Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege112 Structured version   Visualization version   GIF version

Theorem frege112 43029
Description: Identity implies belonging to the 𝑅-sequence beginning with self. Proposition 112 of [Frege1879] p. 76. (Contributed by RP, 7-Jul-2020.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
frege112.z 𝑍𝑉
Assertion
Ref Expression
frege112 (𝑍 = 𝑋𝑋((t+‘𝑅) ∪ I )𝑍)

Proof of Theorem frege112
StepHypRef Expression
1 frege112.z . . 3 𝑍𝑉
21frege105 43022 . 2 ((¬ 𝑋(t+‘𝑅)𝑍𝑍 = 𝑋) → 𝑋((t+‘𝑅) ∪ I )𝑍)
3 frege11 42868 . 2 (((¬ 𝑋(t+‘𝑅)𝑍𝑍 = 𝑋) → 𝑋((t+‘𝑅) ∪ I )𝑍) → (𝑍 = 𝑋𝑋((t+‘𝑅) ∪ I )𝑍))
42, 3ax-mp 5 1 (𝑍 = 𝑋𝑋((t+‘𝑅) ∪ I )𝑍)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1540  wcel 2105  cun 3946   class class class wbr 5148   I cid 5573  cfv 6543  t+ctcl 14937
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pr 5427  ax-frege1 42844  ax-frege2 42845  ax-frege8 42863  ax-frege52a 42911
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-ifp 1061  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-br 5149  df-opab 5211  df-id 5574  df-xp 5682  df-rel 5683
This theorem is referenced by:  frege113  43030  frege122  43039
  Copyright terms: Public domain W3C validator