| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > frege112 | Structured version Visualization version GIF version | ||
| Description: Identity implies belonging to the 𝑅-sequence beginning with self. Proposition 112 of [Frege1879] p. 76. (Contributed by RP, 7-Jul-2020.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| frege112.z | ⊢ 𝑍 ∈ 𝑉 |
| Ref | Expression |
|---|---|
| frege112 | ⊢ (𝑍 = 𝑋 → 𝑋((t+‘𝑅) ∪ I )𝑍) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frege112.z | . . 3 ⊢ 𝑍 ∈ 𝑉 | |
| 2 | 1 | frege105 43980 | . 2 ⊢ ((¬ 𝑋(t+‘𝑅)𝑍 → 𝑍 = 𝑋) → 𝑋((t+‘𝑅) ∪ I )𝑍) |
| 3 | frege11 43826 | . 2 ⊢ (((¬ 𝑋(t+‘𝑅)𝑍 → 𝑍 = 𝑋) → 𝑋((t+‘𝑅) ∪ I )𝑍) → (𝑍 = 𝑋 → 𝑋((t+‘𝑅) ∪ I )𝑍)) | |
| 4 | 2, 3 | ax-mp 5 | 1 ⊢ (𝑍 = 𝑋 → 𝑋((t+‘𝑅) ∪ I )𝑍) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1541 ∈ wcel 2110 ∪ cun 3898 class class class wbr 5089 I cid 5508 ‘cfv 6477 t+ctcl 14884 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-frege1 43802 ax-frege2 43803 ax-frege8 43821 ax-frege52a 43869 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3394 df-v 3436 df-dif 3903 df-un 3905 df-ss 3917 df-nul 4282 df-if 4474 df-sn 4575 df-pr 4577 df-op 4581 df-br 5090 df-opab 5152 df-id 5509 df-xp 5620 df-rel 5621 |
| This theorem is referenced by: frege113 43988 frege122 43997 |
| Copyright terms: Public domain | W3C validator |