Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege114 Structured version   Visualization version   GIF version

Theorem frege114 43941
Description: If 𝑋 belongs to the 𝑅-sequence beginning with 𝑍, then 𝑍 belongs to the 𝑅-sequence beginning with 𝑋 or 𝑋 follows 𝑍 in the 𝑅-sequence. Proposition 114 of [Frege1879] p. 76. (Contributed by RP, 7-Jul-2020.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
frege114.x 𝑋𝑈
frege114.z 𝑍𝑉
Assertion
Ref Expression
frege114 (𝑍((t+‘𝑅) ∪ I )𝑋 → (¬ 𝑍(t+‘𝑅)𝑋𝑋((t+‘𝑅) ∪ I )𝑍))

Proof of Theorem frege114
StepHypRef Expression
1 frege114.x . . 3 𝑋𝑈
21frege104 43931 . 2 (𝑍((t+‘𝑅) ∪ I )𝑋 → (¬ 𝑍(t+‘𝑅)𝑋𝑍 = 𝑋))
3 frege114.z . . 3 𝑍𝑉
43frege113 43940 . 2 ((𝑍((t+‘𝑅) ∪ I )𝑋 → (¬ 𝑍(t+‘𝑅)𝑋𝑍 = 𝑋)) → (𝑍((t+‘𝑅) ∪ I )𝑋 → (¬ 𝑍(t+‘𝑅)𝑋𝑋((t+‘𝑅) ∪ I )𝑍)))
52, 4ax-mp 5 1 (𝑍((t+‘𝑅) ∪ I )𝑋 → (¬ 𝑍(t+‘𝑅)𝑋𝑋((t+‘𝑅) ∪ I )𝑍))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1537  wcel 2108  cun 3974   class class class wbr 5166   I cid 5592  cfv 6575  t+ctcl 15036
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-frege1 43754  ax-frege2 43755  ax-frege8 43773  ax-frege52a 43821  ax-frege52c 43852
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-ifp 1064  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707
This theorem is referenced by:  frege126  43953
  Copyright terms: Public domain W3C validator