MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wfrlem1OLD Structured version   Visualization version   GIF version

Theorem wfrlem1OLD 8348
Description: Obsolete version as of 18-Nov-2024. Lemma for well-ordered recursion. The final item we are interested in is the union of acceptable functions 𝐵. This lemma just changes bound variables for later use. (New usage is discouraged.) (Proof modification is discouraged.) (Contributed by Scott Fenton, 21-Apr-2011.)
Hypothesis
Ref Expression
wfrlem1OLD.1 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}
Assertion
Ref Expression
wfrlem1OLD 𝐵 = {𝑔 ∣ ∃𝑧(𝑔 Fn 𝑧 ∧ (𝑧𝐴 ∧ ∀𝑤𝑧 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧) ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑤))))}
Distinct variable groups:   𝐴,𝑓,𝑔,𝑤,𝑥,𝑦,𝑧   𝑓,𝐹,𝑔,𝑤,𝑥,𝑦,𝑧   𝑅,𝑓,𝑔,𝑤,𝑥,𝑦,𝑧
Allowed substitution hints:   𝐵(𝑥,𝑦,𝑧,𝑤,𝑓,𝑔)

Proof of Theorem wfrlem1OLD
StepHypRef Expression
1 wfrlem1OLD.1 . 2 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}
2 fneq1 6659 . . . . . 6 (𝑓 = 𝑔 → (𝑓 Fn 𝑥𝑔 Fn 𝑥))
3 fveq1 6905 . . . . . . . 8 (𝑓 = 𝑔 → (𝑓𝑦) = (𝑔𝑦))
4 reseq1 5991 . . . . . . . . 9 (𝑓 = 𝑔 → (𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)) = (𝑔 ↾ Pred(𝑅, 𝐴, 𝑦)))
54fveq2d 6910 . . . . . . . 8 (𝑓 = 𝑔 → (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑦))))
63, 5eqeq12d 2753 . . . . . . 7 (𝑓 = 𝑔 → ((𝑓𝑦) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))) ↔ (𝑔𝑦) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑦)))))
76ralbidv 3178 . . . . . 6 (𝑓 = 𝑔 → (∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))) ↔ ∀𝑦𝑥 (𝑔𝑦) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑦)))))
82, 73anbi13d 1440 . . . . 5 (𝑓 = 𝑔 → ((𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))) ↔ (𝑔 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑔𝑦) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑦))))))
98exbidv 1921 . . . 4 (𝑓 = 𝑔 → (∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))) ↔ ∃𝑥(𝑔 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑔𝑦) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑦))))))
10 fneq2 6660 . . . . . 6 (𝑥 = 𝑧 → (𝑔 Fn 𝑥𝑔 Fn 𝑧))
11 sseq1 4009 . . . . . . 7 (𝑥 = 𝑧 → (𝑥𝐴𝑧𝐴))
12 sseq2 4010 . . . . . . . . 9 (𝑥 = 𝑧 → (Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥 ↔ Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑧))
1312raleqbi1dv 3338 . . . . . . . 8 (𝑥 = 𝑧 → (∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥 ↔ ∀𝑦𝑧 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑧))
14 predeq3 6325 . . . . . . . . . 10 (𝑦 = 𝑤 → Pred(𝑅, 𝐴, 𝑦) = Pred(𝑅, 𝐴, 𝑤))
1514sseq1d 4015 . . . . . . . . 9 (𝑦 = 𝑤 → (Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑧 ↔ Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧))
1615cbvralvw 3237 . . . . . . . 8 (∀𝑦𝑧 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑧 ↔ ∀𝑤𝑧 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧)
1713, 16bitrdi 287 . . . . . . 7 (𝑥 = 𝑧 → (∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥 ↔ ∀𝑤𝑧 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧))
1811, 17anbi12d 632 . . . . . 6 (𝑥 = 𝑧 → ((𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ↔ (𝑧𝐴 ∧ ∀𝑤𝑧 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧)))
19 raleq 3323 . . . . . . 7 (𝑥 = 𝑧 → (∀𝑦𝑥 (𝑔𝑦) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑦))) ↔ ∀𝑦𝑧 (𝑔𝑦) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑦)))))
20 fveq2 6906 . . . . . . . . 9 (𝑦 = 𝑤 → (𝑔𝑦) = (𝑔𝑤))
2114reseq2d 5997 . . . . . . . . . 10 (𝑦 = 𝑤 → (𝑔 ↾ Pred(𝑅, 𝐴, 𝑦)) = (𝑔 ↾ Pred(𝑅, 𝐴, 𝑤)))
2221fveq2d 6910 . . . . . . . . 9 (𝑦 = 𝑤 → (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑦))) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑤))))
2320, 22eqeq12d 2753 . . . . . . . 8 (𝑦 = 𝑤 → ((𝑔𝑦) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑦))) ↔ (𝑔𝑤) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑤)))))
2423cbvralvw 3237 . . . . . . 7 (∀𝑦𝑧 (𝑔𝑦) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑦))) ↔ ∀𝑤𝑧 (𝑔𝑤) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑤))))
2519, 24bitrdi 287 . . . . . 6 (𝑥 = 𝑧 → (∀𝑦𝑥 (𝑔𝑦) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑦))) ↔ ∀𝑤𝑧 (𝑔𝑤) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑤)))))
2610, 18, 253anbi123d 1438 . . . . 5 (𝑥 = 𝑧 → ((𝑔 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑔𝑦) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑦)))) ↔ (𝑔 Fn 𝑧 ∧ (𝑧𝐴 ∧ ∀𝑤𝑧 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧) ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑤))))))
2726cbvexvw 2036 . . . 4 (∃𝑥(𝑔 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑔𝑦) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑦)))) ↔ ∃𝑧(𝑔 Fn 𝑧 ∧ (𝑧𝐴 ∧ ∀𝑤𝑧 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧) ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑤)))))
289, 27bitrdi 287 . . 3 (𝑓 = 𝑔 → (∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))) ↔ ∃𝑧(𝑔 Fn 𝑧 ∧ (𝑧𝐴 ∧ ∀𝑤𝑧 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧) ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑤))))))
2928cbvabv 2812 . 2 {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} = {𝑔 ∣ ∃𝑧(𝑔 Fn 𝑧 ∧ (𝑧𝐴 ∧ ∀𝑤𝑧 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧) ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑤))))}
301, 29eqtri 2765 1 𝐵 = {𝑔 ∣ ∃𝑧(𝑔 Fn 𝑧 ∧ (𝑧𝐴 ∧ ∀𝑤𝑧 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧) ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑤))))}
Colors of variables: wff setvar class
Syntax hints:  wa 395  w3a 1087   = wceq 1540  wex 1779  {cab 2714  wral 3061  wss 3951  cres 5687  Predcpred 6320   Fn wfn 6556  cfv 6561
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-iota 6514  df-fun 6563  df-fn 6564  df-fv 6569
This theorem is referenced by:  wfrlem2OLD  8349  wfrlem3OLD  8350  wfrlem3OLDa  8351  wfrlem4OLD  8352  wfrdmclOLD  8357
  Copyright terms: Public domain W3C validator