MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1o00 Structured version   Visualization version   GIF version

Theorem f1o00 6673
Description: One-to-one onto mapping of the empty set. (Contributed by NM, 15-Apr-1998.)
Assertion
Ref Expression
f1o00 (𝐹:∅–1-1-onto𝐴 ↔ (𝐹 = ∅ ∧ 𝐴 = ∅))

Proof of Theorem f1o00
StepHypRef Expression
1 dff1o4 6647 . 2 (𝐹:∅–1-1-onto𝐴 ↔ (𝐹 Fn ∅ ∧ 𝐹 Fn 𝐴))
2 fn0 6487 . . . . . 6 (𝐹 Fn ∅ ↔ 𝐹 = ∅)
32biimpi 219 . . . . 5 (𝐹 Fn ∅ → 𝐹 = ∅)
43adantr 484 . . . 4 ((𝐹 Fn ∅ ∧ 𝐹 Fn 𝐴) → 𝐹 = ∅)
5 cnveq 5727 . . . . . . . . . 10 (𝐹 = ∅ → 𝐹 = ∅)
6 cnv0 5984 . . . . . . . . . 10 ∅ = ∅
75, 6eqtrdi 2787 . . . . . . . . 9 (𝐹 = ∅ → 𝐹 = ∅)
82, 7sylbi 220 . . . . . . . 8 (𝐹 Fn ∅ → 𝐹 = ∅)
98fneq1d 6450 . . . . . . 7 (𝐹 Fn ∅ → (𝐹 Fn 𝐴 ↔ ∅ Fn 𝐴))
109biimpa 480 . . . . . 6 ((𝐹 Fn ∅ ∧ 𝐹 Fn 𝐴) → ∅ Fn 𝐴)
1110fndmd 6461 . . . . 5 ((𝐹 Fn ∅ ∧ 𝐹 Fn 𝐴) → dom ∅ = 𝐴)
12 dm0 5774 . . . . 5 dom ∅ = ∅
1311, 12eqtr3di 2786 . . . 4 ((𝐹 Fn ∅ ∧ 𝐹 Fn 𝐴) → 𝐴 = ∅)
144, 13jca 515 . . 3 ((𝐹 Fn ∅ ∧ 𝐹 Fn 𝐴) → (𝐹 = ∅ ∧ 𝐴 = ∅))
152biimpri 231 . . . . 5 (𝐹 = ∅ → 𝐹 Fn ∅)
1615adantr 484 . . . 4 ((𝐹 = ∅ ∧ 𝐴 = ∅) → 𝐹 Fn ∅)
17 eqid 2736 . . . . . 6 ∅ = ∅
18 fn0 6487 . . . . . 6 (∅ Fn ∅ ↔ ∅ = ∅)
1917, 18mpbir 234 . . . . 5 ∅ Fn ∅
207fneq1d 6450 . . . . . 6 (𝐹 = ∅ → (𝐹 Fn 𝐴 ↔ ∅ Fn 𝐴))
21 fneq2 6449 . . . . . 6 (𝐴 = ∅ → (∅ Fn 𝐴 ↔ ∅ Fn ∅))
2220, 21sylan9bb 513 . . . . 5 ((𝐹 = ∅ ∧ 𝐴 = ∅) → (𝐹 Fn 𝐴 ↔ ∅ Fn ∅))
2319, 22mpbiri 261 . . . 4 ((𝐹 = ∅ ∧ 𝐴 = ∅) → 𝐹 Fn 𝐴)
2416, 23jca 515 . . 3 ((𝐹 = ∅ ∧ 𝐴 = ∅) → (𝐹 Fn ∅ ∧ 𝐹 Fn 𝐴))
2514, 24impbii 212 . 2 ((𝐹 Fn ∅ ∧ 𝐹 Fn 𝐴) ↔ (𝐹 = ∅ ∧ 𝐴 = ∅))
261, 25bitri 278 1 (𝐹:∅–1-1-onto𝐴 ↔ (𝐹 = ∅ ∧ 𝐴 = ∅))
Colors of variables: wff setvar class
Syntax hints:  wb 209  wa 399   = wceq 1543  c0 4223  ccnv 5535  dom cdm 5536   Fn wfn 6353  1-1-ontowf1o 6357
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-sep 5177  ax-nul 5184  ax-pr 5307
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ral 3056  df-rex 3057  df-rab 3060  df-v 3400  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-nul 4224  df-if 4426  df-sn 4528  df-pr 4530  df-op 4534  df-br 5040  df-opab 5102  df-id 5440  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365
This theorem is referenced by:  fo00  6674  f1o0  6675  en0  8669  en0OLD  8670  en0ALT  8671  symgbas0  18735  derang0  32798  poimirlem28  35491
  Copyright terms: Public domain W3C validator