . 10 (𝑦 = 𝑤 → Pred(𝑅, 𝐴, 𝑦) = Pred(𝑅, 𝐴, 𝑤))
1514sseq1d 3991 . . . . . . . . 9 (𝑦 = 𝑤 → (Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑧 ↔ Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧))
1615cbvralvw 3446 . . . . . . . 8 (∀𝑦𝑧 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑧 ↔ ∀𝑤𝑧 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧)
1713, 16syl6bb 289 . . . . . . 7 (𝑥 = 𝑧 → (∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥 ↔ ∀𝑤𝑧 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧))
1811, 17anbi12d 632 . . . . . 6 (𝑥 = 𝑧 → ((𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ↔ (𝑧𝐴 ∧ ∀𝑤𝑧 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧)))
19 raleq 3404 . . . . . . 7 (𝑥 = 𝑧 → (∀𝑦𝑥 (𝑔𝑦) = (𝑦𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑦))) ↔ ∀𝑦𝑧 (𝑔𝑦) = (𝑦𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑦)))))
20 fveq2 6663 . . . . . . . . 9 (𝑦 = 𝑤 → (𝑔𝑦) = (𝑔𝑤))
21 id 22 . . . . . . . . . 10 (𝑦 = 𝑤𝑦 = 𝑤)
2214reseq2d 5846 . . . . . . . . . 10 (𝑦 = 𝑤 → (𝑔 ↾ Pred(𝑅, 𝐴, 𝑦)) = (𝑔 ↾ Pred(𝑅, 𝐴, 𝑤)))
2321, 22oveq12d 7167 . . . . . . . . 9 (𝑦 = 𝑤 → (𝑦𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑦))) = (𝑤𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑤))))
2420, 23eqeq12d 2836 . . . . . . . 8 (𝑦 = 𝑤 → ((𝑔𝑦) = (𝑦𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑦))) ↔ (𝑔𝑤) = (𝑤𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑤)))))
2524cbvralvw 3446 . . . . . . 7 (∀𝑦𝑧 (𝑔𝑦) = (𝑦𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑦))) ↔ ∀𝑤𝑧 (𝑔𝑤) = (𝑤𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑤))))
2619, 25syl6bb 289 . . . . . 6 (𝑥 = 𝑧 → (∀𝑦𝑥 (𝑔𝑦) = (𝑦𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑦))) ↔ ∀𝑤𝑧 (𝑔𝑤) = (𝑤𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑤)))))
2710, 18, 263anbi123d 1431 . . . . 5 (𝑥 = 𝑧 → ((𝑔 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑔𝑦) = (𝑦𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑦)))) ↔ (𝑔 Fn 𝑧 ∧ (𝑧𝐴 ∧ ∀𝑤𝑧 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧) ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝑤𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑤))))))
2827cbvexvw 2043 . . . 4 (∃𝑥(𝑔 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑔𝑦) = (𝑦𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑦)))) ↔ ∃𝑧(𝑔 Fn 𝑧 ∧ (𝑧𝐴 ∧ ∀𝑤𝑧 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧) ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝑤𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑤)))))
299, 28syl6bb 289 . . 3 (𝑓 = 𝑔 → (∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))) ↔ ∃𝑧(𝑔 Fn 𝑧 ∧ (𝑧𝐴 ∧ ∀𝑤𝑧 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧) ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝑤𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑤))))))
3029cbvabv 2888 . 2 {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} = {𝑔 ∣ ∃𝑧(𝑔 Fn 𝑧 ∧ (𝑧𝐴 ∧ ∀𝑤𝑧 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧) ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝑤𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑤))))}
311, 30eqtri 2843 1 𝐵 = {𝑔 ∣ ∃𝑧(𝑔 Fn 𝑧 ∧ (𝑧𝐴 ∧ ∀𝑤𝑧 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧) ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝑤𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑤))))}
Colors of variables: wff setvar class
Syntax hints:  wa 398  w3a 1082   = wceq 1536  wex 1779  {cab 2798  wral 3137  wss 3929  cres 5550  Predcpred 6140   Fn wfn 6343  cfv 6348  (class class class)co 7149
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2792
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1084  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-clab 2799  df-cleq 2813  df-clel 2892  df-nfc 2962  df-ral 3142  df-rab 3146  df-v 3493  df-dif 3932  df-un 3934  df-in 3936  df-ss 3945  df-nul 4285  df-if 4461  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-br 5060  df-opab 5122  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-iota 6307  df-fun 6350  df-fn 6351  df-fv 6356  df-ov 7152
This theorem is referenced by:  frrlem2  33145  frrlem3  33146  frrlem4  33147  frrlem8  33151  frrlem12  33155  frrlem13  33156  fpr1  33160  fpr2  33161  frr1  33165  frr2  33166
  Copyright terms: Public domain W3C validator