![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > frege114 | Structured version Visualization version GIF version |
Description: If 𝑋 belongs to the 𝑅-sequence beginning with 𝑍, then 𝑍 belongs to the 𝑅-sequence beginning with 𝑋 or 𝑋 follows 𝑍 in the 𝑅-sequence. Proposition 114 of [Frege1879] p. 76. (Contributed by RP, 7-Jul-2020.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
frege114.x | ⊢ 𝑋 ∈ 𝑈 |
frege114.z | ⊢ 𝑍 ∈ 𝑉 |
Ref | Expression |
---|---|
frege114 | ⊢ (𝑍((t+‘𝑅) ∪ I )𝑋 → (¬ 𝑍(t+‘𝑅)𝑋 → 𝑋((t+‘𝑅) ∪ I )𝑍)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frege114.x | . . 3 ⊢ 𝑋 ∈ 𝑈 | |
2 | 1 | frege104 43971 | . 2 ⊢ (𝑍((t+‘𝑅) ∪ I )𝑋 → (¬ 𝑍(t+‘𝑅)𝑋 → 𝑍 = 𝑋)) |
3 | frege114.z | . . 3 ⊢ 𝑍 ∈ 𝑉 | |
4 | 3 | frege113 43980 | . 2 ⊢ ((𝑍((t+‘𝑅) ∪ I )𝑋 → (¬ 𝑍(t+‘𝑅)𝑋 → 𝑍 = 𝑋)) → (𝑍((t+‘𝑅) ∪ I )𝑋 → (¬ 𝑍(t+‘𝑅)𝑋 → 𝑋((t+‘𝑅) ∪ I )𝑍))) |
5 | 2, 4 | ax-mp 5 | 1 ⊢ (𝑍((t+‘𝑅) ∪ I )𝑋 → (¬ 𝑍(t+‘𝑅)𝑋 → 𝑋((t+‘𝑅) ∪ I )𝑍)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1538 ∈ wcel 2107 ∪ cun 3962 class class class wbr 5149 I cid 5583 ‘cfv 6566 t+ctcl 15027 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-12 2176 ax-ext 2707 ax-sep 5303 ax-nul 5313 ax-pr 5439 ax-frege1 43794 ax-frege2 43795 ax-frege8 43813 ax-frege52a 43861 ax-frege52c 43892 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 df-3an 1088 df-tru 1541 df-fal 1551 df-ex 1778 df-nf 1782 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-ral 3061 df-rex 3070 df-rab 3435 df-v 3481 df-sbc 3793 df-dif 3967 df-un 3969 df-ss 3981 df-nul 4341 df-if 4533 df-sn 4633 df-pr 4635 df-op 4639 df-br 5150 df-opab 5212 df-id 5584 df-xp 5696 df-rel 5697 |
This theorem is referenced by: frege126 43993 |
Copyright terms: Public domain | W3C validator |