![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > frege112 | Structured version Visualization version GIF version |
Description: Identity implies belonging to the 𝑅-sequence beginning with self. Proposition 112 of [Frege1879] p. 76. (Contributed by RP, 7-Jul-2020.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
frege112.z | ⊢ 𝑍 ∈ 𝑉 |
Ref | Expression |
---|---|
frege112 | ⊢ (𝑍 = 𝑋 → 𝑋((t+‘𝑅) ∪ I )𝑍) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frege112.z | . . 3 ⊢ 𝑍 ∈ 𝑉 | |
2 | 1 | frege105 39101 | . 2 ⊢ ((¬ 𝑋(t+‘𝑅)𝑍 → 𝑍 = 𝑋) → 𝑋((t+‘𝑅) ∪ I )𝑍) |
3 | frege11 38947 | . 2 ⊢ (((¬ 𝑋(t+‘𝑅)𝑍 → 𝑍 = 𝑋) → 𝑋((t+‘𝑅) ∪ I )𝑍) → (𝑍 = 𝑋 → 𝑋((t+‘𝑅) ∪ I )𝑍)) | |
4 | 2, 3 | ax-mp 5 | 1 ⊢ (𝑍 = 𝑋 → 𝑋((t+‘𝑅) ∪ I )𝑍) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1656 ∈ wcel 2164 ∪ cun 3796 class class class wbr 4875 I cid 5251 ‘cfv 6127 t+ctcl 14110 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-sep 5007 ax-nul 5015 ax-pr 5129 ax-frege1 38923 ax-frege2 38924 ax-frege8 38942 ax-frege52a 38990 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-ifp 1090 df-3an 1113 df-tru 1660 df-fal 1670 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ral 3122 df-rex 3123 df-rab 3126 df-v 3416 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4147 df-if 4309 df-sn 4400 df-pr 4402 df-op 4406 df-br 4876 df-opab 4938 df-id 5252 df-xp 5352 df-rel 5353 |
This theorem is referenced by: frege113 39109 frege122 39118 |
Copyright terms: Public domain | W3C validator |