MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fr2nr Structured version   Visualization version   GIF version

Theorem fr2nr 5653
Description: A well-founded relation has no 2-cycle loops. Special case of Proposition 6.23 of [TakeutiZaring] p. 30. (Contributed by NM, 30-May-1994.) (Revised by Mario Carneiro, 22-Jun-2015.)
Assertion
Ref Expression
fr2nr ((𝑅 Fr 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → ¬ (𝐵𝑅𝐶𝐶𝑅𝐵))

Proof of Theorem fr2nr
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prex 5431 . . . . . . 7 {𝐵, 𝐶} ∈ V
21a1i 11 . . . . . 6 ((𝑅 Fr 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → {𝐵, 𝐶} ∈ V)
3 simpl 483 . . . . . 6 ((𝑅 Fr 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → 𝑅 Fr 𝐴)
4 prssi 4823 . . . . . . 7 ((𝐵𝐴𝐶𝐴) → {𝐵, 𝐶} ⊆ 𝐴)
54adantl 482 . . . . . 6 ((𝑅 Fr 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → {𝐵, 𝐶} ⊆ 𝐴)
6 prnzg 4781 . . . . . . 7 (𝐵𝐴 → {𝐵, 𝐶} ≠ ∅)
76ad2antrl 726 . . . . . 6 ((𝑅 Fr 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → {𝐵, 𝐶} ≠ ∅)
8 fri 5635 . . . . . 6 ((({𝐵, 𝐶} ∈ V ∧ 𝑅 Fr 𝐴) ∧ ({𝐵, 𝐶} ⊆ 𝐴 ∧ {𝐵, 𝐶} ≠ ∅)) → ∃𝑦 ∈ {𝐵, 𝐶}∀𝑥 ∈ {𝐵, 𝐶} ¬ 𝑥𝑅𝑦)
92, 3, 5, 7, 8syl22anc 837 . . . . 5 ((𝑅 Fr 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → ∃𝑦 ∈ {𝐵, 𝐶}∀𝑥 ∈ {𝐵, 𝐶} ¬ 𝑥𝑅𝑦)
10 breq2 5151 . . . . . . . . 9 (𝑦 = 𝐵 → (𝑥𝑅𝑦𝑥𝑅𝐵))
1110notbid 317 . . . . . . . 8 (𝑦 = 𝐵 → (¬ 𝑥𝑅𝑦 ↔ ¬ 𝑥𝑅𝐵))
1211ralbidv 3177 . . . . . . 7 (𝑦 = 𝐵 → (∀𝑥 ∈ {𝐵, 𝐶} ¬ 𝑥𝑅𝑦 ↔ ∀𝑥 ∈ {𝐵, 𝐶} ¬ 𝑥𝑅𝐵))
13 breq2 5151 . . . . . . . . 9 (𝑦 = 𝐶 → (𝑥𝑅𝑦𝑥𝑅𝐶))
1413notbid 317 . . . . . . . 8 (𝑦 = 𝐶 → (¬ 𝑥𝑅𝑦 ↔ ¬ 𝑥𝑅𝐶))
1514ralbidv 3177 . . . . . . 7 (𝑦 = 𝐶 → (∀𝑥 ∈ {𝐵, 𝐶} ¬ 𝑥𝑅𝑦 ↔ ∀𝑥 ∈ {𝐵, 𝐶} ¬ 𝑥𝑅𝐶))
1612, 15rexprg 4699 . . . . . 6 ((𝐵𝐴𝐶𝐴) → (∃𝑦 ∈ {𝐵, 𝐶}∀𝑥 ∈ {𝐵, 𝐶} ¬ 𝑥𝑅𝑦 ↔ (∀𝑥 ∈ {𝐵, 𝐶} ¬ 𝑥𝑅𝐵 ∨ ∀𝑥 ∈ {𝐵, 𝐶} ¬ 𝑥𝑅𝐶)))
1716adantl 482 . . . . 5 ((𝑅 Fr 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → (∃𝑦 ∈ {𝐵, 𝐶}∀𝑥 ∈ {𝐵, 𝐶} ¬ 𝑥𝑅𝑦 ↔ (∀𝑥 ∈ {𝐵, 𝐶} ¬ 𝑥𝑅𝐵 ∨ ∀𝑥 ∈ {𝐵, 𝐶} ¬ 𝑥𝑅𝐶)))
