![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > f1o00 | Structured version Visualization version GIF version |
Description: One-to-one onto mapping of the empty set. (Contributed by NM, 15-Apr-1998.) |
Ref | Expression |
---|---|
f1o00 | ⊢ (𝐹:∅–1-1-onto→𝐴 ↔ (𝐹 = ∅ ∧ 𝐴 = ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dff1o4 6449 | . 2 ⊢ (𝐹:∅–1-1-onto→𝐴 ↔ (𝐹 Fn ∅ ∧ ◡𝐹 Fn 𝐴)) | |
2 | fn0 6306 | . . . . . 6 ⊢ (𝐹 Fn ∅ ↔ 𝐹 = ∅) | |
3 | 2 | biimpi 208 | . . . . 5 ⊢ (𝐹 Fn ∅ → 𝐹 = ∅) |
4 | 3 | adantr 473 | . . . 4 ⊢ ((𝐹 Fn ∅ ∧ ◡𝐹 Fn 𝐴) → 𝐹 = ∅) |
5 | dm0 5634 | . . . . 5 ⊢ dom ∅ = ∅ | |
6 | cnveq 5590 | . . . . . . . . . 10 ⊢ (𝐹 = ∅ → ◡𝐹 = ◡∅) | |
7 | cnv0 5836 | . . . . . . . . . 10 ⊢ ◡∅ = ∅ | |
8 | 6, 7 | syl6eq 2823 | . . . . . . . . 9 ⊢ (𝐹 = ∅ → ◡𝐹 = ∅) |
9 | 2, 8 | sylbi 209 | . . . . . . . 8 ⊢ (𝐹 Fn ∅ → ◡𝐹 = ∅) |
10 | 9 | fneq1d 6276 | . . . . . . 7 ⊢ (𝐹 Fn ∅ → (◡𝐹 Fn 𝐴 ↔ ∅ Fn 𝐴)) |
11 | 10 | biimpa 469 | . . . . . 6 ⊢ ((𝐹 Fn ∅ ∧ ◡𝐹 Fn 𝐴) → ∅ Fn 𝐴) |
12 | 11 | fndmd 6286 | . . . . 5 ⊢ ((𝐹 Fn ∅ ∧ ◡𝐹 Fn 𝐴) → dom ∅ = 𝐴) |
13 | 5, 12 | syl5reqr 2822 | . . . 4 ⊢ ((𝐹 Fn ∅ ∧ ◡𝐹 Fn 𝐴) → 𝐴 = ∅) |
14 | 4, 13 | jca 504 | . . 3 ⊢ ((𝐹 Fn ∅ ∧ ◡𝐹 Fn 𝐴) → (𝐹 = ∅ ∧ 𝐴 = ∅)) |
15 | 2 | biimpri 220 | . . . . 5 ⊢ (𝐹 = ∅ → 𝐹 Fn ∅) |
16 | 15 | adantr 473 | . . . 4 ⊢ ((𝐹 = ∅ ∧ 𝐴 = ∅) → 𝐹 Fn ∅) |
17 | eqid 2771 | . . . . . 6 ⊢ ∅ = ∅ | |
18 | fn0 6306 | . . . . . 6 ⊢ (∅ Fn ∅ ↔ ∅ = ∅) | |
19 | 17, 18 | mpbir 223 | . . . . 5 ⊢ ∅ Fn ∅ |
20 | 8 | fneq1d 6276 | . . . . . 6 ⊢ (𝐹 = ∅ → (◡𝐹 Fn 𝐴 ↔ ∅ Fn 𝐴)) |
21 | fneq2 6275 | . . . . . 6 ⊢ (𝐴 = ∅ → (∅ Fn 𝐴 ↔ ∅ Fn ∅)) | |
22 | 20, 21 | sylan9bb 502 | . . . . 5 ⊢ ((𝐹 = ∅ ∧ 𝐴 = ∅) → (◡𝐹 Fn 𝐴 ↔ ∅ Fn ∅)) |
23 | 19, 22 | mpbiri 250 | . . . 4 ⊢ ((𝐹 = ∅ ∧ 𝐴 = ∅) → ◡𝐹 Fn 𝐴) |
24 | 16, 23 | jca 504 | . . 3 ⊢ ((𝐹 = ∅ ∧ 𝐴 = ∅) → (𝐹 Fn ∅ ∧ ◡𝐹 Fn 𝐴)) |
25 | 14, 24 | impbii 201 | . 2 ⊢ ((𝐹 Fn ∅ ∧ ◡𝐹 Fn 𝐴) ↔ (𝐹 = ∅ ∧ 𝐴 = ∅)) |
26 | 1, 25 | bitri 267 | 1 ⊢ (𝐹:∅–1-1-onto→𝐴 ↔ (𝐹 = ∅ ∧ 𝐴 = ∅)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 198 ∧ wa 387 = wceq 1508 ∅c0 4172 ◡ccnv 5402 dom cdm 5403 Fn wfn 6180 –1-1-onto→wf1o 6184 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-13 2302 ax-ext 2743 ax-sep 5056 ax-nul 5063 ax-pr 5182 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-3an 1071 df-tru 1511 df-ex 1744 df-nf 1748 df-sb 2017 df-mo 2548 df-eu 2585 df-clab 2752 df-cleq 2764 df-clel 2839 df-nfc 2911 df-ral 3086 df-rex 3087 df-rab 3090 df-v 3410 df-dif 3825 df-un 3827 df-in 3829 df-ss 3836 df-nul 4173 df-if 4345 df-sn 4436 df-pr 4438 df-op 4442 df-br 4926 df-opab 4988 df-id 5308 df-xp 5409 df-rel 5410 df-cnv 5411 df-co 5412 df-dm 5413 df-rn 5414 df-fun 6187 df-fn 6188 df-f 6189 df-f1 6190 df-fo 6191 df-f1o 6192 |
This theorem is referenced by: fo00 6476 f1o0 6477 en0 8367 symgbas0 18295 derang0 32038 poimirlem28 34398 |
Copyright terms: Public domain | W3C validator |