Proof of Theorem wfrlem1OLD
| Step | Hyp | Ref
| Expression |
| 1 | | wfrlem1OLD.1 |
. 2
⊢ 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} |
| 2 | | fneq1 6659 |
. . . . . 6
⊢ (𝑓 = 𝑔 → (𝑓 Fn 𝑥 ↔ 𝑔 Fn 𝑥)) |
| 3 | | fveq1 6905 |
. . . . . . . 8
⊢ (𝑓 = 𝑔 → (𝑓‘𝑦) = (𝑔‘𝑦)) |
| 4 | | reseq1 5991 |
. . . . . . . . 9
⊢ (𝑓 = 𝑔 → (𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)) = (𝑔 ↾ Pred(𝑅, 𝐴, 𝑦))) |
| 5 | 4 | fveq2d 6910 |
. . . . . . . 8
⊢ (𝑓 = 𝑔 → (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑦)))) |
| 6 | 3, 5 | eqeq12d 2753 |
. . . . . . 7
⊢ (𝑓 = 𝑔 → ((𝑓‘𝑦) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))) ↔ (𝑔‘𝑦) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑦))))) |
| 7 | 6 | ralbidv 3178 |
. . . . . 6
⊢ (𝑓 = 𝑔 → (∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))) ↔ ∀𝑦 ∈ 𝑥 (𝑔‘𝑦) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑦))))) |
| 8 | 2, 7 | 3anbi13d 1440 |
. . . . 5
⊢ (𝑓 = 𝑔 → ((𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))) ↔ (𝑔 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑔‘𝑦) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑦)))))) |
| 9 | 8 | exbidv 1921 |
. . . 4
⊢ (𝑓 = 𝑔 → (∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))) ↔ ∃𝑥(𝑔 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑔‘𝑦) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑦)))))) |
| 10 | | fneq2 6660 |
. . . . . 6
⊢ (𝑥 = 𝑧 → (𝑔 Fn 𝑥 ↔ 𝑔 Fn 𝑧)) |
| 11 | | sseq1 4009 |
. . . . . . 7
⊢ (𝑥 = 𝑧 → (𝑥 ⊆ 𝐴 ↔ 𝑧 ⊆ 𝐴)) |
| 12 | | sseq2 4010 |
. . . . . . . . 9
⊢ (𝑥 = 𝑧 → (Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥 ↔ Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑧)) |
| 13 | 12 | raleqbi1dv 3338 |
. . . . . . . 8
⊢ (𝑥 = 𝑧 → (∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥 ↔ ∀𝑦 ∈ 𝑧 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑧)) |
| 14 | | predeq3 6325 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑤 → Pred(𝑅, 𝐴, 𝑦) = Pred(𝑅, 𝐴, 𝑤)) |
| 15 | 14 | sseq1d 4015 |
. . . . . . . . 9
⊢ (𝑦 = 𝑤 → (Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑧 ↔ Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧)) |
| 16 | 15 | cbvralvw 3237 |
. . . . . . . 8
⊢
(∀𝑦 ∈
𝑧 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑧 ↔ ∀𝑤 ∈ 𝑧 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧) |
| 17 | 13, 16 | bitrdi 287 |
. . . . . . 7
⊢ (𝑥 = 𝑧 → (∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥 ↔ ∀𝑤 ∈ 𝑧 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧)) |
| 18 | 11, 17 | anbi12d 632 |
. . . . . 6
⊢ (𝑥 = 𝑧 → ((𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ↔ (𝑧 ⊆ 𝐴 ∧ ∀𝑤 ∈ 𝑧 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧))) |
| 19 | | raleq 3323 |
. . . . . . 7
⊢ (𝑥 = 𝑧 → (∀𝑦 ∈ 𝑥 (𝑔‘𝑦) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑦))) ↔ ∀𝑦 ∈ 𝑧 (𝑔‘𝑦) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑦))))) |
| 20 | | fveq2 6906 |
. . . . . . . . 9
⊢ (𝑦 = 𝑤 → (𝑔‘𝑦) = (𝑔‘𝑤)) |
| 21 | 14 | reseq2d 5997 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑤 → (𝑔 ↾ Pred(𝑅, 𝐴, 𝑦)) = (𝑔 ↾ Pred(𝑅, 𝐴, 𝑤))) |
| 22 | 21 | fveq2d 6910 |
. . . . . . . . 9
⊢ (𝑦 = 𝑤 → (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑦))) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑤)))) |
| 23 | 20, 22 | eqeq12d 2753 |
. . . . . . . 8
⊢ (𝑦 = 𝑤 → ((𝑔‘𝑦) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑦))) ↔ (𝑔‘𝑤) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑤))))) |
| 24 | 23 | cbvralvw 3237 |
. . . . . . 7
⊢
(∀𝑦 ∈
𝑧 (𝑔‘𝑦) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑦))) ↔ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑤)))) |
| 25 | 19, 24 | bitrdi 287 |
. . . . . 6
⊢ (𝑥 = 𝑧 → (∀𝑦 ∈ 𝑥 (𝑔‘𝑦) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑦))) ↔ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑤))))) |
| 26 | 10, 18, 25 | 3anbi123d 1438 |
. . . . 5
⊢ (𝑥 = 𝑧 → ((𝑔 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑔‘𝑦) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑦)))) ↔ (𝑔 Fn 𝑧 ∧ (𝑧 ⊆ 𝐴 ∧ ∀𝑤 ∈ 𝑧 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧) ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑤)))))) |
| 27 | 26 | cbvexvw 2036 |
. . . 4
⊢
(∃𝑥(𝑔 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑔‘𝑦) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑦)))) ↔ ∃𝑧(𝑔 Fn 𝑧 ∧ (𝑧 ⊆ 𝐴 ∧ ∀𝑤 ∈ 𝑧 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧) ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑤))))) |
| 28 | 9, 27 | bitrdi 287 |
. . 3
⊢ (𝑓 = 𝑔 → (∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))) ↔ ∃𝑧(𝑔 Fn 𝑧 ∧ (𝑧 ⊆ 𝐴 ∧ ∀𝑤 ∈ 𝑧 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧) ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑤)))))) |
| 29 | 28 | cbvabv 2812 |
. 2
⊢ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} = {𝑔 ∣ ∃𝑧(𝑔 Fn 𝑧 ∧ (𝑧 ⊆ 𝐴 ∧ ∀𝑤 ∈ 𝑧 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧) ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑤))))} |
| 30 | 1, 29 | eqtri 2765 |
1
⊢ 𝐵 = {𝑔 ∣ ∃𝑧(𝑔 Fn 𝑧 ∧ (𝑧 ⊆ 𝐴 ∧ ∀𝑤 ∈ 𝑧 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧) ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑤))))} |