Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > esumcvgsum | Structured version Visualization version GIF version |
Description: The value of the extended sum when the corresponding sum is convergent. (Contributed by Thierry Arnoux, 29-Oct-2019.) |
Ref | Expression |
---|---|
esumcvgsum.1 | ⊢ (𝑘 = 𝑖 → 𝐴 = 𝐵) |
esumcvgsum.2 | ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝐴 ∈ (0[,)+∞)) |
esumcvgsum.3 | ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘) = 𝐴) |
esumcvgsum.4 | ⊢ (𝜑 → seq1( + , 𝐹) ⇝ 𝐿) |
esumcvgsum.5 | ⊢ (𝜑 → 𝐿 ∈ ℝ) |
Ref | Expression |
---|---|
esumcvgsum | ⊢ (𝜑 → Σ*𝑘 ∈ ℕ𝐴 = Σ𝑘 ∈ ℕ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | esumcvgsum.2 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝐴 ∈ (0[,)+∞)) | |
2 | esumcvgsum.1 | . 2 ⊢ (𝑘 = 𝑖 → 𝐴 = 𝐵) | |
3 | simpll 763 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑗)) → 𝜑) | |
4 | elfznn 13214 | . . . . . . 7 ⊢ (𝑘 ∈ (1...𝑗) → 𝑘 ∈ ℕ) | |
5 | 4 | adantl 481 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑗)) → 𝑘 ∈ ℕ) |
6 | esumcvgsum.3 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘) = 𝐴) | |
7 | 3, 5, 6 | syl2anc 583 | . . . . 5 ⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑗)) → (𝐹‘𝑘) = 𝐴) |
8 | nnuz 12550 | . . . . . . . 8 ⊢ ℕ = (ℤ≥‘1) | |
9 | 8 | eleq2i 2830 | . . . . . . 7 ⊢ (𝑗 ∈ ℕ ↔ 𝑗 ∈ (ℤ≥‘1)) |
10 | 9 | biimpi 215 | . . . . . 6 ⊢ (𝑗 ∈ ℕ → 𝑗 ∈ (ℤ≥‘1)) |
11 | 10 | adantl 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ (ℤ≥‘1)) |
12 | mnfxr 10963 | . . . . . . . . 9 ⊢ -∞ ∈ ℝ* | |
13 | pnfxr 10960 | . . . . . . . . 9 ⊢ +∞ ∈ ℝ* | |
14 | 0re 10908 | . . . . . . . . . 10 ⊢ 0 ∈ ℝ | |
15 | mnflt 12788 | . . . . . . . . . 10 ⊢ (0 ∈ ℝ → -∞ < 0) | |
16 | 14, 15 | ax-mp 5 | . . . . . . . . 9 ⊢ -∞ < 0 |
17 | pnfge 12795 | . . . . . . . . . 10 ⊢ (+∞ ∈ ℝ* → +∞ ≤ +∞) | |
18 | 13, 17 | ax-mp 5 | . . . . . . . . 9 ⊢ +∞ ≤ +∞ |
19 | icossioo 13101 | . . . . . . . . 9 ⊢ (((-∞ ∈ ℝ* ∧ +∞ ∈ ℝ*) ∧ (-∞ < 0 ∧ +∞ ≤ +∞)) → (0[,)+∞) ⊆ (-∞(,)+∞)) | |
20 | 12, 13, 16, 18, 19 | mp4an 689 | . . . . . . . 8 ⊢ (0[,)+∞) ⊆ (-∞(,)+∞) |
21 | ioomax 13083 | . . . . . . . 8 ⊢ (-∞(,)+∞) = ℝ | |
22 | 20, 21 | sseqtri 3953 | . . . . . . 7 ⊢ (0[,)+∞) ⊆ ℝ |
23 | 3, 5, 1 | syl2anc 583 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑗)) → 𝐴 ∈ (0[,)+∞)) |
24 | 22, 23 | sselid 3915 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑗)) → 𝐴 ∈ ℝ) |
25 | 24 | recnd 10934 | . . . . 5 ⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑗)) → 𝐴 ∈ ℂ) |
26 | 7, 11, 25 | fsumser 15370 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → Σ𝑘 ∈ (1...𝑗)𝐴 = (seq1( + , 𝐹)‘𝑗)) |
27 | 26 | mpteq2dva 5170 | . . 3 ⊢ (𝜑 → (𝑗 ∈ ℕ ↦ Σ𝑘 ∈ (1...𝑗)𝐴) = (𝑗 ∈ ℕ ↦ (seq1( + , 𝐹)‘𝑗))) |
28 | 1z 12280 | . . . . . . 7 ⊢ 1 ∈ ℤ | |
29 | seqfn 13661 | . . . . . . 7 ⊢ (1 ∈ ℤ → seq1( + , 𝐹) Fn (ℤ≥‘1)) | |
30 | 28, 29 | ax-mp 5 | . . . . . 6 ⊢ seq1( + , 𝐹) Fn (ℤ≥‘1) |
31 | fneq2 6509 | . . . . . . 7 ⊢ (ℕ = (ℤ≥‘1) → (seq1( + , 𝐹) Fn ℕ ↔ seq1( + , 𝐹) Fn (ℤ≥‘1))) | |