189, 17mpbid 231 . . . 4 ((𝑅 Fr 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → (∀𝑥 ∈ {𝐵, 𝐶} ¬ 𝑥𝑅𝐵 ∨ ∀𝑥 ∈ {𝐵, 𝐶} ¬ 𝑥𝑅𝐶))
19 prid2g 4764 . . . . . . 7 (𝐶𝐴𝐶 ∈ {𝐵, 𝐶})
2019ad2antll 727 . . . . . 6 ((𝑅 Fr 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → 𝐶 ∈ {𝐵, 𝐶})
21 breq1 5150 . . . . . . . 8 (𝑥 = 𝐶 → (𝑥𝑅𝐵𝐶𝑅𝐵))
2221notbid 317 . . . . . . 7 (𝑥 = 𝐶 → (¬ 𝑥𝑅𝐵 ↔ ¬ 𝐶𝑅𝐵))
2322rspcv 3608 . . . . . 6 (𝐶 ∈ {𝐵, 𝐶} → (∀𝑥 ∈ {𝐵, 𝐶} ¬ 𝑥𝑅𝐵 → ¬ 𝐶𝑅𝐵))
2420, 23syl 17 . . . . 5 ((𝑅 Fr 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → (∀𝑥 ∈ {𝐵, 𝐶} ¬ 𝑥𝑅𝐵 → ¬ 𝐶𝑅𝐵))
25 prid1g 4763 . . . . . . 7 (𝐵𝐴𝐵 ∈ {𝐵, 𝐶})
2625ad2antrl 726 . . . . . 6 ((𝑅 Fr 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → 𝐵 ∈ {𝐵, 𝐶})
27 breq1 5150 . . . . . . . 8 (𝑥 = 𝐵 → (𝑥𝑅𝐶𝐵𝑅𝐶))
2827notbid 317 . . . . . . 7 (𝑥 = 𝐵 → (¬ 𝑥𝑅𝐶 ↔ ¬ 𝐵𝑅𝐶))
2928rspcv 3608 . . . . . 6 (𝐵 ∈ {𝐵, 𝐶} → (∀𝑥 ∈ {𝐵, 𝐶} ¬ 𝑥𝑅𝐶 → ¬ 𝐵𝑅𝐶))
3026, 29syl 17 . . . . 5 ((𝑅 Fr 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → (∀𝑥 ∈ {𝐵, 𝐶} ¬ 𝑥𝑅𝐶 → ¬ 𝐵𝑅𝐶))
3124, 30orim12d 963 . . . 4 ((𝑅 Fr 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → ((∀𝑥 ∈ {𝐵, 𝐶} ¬ 𝑥𝑅𝐵 ∨ ∀𝑥 ∈ {𝐵, 𝐶} ¬ 𝑥𝑅𝐶) → (¬ 𝐶𝑅𝐵 ∨ ¬ 𝐵𝑅𝐶)))
3218, 31mpd 15 . . 3 ((𝑅 Fr 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → (¬ 𝐶𝑅𝐵 ∨ ¬ 𝐵𝑅𝐶))
3332orcomd 869 . 2 ((𝑅 Fr 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → (¬ 𝐵𝑅𝐶 ∨ ¬ 𝐶𝑅𝐵))
34 ianor 980 . 2 (¬ (𝐵𝑅𝐶𝐶𝑅𝐵) ↔ (¬ 𝐵𝑅𝐶 ∨ ¬ 𝐶𝑅𝐵))
3533, 34sylibr 233 1 ((𝑅 Fr 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → ¬ (𝐵𝑅𝐶𝐶𝑅𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 845   = wceq 1541  wcel 2106  wne 2940  wral 3061  wrex 3070  Vcvv 3474  wss 3947  c0 4321  {cpr 4629   class class class wbr 5147   Fr wfr 5627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-br 5148  df-fr 5630
This theorem is referenced by:  efrn2lp  5657  dfwe2  7757
  Copyright terms: Public domain W3C validator