Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > frege112 | Structured version Visualization version GIF version |
Description: Identity implies belonging to the 𝑅-sequence beginning with self. Proposition 112 of [Frege1879] p. 76. (Contributed by RP, 7-Jul-2020.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
frege112.z | ⊢ 𝑍 ∈ 𝑉 |
Ref | Expression |
---|---|
frege112 | ⊢ (𝑍 = 𝑋 → 𝑋((t+‘𝑅) ∪ I )𝑍) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frege112.z | . . 3 ⊢ 𝑍 ∈ 𝑉 | |
2 | 1 | frege105 41949 | . 2 ⊢ ((¬ 𝑋(t+‘𝑅)𝑍 → 𝑍 = 𝑋) → 𝑋((t+‘𝑅) ∪ I )𝑍) |
3 | frege11 41795 | . 2 ⊢ (((¬ 𝑋(t+‘𝑅)𝑍 → 𝑍 = 𝑋) → 𝑋((t+‘𝑅) ∪ I )𝑍) → (𝑍 = 𝑋 → 𝑋((t+‘𝑅) ∪ I )𝑍)) | |
4 | 2, 3 | ax-mp 5 | 1 ⊢ (𝑍 = 𝑋 → 𝑋((t+‘𝑅) ∪ I )𝑍) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ∈ wcel 2105 ∪ cun 3896 class class class wbr 5093 I cid 5518 ‘cfv 6480 t+ctcl 14796 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2707 ax-sep 5244 ax-nul 5251 ax-pr 5373 ax-frege1 41771 ax-frege2 41772 ax-frege8 41790 ax-frege52a 41838 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-ifp 1061 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3443 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4271 df-if 4475 df-sn 4575 df-pr 4577 df-op 4581 df-br 5094 df-opab 5156 df-id 5519 df-xp 5627 df-rel 5628 |
This theorem is referenced by: frege113 41957 frege122 41966 |
Copyright terms: Public domain | W3C validator |