Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege112 Structured version   Visualization version   GIF version

Theorem frege112 43936
Description: Identity implies belonging to the 𝑅-sequence beginning with self. Proposition 112 of [Frege1879] p. 76. (Contributed by RP, 7-Jul-2020.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
frege112.z 𝑍𝑉
Assertion
Ref Expression
frege112 (𝑍 = 𝑋𝑋((t+‘𝑅) ∪ I )𝑍)

Proof of Theorem frege112
StepHypRef Expression
1 frege112.z . . 3 𝑍𝑉
21frege105 43929 . 2 ((¬ 𝑋(t+‘𝑅)𝑍𝑍 = 𝑋) → 𝑋((t+‘𝑅) ∪ I )𝑍)
3 frege11 43775 . 2 (((¬ 𝑋(t+‘𝑅)𝑍𝑍 = 𝑋) → 𝑋((t+‘𝑅) ∪ I )𝑍) → (𝑍 = 𝑋𝑋((t+‘𝑅) ∪ I )𝑍))
42, 3ax-mp 5 1 (𝑍 = 𝑋𝑋((t+‘𝑅) ∪ I )𝑍)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1540  wcel 2109  cun 3920   class class class wbr 5115   I cid 5540  cfv 6519  t+ctcl 14961
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5259  ax-nul 5269  ax-pr 5395  ax-frege1 43751  ax-frege2 43752  ax-frege8 43770  ax-frege52a 43818
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3047  df-rex 3056  df-rab 3412  df-v 3457  df-dif 3925  df-un 3927  df-ss 3939  df-nul 4305  df-if 4497  df-sn 4598  df-pr 4600  df-op 4604  df-br 5116  df-opab 5178  df-id 5541  df-xp 5652  df-rel 5653
This theorem is referenced by:  frege113  43937  frege122  43946
  Copyright terms: Public domain W3C validator