![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > esumcvgsum | Structured version Visualization version GIF version |
Description: The value of the extended sum when the corresponding sum is convergent. (Contributed by Thierry Arnoux, 29-Oct-2019.) |
Ref | Expression |
---|---|
esumcvgsum.1 | ⊢ (𝑘 = 𝑖 → 𝐴 = 𝐵) |
esumcvgsum.2 | ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝐴 ∈ (0[,)+∞)) |
esumcvgsum.3 | ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘) = 𝐴) |
esumcvgsum.4 | ⊢ (𝜑 → seq1( + , 𝐹) ⇝ 𝐿) |
esumcvgsum.5 | ⊢ (𝜑 → 𝐿 ∈ ℝ) |
Ref | Expression |
---|---|
esumcvgsum | ⊢ (𝜑 → Σ*𝑘 ∈ ℕ𝐴 = Σ𝑘 ∈ ℕ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | esumcvgsum.2 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝐴 ∈ (0[,)+∞)) | |
2 | esumcvgsum.1 | . 2 ⊢ (𝑘 = 𝑖 → 𝐴 = 𝐵) | |
3 | simpll 765 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑗)) → 𝜑) | |
4 | elfznn 13560 | . . . . . . 7 ⊢ (𝑘 ∈ (1...𝑗) → 𝑘 ∈ ℕ) | |
5 | 4 | adantl 480 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑗)) → 𝑘 ∈ ℕ) |
6 | esumcvgsum.3 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘) = 𝐴) | |
7 | 3, 5, 6 | syl2anc 582 | . . . . 5 ⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑗)) → (𝐹‘𝑘) = 𝐴) |
8 | nnuz 12893 | . . . . . . . 8 ⊢ ℕ = (ℤ≥‘1) | |
9 | 8 | eleq2i 2817 | . . . . . . 7 ⊢ (𝑗 ∈ ℕ ↔ 𝑗 ∈ (ℤ≥‘1)) |
10 | 9 | biimpi 215 | . . . . . 6 ⊢ (𝑗 ∈ ℕ → 𝑗 ∈ (ℤ≥‘1)) |
11 | 10 | adantl 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ (ℤ≥‘1)) |
12 | mnfxr 11299 | . . . . . . . . 9 ⊢ -∞ ∈ ℝ* | |
13 | pnfxr 11296 | . . . . . . . . 9 ⊢ +∞ ∈ ℝ* | |
14 | 0re 11244 | . . . . . . . . . 10 ⊢ 0 ∈ ℝ | |
15 | mnflt 13133 | . . . . . . . . . 10 ⊢ (0 ∈ ℝ → -∞ < 0) | |
16 | 14, 15 | ax-mp 5 | . . . . . . . . 9 ⊢ -∞ < 0 |
17 | pnfge 13140 | . . . . . . . . . 10 ⊢ (+∞ ∈ ℝ* → +∞ ≤ +∞) | |
18 | 13, 17 | ax-mp 5 | . . . . . . . . 9 ⊢ +∞ ≤ +∞ |
19 | icossioo 13447 | . . . . . . . . 9 ⊢ (((-∞ ∈ ℝ* ∧ +∞ ∈ ℝ*) ∧ (-∞ < 0 ∧ +∞ ≤ +∞)) → (0[,)+∞) ⊆ (-∞(,)+∞)) | |
20 | 12, 13, 16, 18, 19 | mp4an 691 | . . . . . . . 8 ⊢ (0[,)+∞) ⊆ (-∞(,)+∞) |
21 | ioomax 13429 | . . . . . . . 8 ⊢ (-∞(,)+∞) = ℝ | |
22 | 20, 21 | sseqtri 4009 | . . . . . . 7 ⊢ (0[,)+∞) ⊆ ℝ |
23 | 3, 5, 1 | syl2anc 582 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑗)) → 𝐴 ∈ (0[,)+∞)) |
