| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > esumcvgsum | Structured version Visualization version GIF version | ||
| Description: The value of the extended sum when the corresponding sum is convergent. (Contributed by Thierry Arnoux, 29-Oct-2019.) |
| Ref | Expression |
|---|---|
| esumcvgsum.1 | ⊢ (𝑘 = 𝑖 → 𝐴 = 𝐵) |
| esumcvgsum.2 | ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝐴 ∈ (0[,)+∞)) |
| esumcvgsum.3 | ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘) = 𝐴) |
| esumcvgsum.4 | ⊢ (𝜑 → seq1( + , 𝐹) ⇝ 𝐿) |
| esumcvgsum.5 | ⊢ (𝜑 → 𝐿 ∈ ℝ) |
| Ref | Expression |
|---|---|
| esumcvgsum | ⊢ (𝜑 → Σ*𝑘 ∈ ℕ𝐴 = Σ𝑘 ∈ ℕ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | esumcvgsum.2 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝐴 ∈ (0[,)+∞)) | |
| 2 | esumcvgsum.1 | . 2 ⊢ (𝑘 = 𝑖 → 𝐴 = 𝐵) | |
| 3 | simpll 766 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑗)) → 𝜑) | |
| 4 | elfznn 13514 | . . . . . . 7 ⊢ (𝑘 ∈ (1...𝑗) → 𝑘 ∈ ℕ) | |
| 5 | 4 | adantl 481 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑗)) → 𝑘 ∈ ℕ) |
| 6 | esumcvgsum.3 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘) = 𝐴) | |
| 7 | 3, 5, 6 | syl2anc 584 | . . . . 5 ⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑗)) → (𝐹‘𝑘) = 𝐴) |
| 8 | nnuz 12836 | . . . . . . . 8 ⊢ ℕ = (ℤ≥‘1) | |
| 9 | 8 | eleq2i 2820 | . . . . . . 7 ⊢ (𝑗 ∈ ℕ ↔ 𝑗 ∈ (ℤ≥‘1)) |
| 10 | 9 | biimpi 216 | . . . . . 6 ⊢ (𝑗 ∈ ℕ → 𝑗 ∈ (ℤ≥‘1)) |
| 11 | 10 | adantl 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ (ℤ≥‘1)) |
| 12 | mnfxr 11231 | . . . . . . . . 9 ⊢ -∞ ∈ ℝ* | |
| 13 | pnfxr 11228 | . . . . . . . . 9 ⊢ +∞ ∈ ℝ* | |
| 14 | 0re 11176 | . . . . . . . . . 10 ⊢ 0 ∈ ℝ | |
| 15 | mnflt 13083 | . . . . . . . . . 10 ⊢ (0 ∈ ℝ → -∞ < 0) | |
| 16 | 14, 15 | ax-mp 5 | . . . . . . . . 9 ⊢ -∞ < 0 |
| 17 | pnfge 13090 | . . . . . . . . . 10 ⊢ (+∞ ∈ ℝ* → +∞ ≤ +∞) | |
| 18 | 13, 17 | ax-mp 5 | . . . . . . . . 9 ⊢ +∞ ≤ +∞ |
| 19 | icossioo 13401 | . . . . . . . . 9 ⊢ (((-∞ ∈ ℝ* ∧ +∞ ∈ ℝ*) ∧ (-∞ < 0 ∧ +∞ ≤ +∞)) → (0[,)+∞) ⊆ (-∞(,)+∞)) | |
| 20 | 12, 13, 16, 18, 19 | mp4an 693 | . . . . . . . 8 ⊢ (0[,)+∞) ⊆ (-∞(,)+∞) |
| 21 | ioomax 13383 | . . . . . . . 8 ⊢ (-∞(,)+∞) = ℝ | |
| 22 | 20, 21 | sseqtri 3995 | . . . . . . 7 ⊢ (0[,)+∞) ⊆ ℝ |
| 23 | 3, 5, 1 | syl2anc 584 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑗)) → 𝐴 ∈ (0[,)+∞)) |
| 24 | 22, 23 | sselid 3944 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑗)) → 𝐴 ∈ ℝ) |
| 25 | 24 | recnd 11202 | . . . . 5 ⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑗)) → 𝐴 ∈ ℂ) |
| 26 | 7, 11, 25 | fsumser 15696 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → Σ𝑘 ∈ (1...𝑗)𝐴 = (seq1( + , 𝐹)‘𝑗)) |
| 27 | 26 | mpteq2dva 5200 | . . 3 ⊢ (𝜑 → (𝑗 ∈ ℕ ↦ Σ𝑘 ∈ (1...𝑗)𝐴) = (𝑗 ∈ ℕ ↦ (seq1( + , 𝐹)‘𝑗))) |
| 28 | 1z 12563 | . . . . . . 7 ⊢ 1 ∈ ℤ | |
| 29 | seqfn 13978 | . . . . . . 7 ⊢ (1 ∈ ℤ → seq1( + , 𝐹) Fn (ℤ≥‘1)) | |
| 30 | 28, 29 | ax-mp 5 | . . . . . 6 ⊢ seq1( + , 𝐹) Fn (ℤ≥‘1) |
| 31 | fneq2 6610 | . . . . . . 7 ⊢ (ℕ = (ℤ≥‘1) → (seq1( + , 𝐹) Fn ℕ ↔ seq1( + , 𝐹) Fn (ℤ≥‘1))) | |
