MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1o00 Structured version   Visualization version   GIF version

Theorem f1o00 6475
Description: One-to-one onto mapping of the empty set. (Contributed by NM, 15-Apr-1998.)
Assertion
Ref Expression
f1o00 (𝐹:∅–1-1-onto𝐴 ↔ (𝐹 = ∅ ∧ 𝐴 = ∅))

Proof of Theorem f1o00
StepHypRef Expression
1 dff1o4 6449 . 2 (𝐹:∅–1-1-onto𝐴 ↔ (𝐹 Fn ∅ ∧ 𝐹 Fn 𝐴))
2 fn0 6306 . . . . . 6 (𝐹 Fn ∅ ↔ 𝐹 = ∅)
32biimpi 208 . . . . 5 (𝐹 Fn ∅ → 𝐹 = ∅)
43adantr 473 . . . 4 ((𝐹 Fn ∅ ∧ 𝐹 Fn 𝐴) → 𝐹 = ∅)
5 dm0 5634 . . . . 5 dom ∅ = ∅
6 cnveq 5590 . . . . . . . . . 10 (𝐹 = ∅ → 𝐹 = ∅)
7 cnv0 5836 . . . . . . . . . 10 ∅ = ∅
86, 7syl6eq 2823 . . . . . . . . 9 (𝐹 = ∅ → 𝐹 = ∅)
92, 8sylbi 209 . . . . . . . 8 (𝐹 Fn ∅ → 𝐹 = ∅)
109fneq1d 6276 . . . . . . 7 (𝐹 Fn ∅ → (𝐹 Fn 𝐴 ↔ ∅ Fn 𝐴))
1110biimpa 469 . . . . . 6 ((𝐹 Fn ∅ ∧ 𝐹 Fn 𝐴) → ∅ Fn 𝐴)
1211fndmd 6286 . . . . 5 ((𝐹 Fn ∅ ∧ 𝐹 Fn 𝐴) → dom ∅ = 𝐴)
135, 12syl5reqr 2822 . . . 4 ((𝐹 Fn ∅ ∧ 𝐹 Fn 𝐴) → 𝐴 = ∅)
144, 13jca 504 . . 3 ((𝐹 Fn ∅ ∧ 𝐹 Fn 𝐴) → (𝐹 = ∅ ∧ 𝐴 = ∅))
152biimpri 220 . . . . 5 (𝐹 = ∅ → 𝐹 Fn ∅)
1615adantr 473 . . . 4 ((𝐹 = ∅ ∧ 𝐴 = ∅) → 𝐹 Fn ∅)
17 eqid 2771 . . . . . 6 ∅ = ∅
18 fn0 6306 . . . . . 6 (∅ Fn ∅ ↔ ∅ = ∅)
1917, 18mpbir 223 . . . . 5 ∅ Fn ∅
208fneq1d 6276 . . . . . 6 (𝐹 = ∅ → (𝐹 Fn 𝐴 ↔ ∅ Fn 𝐴))
21 fneq2 6275 . . . . . 6 (𝐴 = ∅ → (∅ Fn 𝐴 ↔ ∅ Fn ∅))
2220, 21sylan9bb 502 . . . . 5 ((𝐹 = ∅ ∧ 𝐴 = ∅) → (𝐹 Fn 𝐴 ↔ ∅ Fn ∅))
2319, 22mpbiri 250 . . . 4 ((𝐹 = ∅ ∧ 𝐴 = ∅) → 𝐹 Fn 𝐴)
2416, 23jca 504 . . 3 ((𝐹 = ∅ ∧ 𝐴 = ∅) → (𝐹 Fn ∅ ∧ 𝐹 Fn 𝐴))
2514, 24impbii 201 . 2 ((𝐹 Fn ∅ ∧ 𝐹 Fn 𝐴) ↔ (𝐹 = ∅ ∧ 𝐴 = ∅))
261, 25bitri 267 1 (𝐹:∅–1-1-onto𝐴 ↔ (𝐹 = ∅ ∧ 𝐴 = ∅))
Colors of variables: wff setvar class
Syntax hints:  wb 198  wa 387   = wceq 1508  c0 4172  ccnv 5402  dom cdm 5403   Fn wfn 6180  1-1-ontowf1o 6184
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1759  ax-4 1773  ax-5 1870  ax-6 1929  ax-7 1966  ax-8 2053  ax-9 2060  ax-10 2080  ax-11 2094  ax-12 2107  ax-13 2302  ax-ext 2743  ax-sep 5056  ax-nul 5063  ax-pr 5182
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 835  df-3an 1071  df-tru 1511  df-ex 1744  df-nf 1748  df-sb 2017  df-mo 2548  df-eu 2585  df-clab 2752  df-cleq 2764  df-clel 2839  df-nfc 2911  df-ral 3086  df-rex 3087  df-rab 3090  df-v 3410  df-dif 3825  df-un 3827  df-in 3829  df-ss 3836  df-nul 4173  df-if 4345  df-sn 4436  df-pr 4438  df-op 4442  df-br 4926  df-opab 4988  df-id 5308  df-xp 5409  df-rel 5410  df-cnv 5411  df-co 5412  df-dm 5413  df-rn 5414  df-fun 6187  df-fn 6188  df-f 6189  df-f1 6190  df-fo 6191  df-f1o 6192
This theorem is referenced by:  fo00  6476  f1o0  6477  en0  8367  symgbas0  18295  derang0  32038  poimirlem28  34398
  Copyright terms: Public domain W3C validator