| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > frege114 | Structured version Visualization version GIF version | ||
| Description: If 𝑋 belongs to the 𝑅-sequence beginning with 𝑍, then 𝑍 belongs to the 𝑅-sequence beginning with 𝑋 or 𝑋 follows 𝑍 in the 𝑅-sequence. Proposition 114 of [Frege1879] p. 76. (Contributed by RP, 7-Jul-2020.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| frege114.x | ⊢ 𝑋 ∈ 𝑈 |
| frege114.z | ⊢ 𝑍 ∈ 𝑉 |
| Ref | Expression |
|---|---|
| frege114 | ⊢ (𝑍((t+‘𝑅) ∪ I )𝑋 → (¬ 𝑍(t+‘𝑅)𝑋 → 𝑋((t+‘𝑅) ∪ I )𝑍)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frege114.x | . . 3 ⊢ 𝑋 ∈ 𝑈 | |
| 2 | 1 | frege104 43925 | . 2 ⊢ (𝑍((t+‘𝑅) ∪ I )𝑋 → (¬ 𝑍(t+‘𝑅)𝑋 → 𝑍 = 𝑋)) |
| 3 | frege114.z | . . 3 ⊢ 𝑍 ∈ 𝑉 | |
| 4 | 3 | frege113 43934 | . 2 ⊢ ((𝑍((t+‘𝑅) ∪ I )𝑋 → (¬ 𝑍(t+‘𝑅)𝑋 → 𝑍 = 𝑋)) → (𝑍((t+‘𝑅) ∪ I )𝑋 → (¬ 𝑍(t+‘𝑅)𝑋 → 𝑋((t+‘𝑅) ∪ I )𝑍))) |
| 5 | 2, 4 | ax-mp 5 | 1 ⊢ (𝑍((t+‘𝑅) ∪ I )𝑋 → (¬ 𝑍(t+‘𝑅)𝑋 → 𝑋((t+‘𝑅) ∪ I )𝑍)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1539 ∈ wcel 2107 ∪ cun 3931 class class class wbr 5125 I cid 5559 ‘cfv 6542 t+ctcl 15007 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-12 2176 ax-ext 2706 ax-sep 5278 ax-nul 5288 ax-pr 5414 ax-frege1 43748 ax-frege2 43749 ax-frege8 43767 ax-frege52a 43815 ax-frege52c 43846 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ral 3051 df-rex 3060 df-rab 3421 df-v 3466 df-sbc 3773 df-dif 3936 df-un 3938 df-ss 3950 df-nul 4316 df-if 4508 df-sn 4609 df-pr 4611 df-op 4615 df-br 5126 df-opab 5188 df-id 5560 df-xp 5673 df-rel 5674 |
| This theorem is referenced by: frege126 43947 |
| Copyright terms: Public domain | W3C validator |