24 | 22, 23 | sselid 3970 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑗)) → 𝐴 ∈ ℝ) |
25 | 24 | recnd 11270 | . . . . 5 ⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑗)) → 𝐴 ∈ ℂ) |
26 | 7, 11, 25 | fsumser 15706 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → Σ𝑘 ∈ (1...𝑗)𝐴 = (seq1( + , 𝐹)‘𝑗)) |
27 | 26 | mpteq2dva 5243 | . . 3 ⊢ (𝜑 → (𝑗 ∈ ℕ ↦ Σ𝑘 ∈ (1...𝑗)𝐴) = (𝑗 ∈ ℕ ↦ (seq1( + , 𝐹)‘𝑗))) |
28 | 1z 12620 | . . . . . . 7 ⊢ 1 ∈ ℤ | |
29 | seqfn 14008 | . . . . . . 7 ⊢ (1 ∈ ℤ → seq1( + , 𝐹) Fn (ℤ≥‘1)) | |
30 | 28, 29 | ax-mp 5 | . . . . . 6 ⊢ seq1( + , 𝐹) Fn (ℤ≥‘1) |
31 | fneq2 6640 | . . . . . . 7 ⊢ (ℕ = (ℤ≥‘1) → (seq1( + , 𝐹) Fn ℕ ↔ seq1( + , 𝐹) Fn (ℤ≥‘1))) | |
32 | 8, 31 | ax-mp 5 | . . . . . 6 ⊢ (seq1( + , 𝐹) Fn ℕ ↔ seq1( + , 𝐹) Fn (ℤ≥‘1)) |
33 | 30, 32 | mpbir 230 | . . . . 5 ⊢ seq1( + , 𝐹) Fn ℕ |
34 | dffn5 6951 | . . . . 5 ⊢ (seq1( + , 𝐹) Fn ℕ ↔ seq1( + , 𝐹) = (𝑗 ∈ ℕ ↦ (seq1( + , 𝐹)‘𝑗))) | |
35 | 33, 34 | mpbi 229 | . . . 4 ⊢ seq1( + , 𝐹) = (𝑗 ∈ ℕ ↦ (seq1( + , 𝐹)‘𝑗)) |
36 | seqex 13998 | . . . . . 6 ⊢ seq1( + , 𝐹) ∈ V | |
37 | 36 | a1i 11 | . . . . 5 ⊢ (𝜑 → seq1( + , 𝐹) ∈ V) |
38 | esumcvgsum.5 | . . . . 5 ⊢ (𝜑 → 𝐿 ∈ ℝ) | |
39 | esumcvgsum.4 | . . . . 5 ⊢ (𝜑 → seq1( + , 𝐹) ⇝ 𝐿) | |
40 | breldmg 5906 | . . . . 5 ⊢ ((seq1( + , 𝐹) ∈ V ∧ 𝐿 ∈ ℝ ∧ seq1( + , 𝐹) ⇝ 𝐿) → seq1( + , 𝐹) ∈ dom ⇝ ) | |
41 | 37, 38, 39, 40 | syl3anc 1368 | . . . 4 ⊢ (𝜑 → seq1( + , 𝐹) ∈ dom ⇝ ) |
42 | 35, 41 | eqeltrrid 2830 | . . 3 ⊢ (𝜑 → (𝑗 ∈ ℕ ↦ (seq1( + , 𝐹)‘𝑗)) ∈ dom ⇝ ) |
43 | 27, 42 | eqeltrd 2825 | . 2 ⊢ (𝜑 → (𝑗 ∈ ℕ ↦ Σ𝑘 ∈ (1...𝑗)𝐴) ∈ dom ⇝ ) |
44 | 1, 2, 43 | esumpcvgval 33753 | 1 ⊢ (𝜑 → Σ*𝑘 ∈ ℕ𝐴 = Σ𝑘 ∈ ℕ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1533 ∈ wcel 2098 Vcvv 3463 ⊆ wss 3940 class class class wbr 5143 ↦ cmpt 5226 dom cdm 5672 Fn wfn 6537 ‘cfv 6542 (class class class)co 7415 ℝcr 11135 0cc0 11136 1c1 11137 + caddc 11139 +∞cpnf 11273 -∞cmnf 11274 ℝ*cxr 11275 < clt 11276 ≤ cle 11277 ℕcn 12240 ℤcz 12586 ℤ≥cuz 12850 (,)cioo 13354 [,)cico 13356 ...cfz 13514 seqcseq 13996 ⇝ cli 15458 Σcsu 15662 Σ*cesum 33702 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5280 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7737 ax-inf2 9662 ax-cnex 11192 ax-resscn 11193 ax-1cn 11194 ax-icn 11195 ax-addcl 11196 ax-addrcl 11197 