| 32 | 8, 31 | ax-mp 5 | . . . . . 6 ⊢ (seq1( + , 𝐹) Fn ℕ ↔ seq1( + , 𝐹) Fn (ℤ≥‘1)) |
| 33 | 30, 32 | mpbir 231 | . . . . 5 ⊢ seq1( + , 𝐹) Fn ℕ |
| 34 | dffn5 6919 | . . . . 5 ⊢ (seq1( + , 𝐹) Fn ℕ ↔ seq1( + , 𝐹) = (𝑗 ∈ ℕ ↦ (seq1( + , 𝐹)‘𝑗))) | |
| 35 | 33, 34 | mpbi 230 | . . . 4 ⊢ seq1( + , 𝐹) = (𝑗 ∈ ℕ ↦ (seq1( + , 𝐹)‘𝑗)) |
| 36 | seqex 13968 | . . . . . 6 ⊢ seq1( + , 𝐹) ∈ V | |
| 37 | 36 | a1i 11 | . . . . 5 ⊢ (𝜑 → seq1( + , 𝐹) ∈ V) |
| 38 | esumcvgsum.5 | . . . . 5 ⊢ (𝜑 → 𝐿 ∈ ℝ) | |
| 39 | esumcvgsum.4 | . . . . 5 ⊢ (𝜑 → seq1( + , 𝐹) ⇝ 𝐿) | |
| 40 | breldmg 5873 | . . . . 5 ⊢ ((seq1( + , 𝐹) ∈ V ∧ 𝐿 ∈ ℝ ∧ seq1( + , 𝐹) ⇝ 𝐿) → seq1( + , 𝐹) ∈ dom ⇝ ) | |
| 41 | 37, 38, 39, 40 | syl3anc 1373 | . . . 4 ⊢ (𝜑 → seq1( + , 𝐹) ∈ dom ⇝ ) |
| 42 | 35, 41 | eqeltrrid 2833 | . . 3 ⊢ (𝜑 → (𝑗 ∈ ℕ ↦ (seq1( + , 𝐹)‘𝑗)) ∈ dom ⇝ ) |
| 43 | 27, 42 | eqeltrd 2828 | . 2 ⊢ (𝜑 → (𝑗 ∈ ℕ ↦ Σ𝑘 ∈ (1...𝑗)𝐴) ∈ dom ⇝ ) |
| 44 | 1, 2, 43 | esumpcvgval 34068 | 1 ⊢ (𝜑 → Σ*𝑘 ∈ ℕ𝐴 = Σ𝑘 ∈ ℕ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3447 ⊆ wss 3914 class class class wbr 5107 ↦ cmpt 5188 dom cdm 5638 Fn wfn 6506 ‘cfv 6511 (class class class)co 7387 ℝcr 11067 0cc0 11068 1c1 11069 + caddc 11071 +∞cpnf 11205 -∞cmnf 11206 ℝ*cxr 11207 < clt 11208 ≤ cle 11209 ℕcn 12186 ℤcz 12529 ℤ≥cuz 12793 (,)cioo 13306 [,)cico 13308 ...cfz 13468 seqcseq 13966 ⇝ cli 15450 Σcsu 15652 Σ*cesum 34017 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-inf2 9594 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 ax-addf 11147 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-iin 4958 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-of 7653 df-om 7843 df-1st 7968 df-2nd 7969 df-supp 8140 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-er 8671 df-map 8801 df-pm 8802 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-fsupp 9313 df-fi 9362 df-sup 9393 df-inf 9394 df-oi 9463 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-z 12530 df-dec 12650 df-uz 12794 df-q 12908 df-rp 12952 df-xadd 13073 df-ioo 13310 df-ioc 13311 df-ico 13312 df-icc 13313 df-fz 13469 df-fzo 13616 df-fl 13754 df-seq 13967 df-exp 14027 df-hash 14296 df-cj 15065 df-re 15066 df-im 15067 df-sqrt 15201 df-abs 15202 df-clim 15454 df-rlim 15455 df-sum 15653 df-struct 17117 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-mulr 17234 df-starv 17235 df-tset 17239 df-ple 17240 df-ds 17242 df-unif 17243 df-rest 17385 df-topn 17386 df-0g 17404 df-gsum 17405 df-topgen 17406 df-ordt 17464 df-xrs 17465 df-mre 17547 df-mrc 17548 df-acs 17550 df-ps 18525 df-tsr 18526 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-submnd 18711 df-grp 18868 df-minusg 18869 df-cntz 19249 df-cmn 19712 df-abl 19713 df-mgp 20050 df-ur 20091 df-ring 20144 df-cring 20145 df-fbas 21261 df-fg 21262 df-cnfld 21265 df-top 22781 df-topon 22798 df-topsp 22820 df-bases 22833 df-ntr 22907 df-nei 22985 df-cn 23114 df-haus 23202 df-fil 23733 df-fm 23825 df-flim 23826 df-flf 23827 df-tsms 24014 df-esum 34018 |
| This theorem is referenced by: omssubadd 34291 |
| Copyright terms: Public domain | W3C validator |