![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > frgrwopreglem4 | Structured version Visualization version GIF version |
Description: Lemma 4 for frgrwopreg 30189. In a friendship graph each vertex with degree πΎ is connected with any vertex with degree other than πΎ. This corresponds to statement 4 in [Huneke] p. 2: "By the first claim, every vertex in A is adjacent to every vertex in B.". (Contributed by Alexander van der Vekens, 30-Dec-2017.) (Revised by AV, 10-May-2021.) (Proof shortened by AV, 4-Feb-2022.) |
Ref | Expression |
---|---|
frgrwopreg.v | β’ π = (VtxβπΊ) |
frgrwopreg.d | β’ π· = (VtxDegβπΊ) |
frgrwopreg.a | β’ π΄ = {π₯ β π β£ (π·βπ₯) = πΎ} |
frgrwopreg.b | β’ π΅ = (π β π΄) |
frgrwopreg.e | β’ πΈ = (EdgβπΊ) |
Ref | Expression |
---|---|
frgrwopreglem4 | β’ (πΊ β FriendGraph β βπ β π΄ βπ β π΅ {π, π} β πΈ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 481 | . . 3 β’ ((πΊ β FriendGraph β§ (π β π΄ β§ π β π΅)) β πΊ β FriendGraph ) | |
2 | elrabi 3674 | . . . . . 6 β’ (π β {π₯ β π β£ (π·βπ₯) = πΎ} β π β π) | |
3 | frgrwopreg.a | . . . . . 6 β’ π΄ = {π₯ β π β£ (π·βπ₯) = πΎ} | |
4 | 2, 3 | eleq2s 2843 | . . . . 5 β’ (π β π΄ β π β π) |
5 | eldifi 4124 | . . . . . 6 β’ (π β (π β π΄) β π β π) | |
6 | frgrwopreg.b | . . . . . 6 β’ π΅ = (π β π΄) | |
7 | 5, 6 | eleq2s 2843 | . . . . 5 β’ (π β π΅ β π β π) |
8 | 4, 7 | anim12i 611 | . . . 4 β’ ((π β π΄ β§ π β π΅) β (π β π β§ π β π)) |
9 | 8 | adantl 480 | . . 3 β’ ((πΊ β FriendGraph β§ (π β π΄ β§ π β π΅)) β (π β π β§ π β π)) |
10 | frgrwopreg.v | . . . . 5 β’ π = (VtxβπΊ) | |
11 | frgrwopreg.d | . . . . 5 β’ π· = (VtxDegβπΊ) | |
12 | 10, 11, 3, 6 | frgrwopreglem3 30180 | . . . 4 β’ ((π β π΄ β§ π β π΅) β (π·βπ) β (π·βπ)) |
13 | 12 | adantl 480 | . . 3 β’ ((πΊ β FriendGraph β§ (π β π΄ β§ π β π΅)) β (π·βπ) β (π·βπ)) |
14 | frgrwopreg.e | . . . 4 β’ πΈ = (EdgβπΊ) | |
15 | 10, 11, 14 | frgrwopreglem4a 30176 | . . 3 β’ ((πΊ β FriendGraph β§ (π β π β§ π β π) β§ (π·βπ) β (π·βπ)) β {π, π} β πΈ) |
16 | 1, 9, 13, 15 | syl3anc 1368 | . 2 β’ ((πΊ β FriendGraph β§ (π β π΄ β§ π β π΅)) β {π, π} β πΈ) |
17 | 16 | ralrimivva 3191 | 1 β’ (πΊ β FriendGraph β βπ β π΄ βπ β π΅ {π, π} β πΈ) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 394 = wceq 1533 β wcel 2098 β wne 2930 βwral 3051 {crab 3419 β cdif 3942 {cpr 4631 βcfv 6547 Vtxcvtx 28865 Edgcedg 28916 VtxDegcvtxdg 29335 FriendGraph cfrgr 30124 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5364 ax-pr 5428 ax-un 7739 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3775 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3965 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-int 4950 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6499 df-fun 6549 df-fn 6550 df-f 6551 df-f1 6552 df-fo 6553 df-f1o 6554 df-fv 6555 df-riota 7373 df-ov 7420 df-oprab 7421 df-mpo 7422 df-om 7870 df-1st 7992 df-2nd 7993 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-2o 8486 df-oadd 8489 df-er 8723 df-en 8963 df-dom 8964 df-sdom 8965 df-fin 8966 df-dju 9924 df-card 9962 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11476 df-neg 11477 df-nn 12243 df-2 12305 df-n0 12503 df-xnn0 12575 df-z 12589 df-uz 12853 df-xadd 13125 df-fz 13517 df-hash 14322 df-edg 28917 df-uhgr 28927 df-ushgr 28928 df-upgr 28951 df-umgr 28952 df-uspgr 29019 df-usgr 29020 df-nbgr 29202 df-vtxdg 29336 df-frgr 30125 |
This theorem is referenced by: frgrwopregasn 30182 frgrwopregbsn 30183 frgrwopreglem5ALT 30188 |
Copyright terms: Public domain | W3C validator |