Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege113 Structured version   Visualization version   GIF version

Theorem frege113 41894
Description: Proposition 113 of [Frege1879] p. 76. (Contributed by RP, 7-Jul-2020.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
frege112.z 𝑍𝑉
Assertion
Ref Expression
frege113 ((𝑍((t+‘𝑅) ∪ I )𝑋 → (¬ 𝑍(t+‘𝑅)𝑋𝑍 = 𝑋)) → (𝑍((t+‘𝑅) ∪ I )𝑋 → (¬ 𝑍(t+‘𝑅)𝑋𝑋((t+‘𝑅) ∪ I )𝑍)))

Proof of Theorem frege113
StepHypRef Expression
1 frege112.z . . 3 𝑍𝑉
21frege112 41893 . 2 (𝑍 = 𝑋𝑋((t+‘𝑅) ∪ I )𝑍)
3 frege7 41726 . 2 ((𝑍 = 𝑋𝑋((t+‘𝑅) ∪ I )𝑍) → ((𝑍((t+‘𝑅) ∪ I )𝑋 → (¬ 𝑍(t+‘𝑅)𝑋𝑍 = 𝑋)) → (𝑍((t+‘𝑅) ∪ I )𝑋 → (¬ 𝑍(t+‘𝑅)𝑋𝑋((t+‘𝑅) ∪ I )𝑍))))
42, 3ax-mp 5 1 ((𝑍((t+‘𝑅) ∪ I )𝑋 → (¬ 𝑍(t+‘𝑅)𝑋𝑍 = 𝑋)) → (𝑍((t+‘𝑅) ∪ I )𝑋 → (¬ 𝑍(t+‘𝑅)𝑋𝑋((t+‘𝑅) ∪ I )𝑍)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1540  wcel 2105  cun 3895   class class class wbr 5089   I cid 5511  cfv 6473  t+ctcl 14787
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2707  ax-sep 5240  ax-nul 5247  ax-pr 5369  ax-frege1 41708  ax-frege2 41709  ax-frege8 41727  ax-frege52a 41775
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-ifp 1061  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2714  df-cleq 2728  df-clel 2814  df-ral 3062  df-rex 3071  df-rab 3404  df-v 3443  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4269  df-if 4473  df-sn 4573  df-pr 4575  df-op 4579  df-br 5090  df-opab 5152  df-id 5512  df-xp 5620  df-rel 5621
This theorem is referenced by:  frege114  41895
  Copyright terms: Public domain W3C validator