Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > frgrwopreglem4 | Structured version Visualization version GIF version |
Description: Lemma 4 for frgrwopreg 28975. In a friendship graph each vertex with degree 𝐾 is connected with any vertex with degree other than 𝐾. This corresponds to statement 4 in [Huneke] p. 2: "By the first claim, every vertex in A is adjacent to every vertex in B.". (Contributed by Alexander van der Vekens, 30-Dec-2017.) (Revised by AV, 10-May-2021.) (Proof shortened by AV, 4-Feb-2022.) |
Ref | Expression |
---|---|
frgrwopreg.v | ⊢ 𝑉 = (Vtx‘𝐺) |
frgrwopreg.d | ⊢ 𝐷 = (VtxDeg‘𝐺) |
frgrwopreg.a | ⊢ 𝐴 = {𝑥 ∈ 𝑉 ∣ (𝐷‘𝑥) = 𝐾} |
frgrwopreg.b | ⊢ 𝐵 = (𝑉 ∖ 𝐴) |
frgrwopreg.e | ⊢ 𝐸 = (Edg‘𝐺) |
Ref | Expression |
---|---|
frgrwopreglem4 | ⊢ (𝐺 ∈ FriendGraph → ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 {𝑎, 𝑏} ∈ 𝐸) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 483 | . . 3 ⊢ ((𝐺 ∈ FriendGraph ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵)) → 𝐺 ∈ FriendGraph ) | |
2 | elrabi 3628 | . . . . . 6 ⊢ (𝑎 ∈ {𝑥 ∈ 𝑉 ∣ (𝐷‘𝑥) = 𝐾} → 𝑎 ∈ 𝑉) | |
3 | frgrwopreg.a | . . . . . 6 ⊢ 𝐴 = {𝑥 ∈ 𝑉 ∣ (𝐷‘𝑥) = 𝐾} | |
4 | 2, 3 | eleq2s 2855 | . . . . 5 ⊢ (𝑎 ∈ 𝐴 → 𝑎 ∈ 𝑉) |
5 | eldifi 4073 | . . . . . 6 ⊢ (𝑏 ∈ (𝑉 ∖ 𝐴) → 𝑏 ∈ 𝑉) | |
6 | frgrwopreg.b | . . . . . 6 ⊢ 𝐵 = (𝑉 ∖ 𝐴) | |
7 | 5, 6 | eleq2s 2855 | . . . . 5 ⊢ (𝑏 ∈ 𝐵 → 𝑏 ∈ 𝑉) |
8 | 4, 7 | anim12i 613 | . . . 4 ⊢ ((𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵) → (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) |
9 | 8 | adantl 482 | . . 3 ⊢ ((𝐺 ∈ FriendGraph ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵)) → (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) |
10 | frgrwopreg.v | . . . . 5 ⊢ 𝑉 = (Vtx‘𝐺) | |
11 | frgrwopreg.d | . . . . 5 ⊢ 𝐷 = (VtxDeg‘𝐺) | |
12 | 10, 11, 3, 6 | frgrwopreglem3 28966 | . . . 4 ⊢ ((𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵) → (𝐷‘𝑎) ≠ (𝐷‘𝑏)) |
13 | 12 | adantl 482 | . . 3 ⊢ ((𝐺 ∈ FriendGraph ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵)) → (𝐷‘𝑎) ≠ (𝐷‘𝑏)) |
14 | frgrwopreg.e | . . . 4 ⊢ 𝐸 = (Edg‘𝐺) | |
15 | 10, 11, 14 | frgrwopreglem4a 28962 | . . 3 ⊢ ((𝐺 ∈ FriendGraph ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝐷‘𝑎) ≠ (𝐷‘𝑏)) → {𝑎, 𝑏} ∈ 𝐸) |
16 | 1, 9, 13, 15 | syl3anc 1370 | . 2 ⊢ ((𝐺 ∈ FriendGraph ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵)) → {𝑎, 𝑏} ∈ 𝐸) |
17 | 16 | ralrimivva 3193 | 1 ⊢ (𝐺 ∈ FriendGraph → ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 {𝑎, 𝑏} ∈ 𝐸) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ≠ wne 2940 ∀wral 3061 {crab 3403 ∖ cdif 3895 {cpr 4575 ‘cfv 6479 Vtxcvtx 27655 Edgcedg 27706 VtxDegcvtxdg 28121 FriendGraph cfrgr 28910 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5229 ax-sep 5243 ax-nul 5250 ax-pow 5308 ax-pr 5372 ax-un 7650 ax-cnex 11028 ax-resscn 11029 ax-1cn 11030 ax-icn 11031 ax-addcl 11032 ax-addrcl 11033 ax-mulcl 11034 ax-mulrcl 11035 ax-mulcom 11036 ax-addass 11037 ax-mulass 11038 ax-distr 11039 ax-i2m1 11040 ax-1ne0 11041 ax-1rid 11042 ax-rnegex 11043 ax-rrecex 11044 ax-cnre 11045 ax-pre-lttri 11046 ax-pre-lttrn 11047 ax-pre-ltadd 11048 ax-pre-mulgt0 11049 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3917 df-nul 4270 df-if 4474 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4853 df-int 4895 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5176 df-tr 5210 df-id 5518 df-eprel 5524 df-po 5532 df-so 5533 df-fr 5575 df-we 5577 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-rn 5631 df-res 5632 df-ima 5633 df-pred 6238 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6431 df-fun 6481 df-fn 6482 df-f 6483 df-f1 6484 df-fo 6485 df-f1o 6486 df-fv 6487 df-riota 7293 df-ov 7340 df-oprab 7341 df-mpo 7342 df-om 7781 df-1st 7899 df-2nd 7900 df-frecs 8167 df-wrecs 8198 df-recs 8272 df-rdg 8311 df-1o 8367 df-2o 8368 df-oadd 8371 df-er 8569 df-en 8805 df-dom 8806 df-sdom 8807 df-fin 8808 df-dju 9758 df-card 9796 df-pnf 11112 df-mnf 11113 df-xr 11114 df-ltxr 11115 df-le 11116 df-sub 11308 df-neg 11309 df-nn 12075 df-2 12137 df-n0 12335 df-xnn0 12407 df-z 12421 df-uz 12684 df-xadd 12950 df-fz 13341 df-hash 14146 df-edg 27707 df-uhgr 27717 df-ushgr 27718 df-upgr 27741 df-umgr 27742 df-uspgr 27809 df-usgr 27810 df-nbgr 27989 df-vtxdg 28122 df-frgr 28911 |
This theorem is referenced by: frgrwopregasn 28968 frgrwopregbsn 28969 frgrwopreglem5ALT 28974 |
Copyright terms: Public domain | W3C validator |