Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > f1o00 | Structured version Visualization version GIF version |
Description: One-to-one onto mapping of the empty set. (Contributed by NM, 15-Apr-1998.) |
Ref | Expression |
---|---|
f1o00 | ⊢ (𝐹:∅–1-1-onto→𝐴 ↔ (𝐹 = ∅ ∧ 𝐴 = ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dff1o4 6708 | . 2 ⊢ (𝐹:∅–1-1-onto→𝐴 ↔ (𝐹 Fn ∅ ∧ ◡𝐹 Fn 𝐴)) | |
2 | fn0 6548 | . . . . . 6 ⊢ (𝐹 Fn ∅ ↔ 𝐹 = ∅) | |
3 | 2 | biimpi 215 | . . . . 5 ⊢ (𝐹 Fn ∅ → 𝐹 = ∅) |
4 | 3 | adantr 480 | . . . 4 ⊢ ((𝐹 Fn ∅ ∧ ◡𝐹 Fn 𝐴) → 𝐹 = ∅) |
5 | cnveq 5771 | . . . . . . . . . 10 ⊢ (𝐹 = ∅ → ◡𝐹 = ◡∅) | |
6 | cnv0 6033 | . . . . . . . . . 10 ⊢ ◡∅ = ∅ | |
7 | 5, 6 | eqtrdi 2795 | . . . . . . . . 9 ⊢ (𝐹 = ∅ → ◡𝐹 = ∅) |
8 | 2, 7 | sylbi 216 | . . . . . . . 8 ⊢ (𝐹 Fn ∅ → ◡𝐹 = ∅) |
9 | 8 | fneq1d 6510 | . . . . . . 7 ⊢ (𝐹 Fn ∅ → (◡𝐹 Fn 𝐴 ↔ ∅ Fn 𝐴)) |
10 | 9 | biimpa 476 | . . . . . 6 ⊢ ((𝐹 Fn ∅ ∧ ◡𝐹 Fn 𝐴) → ∅ Fn 𝐴) |
11 | 10 | fndmd 6522 | . . . . 5 ⊢ ((𝐹 Fn ∅ ∧ ◡𝐹 Fn 𝐴) → dom ∅ = 𝐴) |
12 | dm0 5818 | . . . . 5 ⊢ dom ∅ = ∅ | |
13 | 11, 12 | eqtr3di 2794 | . . . 4 ⊢ ((𝐹 Fn ∅ ∧ ◡𝐹 Fn 𝐴) → 𝐴 = ∅) |
14 | 4, 13 | jca 511 | . . 3 ⊢ ((𝐹 Fn ∅ ∧ ◡𝐹 Fn 𝐴) → (𝐹 = ∅ ∧ 𝐴 = ∅)) |
15 | 2 | biimpri 227 | . . . . 5 ⊢ (𝐹 = ∅ → 𝐹 Fn ∅) |
16 | 15 | adantr 480 | . . . 4 ⊢ ((𝐹 = ∅ ∧ 𝐴 = ∅) → 𝐹 Fn ∅) |
17 | eqid 2738 | . . . . . 6 ⊢ ∅ = ∅ | |
18 | fn0 6548 | . . . . . 6 ⊢ (∅ Fn ∅ ↔ ∅ = ∅) | |
19 | 17, 18 | mpbir 230 | . . . . 5 ⊢ ∅ Fn ∅ |
20 | 7 | fneq1d 6510 | . . . . . 6 ⊢ (𝐹 = ∅ → (◡𝐹 Fn 𝐴 ↔ ∅ Fn 𝐴)) |
21 | fneq2 6509 | . . . . . 6 ⊢ (𝐴 = ∅ → (∅ Fn 𝐴 ↔ ∅ Fn ∅)) | |
22 | 20, 21 | sylan9bb 509 | . . . . 5 ⊢ ((𝐹 = ∅ ∧ 𝐴 = ∅) → (◡𝐹 Fn 𝐴 ↔ ∅ Fn ∅)) |
23 | 19, 22 | mpbiri 257 | . . . 4 ⊢ ((𝐹 = ∅ ∧ 𝐴 = ∅) → ◡𝐹 Fn 𝐴) |
24 | 16, 23 | jca 511 | . . 3 ⊢ ((𝐹 = ∅ ∧ 𝐴 = ∅) → (𝐹 Fn ∅ ∧ ◡𝐹 Fn 𝐴)) |
25 | 14, 24 | impbii 208 | . 2 ⊢ ((𝐹 Fn ∅ ∧ ◡𝐹 Fn 𝐴) ↔ (𝐹 = ∅ ∧ 𝐴 = ∅)) |
26 | 1, 25 | bitri 274 | 1 ⊢ (𝐹:∅–1-1-onto→𝐴 ↔ (𝐹 = ∅ ∧ 𝐴 = ∅)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 = wceq 1539 ∅c0 4253 ◡ccnv 5579 dom cdm 5580 Fn wfn 6413 –1-1-onto→wf1o 6417 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 |
This theorem is referenced by: fo00 6735 f1o0 6736 en0 8758 en0OLD 8759 en0ALT 8760 symgbas0 18911 derang0 33031 poimirlem28 35732 |
Copyright terms: Public domain | W3C validator |