32 | 8, 31 | ax-mp 5 | . . . . . 6 ⊢ (seq1( + , 𝐹) Fn ℕ ↔ seq1( + , 𝐹) Fn (ℤ≥‘1)) |
33 | 30, 32 | mpbir 230 | . . . . 5 ⊢ seq1( + , 𝐹) Fn ℕ |
34 | dffn5 6810 | . . . . 5 ⊢ (seq1( + , 𝐹) Fn ℕ ↔ seq1( + , 𝐹) = (𝑗 ∈ ℕ ↦ (seq1( + , 𝐹)‘𝑗))) | |
35 | 33, 34 | mpbi 229 | . . . 4 ⊢ seq1( + , 𝐹) = (𝑗 ∈ ℕ ↦ (seq1( + , 𝐹)‘𝑗)) |
36 | seqex 13651 | . . . . . 6 ⊢ seq1( + , 𝐹) ∈ V | |
37 | 36 | a1i 11 | . . . . 5 ⊢ (𝜑 → seq1( + , 𝐹) ∈ V) |
38 | esumcvgsum.5 | . . . . 5 ⊢ (𝜑 → 𝐿 ∈ ℝ) | |
39 | esumcvgsum.4 | . . . . 5 ⊢ (𝜑 → seq1( + , 𝐹) ⇝ 𝐿) | |
40 | breldmg 5807 | . . . . 5 ⊢ ((seq1( + , 𝐹) ∈ V ∧ 𝐿 ∈ ℝ ∧ seq1( + , 𝐹) ⇝ 𝐿) → seq1( + , 𝐹) ∈ dom ⇝ ) | |
41 | 37, 38, 39, 40 | syl3anc 1369 | . . . 4 ⊢ (𝜑 → seq1( + , 𝐹) ∈ dom ⇝ ) |
42 | 35, 41 | eqeltrrid 2844 | . . 3 ⊢ (𝜑 → (𝑗 ∈ ℕ ↦ (seq1( + , 𝐹)‘𝑗)) ∈ dom ⇝ ) |
43 | 27, 42 | eqeltrd 2839 | . 2 ⊢ (𝜑 → (𝑗 ∈ ℕ ↦ Σ𝑘 ∈ (1...𝑗)𝐴) ∈ dom ⇝ ) |
44 | 1, 2, 43 | esumpcvgval 31946 | 1 ⊢ (𝜑 → Σ*𝑘 ∈ ℕ𝐴 = Σ𝑘 ∈ ℕ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 Vcvv 3422 ⊆ wss 3883 class class class wbr 5070 ↦ cmpt 5153 dom cdm 5580 Fn wfn 6413 ‘cfv 6418 (class class class)co 7255 ℝcr 10801 0cc0 10802 1c1 10803 + caddc 10805 +∞cpnf 10937 -∞cmnf 10938 ℝ*cxr 10939 < clt 10940 ≤ cle 10941 ℕcn 11903 ℤcz 12249 ℤ≥cuz 12511 (,)cioo 13008 [,)cico 13010 ...cfz 13168 seqcseq 13649 ⇝ cli 15121 Σcsu 15325 Σ*cesum 31895 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-inf2 9329 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 ax-addf 10881 ax-mulf 10882 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-of 7511 df-om 7688 df-1st 7804 df-2nd 7805 df-supp 7949 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-map 8575 df-pm 8576 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-fsupp 9059 df-fi 9100 df-sup 9131 df-inf 9132 df-oi 9199 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-q 12618 df-rp 12660 df-xadd 12778 df-ioo 13012 df-ioc 13013 df-ico 13014 df-icc 13015 df-fz 13169 df-fzo 13312 df-fl 13440 df-seq 13650 df-exp 13711 df-hash 13973 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-clim 15125 df-rlim 15126 df-sum 15326 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-starv 16903 df-tset 16907 df-ple 16908 df-ds 16910 df-unif 16911 df-rest 17050 df-topn 17051 df-0g 17069 df-gsum 17070 df-topgen 17071 df-ordt 17129 df-xrs 17130 df-mre 17212 df-mrc 17213 df-acs 17215 df-ps 18199 df-tsr 18200 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-submnd 18346 df-grp 18495 df-minusg 18496 df-cntz 18838 df-cmn 19303 df-abl 19304 df-mgp 19636 df-ur 19653 df-ring 19700 df-cring 19701 df-fbas 20507 df-fg 20508 df-cnfld 20511 df-top 21951 df-topon 21968 df-topsp 21990 df-bases 22004 df-ntr 22079 df-nei 22157 df-cn 22286 df-haus 22374 df-fil 22905 df-fm 22997 df-flim 22998 df-flf 22999 df-tsms 23186 df-esum 31896 |
This theorem is referenced by: omssubadd 32167 |
Copyright terms: Public domain | W3C validator |