ax-mulcl 11198 ax-mulrcl 11199 ax-mulcom 11200 ax-addass 11201 ax-mulass 11202 ax-distr 11203 ax-i2m1 11204 ax-1ne0 11205 ax-1rid 11206 ax-rnegex 11207 ax-rrecex 11208 ax-cnre 11209 ax-pre-lttri 11210 ax-pre-lttrn 11211 ax-pre-ltadd 11212 ax-pre-mulgt0 11213 ax-pre-sup 11214 ax-addf 11215 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3960 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-tp 4629 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-iin 4994 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-se 5628 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-isom 6551 df-riota 7371 df-ov 7418 df-oprab 7419 df-mpo 7420 df-of 7681 df-om 7868 df-1st 7989 df-2nd 7990 df-supp 8162 df-frecs 8283 df-wrecs 8314 df-recs 8388 df-rdg 8427 df-1o 8483 df-er 8721 df-map 8843 df-pm 8844 df-en 8961 df-dom 8962 df-sdom 8963 df-fin 8964 df-fsupp 9384 df-fi 9432 df-sup 9463 df-inf 9464 df-oi 9531 df-card 9960 df-pnf 11278 df-mnf 11279 df-xr 11280 df-ltxr 11281 df-le 11282 df-sub 11474 df-neg 11475 df-div 11900 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-7 12308 df-8 12309 df-9 12310 df-n0 12501 df-z 12587 df-dec 12706 df-uz 12851 df-q 12961 df-rp 13005 df-xadd 13123 df-ioo 13358 df-ioc 13359 df-ico 13360 df-icc 13361 df-fz 13515 df-fzo 13658 df-fl 13787 df-seq 13997 df-exp 14057 df-hash 14320 df-cj 15076 df-re 15077 df-im 15078 df-sqrt 15212 df-abs 15213 df-clim 15462 df-rlim 15463 df-sum 15663 df-struct 17113 df-sets 17130 df-slot 17148 df-ndx 17160 df-base 17178 df-ress 17207 df-plusg 17243 df-mulr 17244 df-starv 17245 df-tset 17249 df-ple 17250 df-ds 17252 df-unif 17253 df-rest 17401 df-topn 17402 df-0g 17420 df-gsum 17421 df-topgen 17422 df-ordt 17480 df-xrs 17481 df-mre 17563 df-mrc 17564 df-acs 17566 df-ps 18555 df-tsr 18556 df-mgm 18597 df-sgrp 18676 df-mnd 18692 df-submnd 18738 df-grp 18895 df-minusg 18896 df-cntz 19270 df-cmn 19739 df-abl 19740 df-mgp 20077 df-ur 20124 df-ring 20177 df-cring 20178 df-fbas 21278 df-fg 21279 df-cnfld 21282 df-top 22812 df-topon 22829 df-topsp 22851 df-bases 22865 df-ntr 22940 df-nei 23018 df-cn 23147 df-haus 23235 df-fil 23766 df-fm 23858 df-flim 23859 df-flf 23860 df-tsms 24047 df-esum 33703 |
This theorem is referenced by: omssubadd 33976 |
Copyright terms: Public domain | W3C validator |