Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > frgrwopreglem4 | Structured version Visualization version GIF version |
Description: Lemma 4 for frgrwopreg 28588. In a friendship graph each vertex with degree 𝐾 is connected with any vertex with degree other than 𝐾. This corresponds to statement 4 in [Huneke] p. 2: "By the first claim, every vertex in A is adjacent to every vertex in B.". (Contributed by Alexander van der Vekens, 30-Dec-2017.) (Revised by AV, 10-May-2021.) (Proof shortened by AV, 4-Feb-2022.) |
Ref | Expression |
---|---|
frgrwopreg.v | ⊢ 𝑉 = (Vtx‘𝐺) |
frgrwopreg.d | ⊢ 𝐷 = (VtxDeg‘𝐺) |
frgrwopreg.a | ⊢ 𝐴 = {𝑥 ∈ 𝑉 ∣ (𝐷‘𝑥) = 𝐾} |
frgrwopreg.b | ⊢ 𝐵 = (𝑉 ∖ 𝐴) |
frgrwopreg.e | ⊢ 𝐸 = (Edg‘𝐺) |
Ref | Expression |
---|---|
frgrwopreglem4 | ⊢ (𝐺 ∈ FriendGraph → ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 {𝑎, 𝑏} ∈ 𝐸) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 482 | . . 3 ⊢ ((𝐺 ∈ FriendGraph ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵)) → 𝐺 ∈ FriendGraph ) | |
2 | elrabi 3611 | . . . . . 6 ⊢ (𝑎 ∈ {𝑥 ∈ 𝑉 ∣ (𝐷‘𝑥) = 𝐾} → 𝑎 ∈ 𝑉) | |
3 | frgrwopreg.a | . . . . . 6 ⊢ 𝐴 = {𝑥 ∈ 𝑉 ∣ (𝐷‘𝑥) = 𝐾} | |
4 | 2, 3 | eleq2s 2857 | . . . . 5 ⊢ (𝑎 ∈ 𝐴 → 𝑎 ∈ 𝑉) |
5 | eldifi 4057 | . . . . . 6 ⊢ (𝑏 ∈ (𝑉 ∖ 𝐴) → 𝑏 ∈ 𝑉) | |
6 | frgrwopreg.b | . . . . . 6 ⊢ 𝐵 = (𝑉 ∖ 𝐴) | |
7 | 5, 6 | eleq2s 2857 | . . . . 5 ⊢ (𝑏 ∈ 𝐵 → 𝑏 ∈ 𝑉) |
8 | 4, 7 | anim12i 612 | . . . 4 ⊢ ((𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵) → (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) |
9 | 8 | adantl 481 | . . 3 ⊢ ((𝐺 ∈ FriendGraph ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵)) → (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) |
10 | frgrwopreg.v | . . . . 5 ⊢ 𝑉 = (Vtx‘𝐺) | |
11 | frgrwopreg.d | . . . . 5 ⊢ 𝐷 = (VtxDeg‘𝐺) | |
12 | 10, 11, 3, 6 | frgrwopreglem3 28579 | . . . 4 ⊢ ((𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵) → (𝐷‘𝑎) ≠ (𝐷‘𝑏)) |
13 | 12 | adantl 481 | . . 3 ⊢ ((𝐺 ∈ FriendGraph ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵)) → (𝐷‘𝑎) ≠ (𝐷‘𝑏)) |
14 | frgrwopreg.e | . . . 4 ⊢ 𝐸 = (Edg‘𝐺) | |
15 | 10, 11, 14 | frgrwopreglem4a 28575 | . . 3 ⊢ ((𝐺 ∈ FriendGraph ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝐷‘𝑎) ≠ (𝐷‘𝑏)) → {𝑎, 𝑏} ∈ 𝐸) |
16 | 1, 9, 13, 15 | syl3anc 1369 | . 2 ⊢ ((𝐺 ∈ FriendGraph ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵)) → {𝑎, 𝑏} ∈ 𝐸) |
17 | 16 | ralrimivva 3114 | 1 ⊢ (𝐺 ∈ FriendGraph → ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 {𝑎, 𝑏} ∈ 𝐸) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ∀wral 3063 {crab 3067 ∖ cdif 3880 {cpr 4560 ‘cfv 6418 Vtxcvtx 27269 Edgcedg 27320 VtxDegcvtxdg 27735 FriendGraph cfrgr 28523 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-2o 8268 df-oadd 8271 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-dju 9590 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-n0 12164 df-xnn0 12236 df-z 12250 df-uz 12512 df-xadd 12778 df-fz 13169 df-hash 13973 df-edg 27321 df-uhgr 27331 df-ushgr 27332 df-upgr 27355 df-umgr 27356 df-uspgr 27423 df-usgr 27424 df-nbgr 27603 df-vtxdg 27736 df-frgr 28524 |
This theorem is referenced by: frgrwopregasn 28581 frgrwopregbsn 28582 frgrwopreglem5ALT 28587 |
Copyright terms: Public domain | W3C validator |