Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege114 Structured version   Visualization version   GIF version

Theorem frege114 43398
Description: If 𝑋 belongs to the 𝑅-sequence beginning with 𝑍, then 𝑍 belongs to the 𝑅-sequence beginning with 𝑋 or 𝑋 follows 𝑍 in the 𝑅-sequence. Proposition 114 of [Frege1879] p. 76. (Contributed by RP, 7-Jul-2020.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
frege114.x 𝑋𝑈
frege114.z 𝑍𝑉
Assertion
Ref Expression
frege114 (𝑍((t+‘𝑅) ∪ I )𝑋 → (¬ 𝑍(t+‘𝑅)𝑋𝑋((t+‘𝑅) ∪ I )𝑍))

Proof of Theorem frege114
StepHypRef Expression
1 frege114.x . . 3 𝑋𝑈
21frege104 43388 . 2 (𝑍((t+‘𝑅) ∪ I )𝑋 → (¬ 𝑍(t+‘𝑅)𝑋𝑍 = 𝑋))
3 frege114.z . . 3 𝑍𝑉
43frege113 43397 . 2 ((𝑍((t+‘𝑅) ∪ I )𝑋 → (¬ 𝑍(t+‘𝑅)𝑋𝑍 = 𝑋)) → (𝑍((t+‘𝑅) ∪ I )𝑋 → (¬ 𝑍(t+‘𝑅)𝑋𝑋((t+‘𝑅) ∪ I )𝑍)))
52, 4ax-mp 5 1 (𝑍((t+‘𝑅) ∪ I )𝑋 → (¬ 𝑍(t+‘𝑅)𝑋𝑋((t+‘𝑅) ∪ I )𝑍))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1534  wcel 2099  cun 3943   class class class wbr 5143   I cid 5570  cfv 6543  t+ctcl 14959
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-12 2167  ax-ext 2699  ax-sep 5294  ax-nul 5301  ax-pr 5424  ax-frege1 43211  ax-frege2 43212  ax-frege8 43230  ax-frege52a 43278  ax-frege52c 43309
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-ifp 1062  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-clab 2706  df-cleq 2720  df-clel 2806  df-ral 3058  df-rex 3067  df-rab 3429  df-v 3472  df-sbc 3776  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-nul 4320  df-if 4526  df-sn 4626  df-pr 4628  df-op 4632  df-br 5144  df-opab 5206  df-id 5571  df-xp 5679  df-rel 5680
This theorem is referenced by:  frege126  43410
  Copyright terms: Public domain W3C validator