Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > frege113 | Structured version Visualization version GIF version |
Description: Proposition 113 of [Frege1879] p. 76. (Contributed by RP, 7-Jul-2020.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
frege112.z | ⊢ 𝑍 ∈ 𝑉 |
Ref | Expression |
---|---|
frege113 | ⊢ ((𝑍((t+‘𝑅) ∪ I )𝑋 → (¬ 𝑍(t+‘𝑅)𝑋 → 𝑍 = 𝑋)) → (𝑍((t+‘𝑅) ∪ I )𝑋 → (¬ 𝑍(t+‘𝑅)𝑋 → 𝑋((t+‘𝑅) ∪ I )𝑍))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frege112.z | . . 3 ⊢ 𝑍 ∈ 𝑉 | |
2 | 1 | frege112 41893 | . 2 ⊢ (𝑍 = 𝑋 → 𝑋((t+‘𝑅) ∪ I )𝑍) |
3 | frege7 41726 | . 2 ⊢ ((𝑍 = 𝑋 → 𝑋((t+‘𝑅) ∪ I )𝑍) → ((𝑍((t+‘𝑅) ∪ I )𝑋 → (¬ 𝑍(t+‘𝑅)𝑋 → 𝑍 = 𝑋)) → (𝑍((t+‘𝑅) ∪ I )𝑋 → (¬ 𝑍(t+‘𝑅)𝑋 → 𝑋((t+‘𝑅) ∪ I )𝑍)))) | |
4 | 2, 3 | ax-mp 5 | 1 ⊢ ((𝑍((t+‘𝑅) ∪ I )𝑋 → (¬ 𝑍(t+‘𝑅)𝑋 → 𝑍 = 𝑋)) → (𝑍((t+‘𝑅) ∪ I )𝑋 → (¬ 𝑍(t+‘𝑅)𝑋 → 𝑋((t+‘𝑅) ∪ I )𝑍))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ∈ wcel 2105 ∪ cun 3895 class class class wbr 5089 I cid 5511 ‘cfv 6473 t+ctcl 14787 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2707 ax-sep 5240 ax-nul 5247 ax-pr 5369 ax-frege1 41708 ax-frege2 41709 ax-frege8 41727 ax-frege52a 41775 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-ifp 1061 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3443 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4269 df-if 4473 df-sn 4573 df-pr 4575 df-op 4579 df-br 5090 df-opab 5152 df-id 5512 df-xp 5620 df-rel 5621 |
This theorem is referenced by: frege114 41895 |
Copyright terms: Public domain | W3C validator |